① 铸钢件裂纹出现原因及防治方法。
1、 浇铸冷却过程中冷速太快
2、 铸件截面变化太突然,或过度部位圆角太小
3、 浇注冷却后没及时进行去应力退火
4、 表面或内部缺陷较多
防御:
1、合理设置浇冒口的位置和尺寸,使铸件各部分的冷却速度尽量均匀一致,减少冷裂纹倾向。其次,正确确定铸件在砂型中的停留时间;砂型是一种良好的保温容器,能使铸件较厚和较薄处的温度进一步均匀化,减少他们之间的温度差,降低热应力,减少冷裂纹倾向。
2、延长铸件在铸型内的停留时间,以免开箱过早在铸件内造成较大的内应力,而产生冷裂纹。最后,增加砂型、砂芯的退让性;铸件凝固后及早卸去压箱铁,松开杀向紧固装置等,是防止由于收缩应力而使铸件产生冷裂的有效措施。
3、大型铸件的砂型和砂芯在浇注后可提前挖去部分型砂和芯砂,以减少他们对逐渐的收缩阻力,促使铸件各部分均匀冷却。铸钢件的落砂、清理和搬运过程中,应避免碰撞、挤压,防止逐渐产生冷裂纹。
4、铸造应力大的铸件应及时进行时效热处理,避免过大的残余应力使铸件产生冷裂纹。必要时,逐渐在切割冒口或汗布后,还要进行以此时效热处理。
(1)铸造热裂用什么方法消除扩展阅读:
一种钢锭缺陷。裂纹按照在钢锭上存在的部位,可分为表面裂纹和内部裂纹。表面裂纹于精整时用肉眼即可观察到,其中的横向裂纹能引起轧材拉裂,纵向裂纹能引起轧材劈裂;内裂纹只有在低倍检验或无损探伤时才可发现,它可引起轧材的内裂,严重时能造成轧材分层。
裂纹按形成的时期,可分为热裂纹和冷裂纹。前者是在钢锭凝固过程中或凝固后不久,由于热应力、钢液静压力、锭壳收缩阻力和其他外力的作用而引起的;后者是在钢锭冷却到固态相变时,由于相变组织应力和热应力的作用而引起。
冷裂纹形成时有金属响声,故亦称“响裂”。热裂纹的断口粗糙、无光泽;冷裂纹的断口光滑、有金属光泽。
钢锭在应力作用下,局部的实际变形量超过其塑性极限时,引起局部断裂,即成裂纹。热裂纹与冷裂纹具有不同的应力来源和断裂机理。
② 对于易产生热裂或变形的铸件应怎样处理,机床铸件,床身铸件
需进行时效处理,最好是自然时效处理,即放置一段时间再加工。
③ 铸造产品的热处理有哪些
铸造是生产毛坯或零件的一种重要方法,适应性强,生产成本低,设备投资费用小。但是逐渐的结晶组织粗大、不均匀、力学性能低于锻件。常伴随的铸造缺陷有:①铸造裂纹,如热裂、冷裂、缩裂;②组织不良,气孔、缩孔、疏松、冷隔、夹杂物、夹渣、偏析等;③外观缺陷,粘砂、麻点等。铸钢件还会出现魏氏体组织。这些缺陷对后续的热处理质量有很大影响。
在热处理中,组织缺陷分为可以改善的缺陷或不能改善的缺陷。
铸铁件的热处理是去应力退火,即人工时效,温度550~600℃,保温2~4h后炉冷,有时采用自然时效,指将铸件在露天放置几个月或几年;对于消除白口铸可进行高温退火,温度900~950℃,保温2~5h后炉冷。铸钢件采用完全退火或正火消除缺陷。
④ 高温合金薄壁铸件k4169出现热裂与浇不足的原因与改进措施
GH4169(GH169)高温合金
GH4169合金是以体心四方的γ"和面心立方的γ′相沉淀强化的镍基高温合金,在-253~700℃温度范围内具有良好的综合性能,650℃以下的屈服强度居变形高温合金的首位,并具有良好的抗疲劳、抗辐射、抗氧化、耐腐蚀性能,以及良好的加工性能、焊接性能和长期组织稳定性,能够制造各种形状复杂的零部件,在宇航、核能、石油工业中,在上述温度范围内获得了极为广泛的应用。
该合金的另一特点是合金组织对热加工工艺特别敏感,掌握合金中相析出和溶解规律及组织与工艺、性能间的相互关系,可针对不同的使用要求制定合理、可行的工艺规程,就能获得可满足不同强度级别和使用要求的各种零件。供应的品种有锻件、锻棒、轧棒、冷轧棒、圆饼、环件、板、带、丝、管等。可制成盘、环、叶片、轴、紧固件和弹性元件、板材结构件、机匣等零部件在航空上长期使用。
GH4169 材料牌号GH4169(GH169)
GH4169 相近牌号Inconel 718(美国),NC19FeNb(法国)
GH4169 材料的技术标准
GJB 2612-1996 《焊接用高温合金冷拉丝材规范》
HB 6702-1993 《WZ8系列用GH4169合金棒材》
GJB 3165 《航空承力件用高温合金热轧和锻制棒材规范》
GJB 1952 《航空用高温合金冷轧薄板规范》
GJB 1953 《航空发动机转动件用高温合金热轧棒材规范》
GJB 2612 《焊接用高温合金冷拉丝材规范》
GJB 3317 《航空用高温合金热轧板材规范》
GJB 2297 《航空用高温合金冷拔(轧)无缝管规范》
GJB 3020 《航空用高温合金环坯规范》
GJB 3167 《冷镦用高温合金冷拉丝材规范》
GJB 3318 《航空用高温合金冷轧带材规范》
GJB 2611 《航空用高温合金冷拉棒材规范》
YB/T5247 《焊接用高温合金冷拉丝》
YB/T5249 《冷镦用高温合金冷拉丝》
YB/T5245 《普通承力件用高温合金热轧和锻制棒材》
GB/T14993 《转动部件用高温合金热轧棒材》
GB/T14994 《高温合金冷拉棒材》
GB/T14995 《高温合金热轧板》
GB/T14996 《高温合金冷轧薄板》
GB/T14997 《高温合金锻制圆饼》
GB/T14998 《高温合金坯件毛坏》
GB/T14992 《高温合金和金属间化合物高温材料的分类和牌号》
HB 5199 《航空用高温合金冷轧薄板》
HB 5198 《航空叶片用变形高温合金棒材》
HB 5189 《航空叶片用变形高温合金棒材》
HB 6072 《WZ8系列用GH4169合金棒材》
GH4169化学成分:%
C P S Mn Si Ni Cr Cu Al Co Mo Ti Nb Fe
≤0.08 ≤0.015 ≤0.02 ≤0.35 ≤0.35 50.0~55.0 17.0~21.0 ≤0.30 0.20~0.80 ≤1.00 2.80~3.30 0.65~1.15 4.75~5.50 余量
余量该合金的化学成分分为3类:标准成分、优质成分、高纯成分。优质成分的在标准成分的基础上降碳增铌,从而减少碳化铌的数量,减少疲劳源和增加强化相的数量,提高抗疲劳性能和材料强度。同时减少有害杂质和气体含量。高纯成分是在优质标准基础上降低硫和有害杂质的含量,提高材料纯度和综合性能。
核能应用的GH4169合金,需控制硼含量(其他元素成分不变),具体含量由供需双方协商确定。
当ω(B)≤0.002%时,为与宇航工业用的GH4169合金加以区别,合金牌号为GH4169A。
GH4169 热处理制度
合金具有不同的热处理制度,以控制晶粒度、控制δ相形貌、分布和数量,从而获得不同级别的
力学性能。合金热处理制度分3类:
Ⅰ:(1010~1065)℃±10℃,1h,油冷、空冷或水冷+720℃±5℃,8h,以50℃/h 炉冷至620℃±5℃,8h,空冷。
经此制度处理的材料晶粒粗化,晶界和晶内均无δ相,存在缺口敏感性,但对提高冲击性能和抵抗低温氢脆有利。
Ⅱ:(950~980)℃±10℃,1h,油冷、空冷或水冷+720℃±5℃,8h,以50℃/h 炉冷至620℃±5℃,8h,空冷。
经此制度处理的材料有δ相,有利于消除缺口敏感性,是最常用的热处理制度,也称为标准热处理制度。
Ⅲ:720℃±5℃,8h,以50℃/h炉冷至620℃±5℃,8h,空冷。
经此制度处理后,材料中的δ相较少,能提高材料的强度和冲击性能。该制度也称为直接时效热处理制度。
GH4169 品种规格和供应状态
可以供应模锻件(盘、整体锻件)、饼、环、棒(锻棒、轧棒、冷拉棒)、板、丝、带、管、不同形状和尺寸的紧固件、弹性元件等、交货状态由供需双方商定。丝材以商定的交货状态成盘状交货。
GH4169 熔炼和铸造工艺
合金的冶炼工艺分为3类:真空感应加电渣重熔;真空感应加真空电弧重熔;真空感应加电渣重熔加真空电弧重熔。可根据零件的使用要求,选择所需的冶炼工艺,满足应用要求。
GH4169 应用概况与特殊要求
制造航空和航天发动机中的各种静止件和转动件,如盘、环件、机匣、轴、叶片、紧固件、弹性元件、燃气导管、密封元件等和焊接结构件;制造核能工业应用的各种弹性元件和格架;制造石油和化工领域应用的零件及其他零件。
近年来,在对该合金研究不断深化和对该合金应用不断扩大的基础上,为提高质量和降低成本,发展了很多新工艺:真空电弧重熔是采用氦气冷却工艺,有效减轻铌偏析;采用喷射成型工艺,生产环件,降低生产成本和缩短生产周期;采用超塑成型工艺,扩大产品的生产范围。
GH4169 熔化温度范围1260~1320℃。
GH4169密度ρ=8.24g/cm3。
GH4169磁性能合金无磁性。
GH4169相变温度
γ"相是该合金的主要强化相,其最高稳定温度是650℃,开始固熔温度为840~870℃,完全固熔温度是950℃,γ′相也是该合金的强化相,但数量少于γ"相,其析出温度是600℃,完全熔解温度是840℃;δ相的开始析出温度是700℃,析出峰温度是940℃,980℃开始熔解,完全熔解温度是1020℃。
GH4169合金组织结构
合金标准热处理状态的组织由γ基体、γ′、γ"、δ、NbC相组成。γ"(Ni3Nb)相是主要强化相,为体心四方有序结构的亚稳定相,呈圆盘状在基体中弥散共格析出,在长期时效或长期应用期间,有向δ相转变的趋势,使强度下降。γ′(Ni3(Al、Ti))相的数量次于γ"相,呈球状弥散析出,对合金起一部分强化作用。δ相主要在晶界析出,其形貌与锻造期间的终锻温度有关,终锻温度在900℃,形成针状,在晶界和晶内析出;终锻温度达930℃,δ相呈颗粒状,均匀分布;终锻温度达950℃,δ相呈短棒状,分布于晶界为主;终锻温度达980℃,在晶界析出少量针状δ相,锻件出现持久缺口敏感性。终锻温度达到1020℃或更高,锻件中无δ相析出,晶粒随之粗化,锻件有持久缺口敏感性。锻造过程中,δ相在晶界析出,能起到钉扎作用,阻碍晶粒粗化。
L相是变形GH4169合金中不允许存在的相,该相富铌,存在于铸锭枝晶间,降低铸锭初熔点,铸锭
中L相固溶温度和均匀化时间的关系。
GH4169工艺性能与要求
因GH4169合金中铌含量高,合金中的铌偏析程度与冶金工艺直接相关。电渣重熔和真空电弧熔炼的熔炼速度和电极棒的质量状态直接影响材质的优劣。熔速快,易形成富铌的黑斑;熔速慢,会形成贫铌的白斑;电极棒表面质量差和电极棒内部有裂纹,均易导致白斑的形成,所以,提高电极棒质量和控制熔速及提高钢锭的凝固速率是冶炼工艺的关键因素。为避免钢锭中的元素偏析过重,至今采用的钢锭直径不大于508mm。
均匀化工艺必须确保钢锭中的L相完全熔解。钢锭两阶段均匀化和中间坯二次均匀化处理的时间,根据钢锭和中间坯的直径而定。均匀化工艺的控制与材料中的铌偏析程度直接相关。
目前生产中采用的1160℃,20h±1180℃,44h的均匀化工艺,尚不足以消除钢锭中心的偏析,因此建议采用以下均匀化工艺:
1. 1150~1160℃,20~30h+1180~1190℃,110~130h;
2. 1160℃,24h+1200℃,70h[20]。
经均匀化处理的合金具有良好的热加工性能,钢锭的开坯加热温度不得超过1120℃。锻件的锻造工艺应根据锻件使用状况和应用要求,结合生产厂的生产条件而定。开坯和生产锻件是,中间退火温度和终锻温度必须根据零件所要求的组织状态和性能来确定,一般情况下,锻造的终锻温度控制在930~950℃之间为宜。
GH4169焊接性能
合金具有满意的焊接性能,可用氩弧焊、电子束焊、缝焊、点焊等方法进行焊接。
对直接时效状态的零部件,推荐采用惯性摩擦焊以保持其强化效果,选用合适的摩擦焊工艺参数,在保留细晶组织的同时,焊缝边缘及热影响区还可以保留强化相γ′和γ"以及δ相,因此对接头性能无明显影响,对直接时效的锻件,可在锻造状态进行摩擦焊,焊后再进行直接时效处理(制度Ⅲ),可获得持久强度很高的焊接接头。
GH4169零件热处理工艺
航空零件的热处理通常按1.5条规定的Ⅱ、Ⅲ两种制度,即标准热处理制度和直接时效热处理制度进行。再有技术依据的条件下,也可采用其他制度热处理。按标准制度热处理时,固溶处理可在950~980℃范围内,在选定的温度±10℃下进行。
GH4169表面处理工艺
必要时可对零件表面局面进行喷丸强化、孔挤压强化或螺纹滚压强化工序,使零件在交变载荷条件下工作的寿命成倍增长。
对要求喷涂耐磨封严涂层的零件,可采用等离子喷涂或爆炸喷涂工艺,以爆炸喷涂为佳,爆炸喷涂涂层与基体结合强度高,涂层致密、硬度高、孔隙率低,耐磨性好。
GH4169切削加工与磨削性能
合金可满意地进行切削加工。
机械加工时必须确保圆弧达到设计要求和平滑过渡,不允许在机械加工、装配或运输中出现尖角、坑与划伤缺口,因为在这些缺陷出,可形成过量的应力集中,在使用中会导致严重事故的发生。
⑤ 什么是热裂什么是冷裂,解决办法
热裂冷裂,在高温下形成的裂纹。 其形状特征是:裂缝短、缝隙宽、形状曲折、缝内呈氧化色(黑褐色)。形成热裂的影响因素:合金性质,铸型阻力。形成冷裂是冷却到低温处于弹性状态时所受应力总和大于该温度下合金的抗拉强度产生的 特点:裂缝细小 呈连续直线或圆滑曲线 有金属光泽或轻微氧化色。
如何防止热裂冷裂纹发生
1.改善铸件结构
壁厚力求均匀,转角处应作出过渡圆角,减少应力集中现象。轮类铸件的轮辐必要时可做成弯曲状。
2.提高合金材料的熔炼质量
采用精炼和除气工艺去除金属液中的氧化夹杂和气体等。控制有害杂质的含量,采用合理的熔炼工艺,防止产生冷裂纹。
3、采用正确的铸造工艺措施
使铸件实现同时凝固不仅有利于防止热裂纹,也有助于防止冷裂纹。合理设置浇冒口的位置和尺寸,使铸件各部分的冷却速度尽量均匀一致,减少冷裂纹倾向。
正确确定铸件在砂型中的停留时间砂型是一种良好的保温容器,能使铸件较厚和较薄处的温度进一步均匀化,减少它们之间的温度差,降低热应力,减少冷裂纹倾向。延长铸件在铸型内的停留时间,以免开箱过早在铸件内造成较大的内应力,而产生冷裂纹。
增加砂型、砂芯的退让性铸件凝固后及早卸去压箱铁,松开砂箱紧固装置等,是防止由于收缩应力而使铸件产生冷冽的有效措施。大型铸件的砂型和砂芯,在浇注后可提前挖去部分型砂和芯砂,以减少它们对铸件的收缩阻力,促使铸件各部分均匀冷却。铸件在落砂、清理和搬运过程中,应避免碰撞、挤压,防止铸件产生冷裂纹。
4、时效热处理
铸造应力大的铸件应及时进行时效热处理,避免过大的残余应力使铸件产生冷裂纹。必要时,铸件在切割浇冒口或焊补后,还要进行一次时效热处理
⑥ 该怎么预防铝合金压铸件热裂纹形成
一、铸造概论铝合金铸造的种类如下:由于铝合金各组元不同,从而表现出合金的物理、化学性能均有所不同,结晶过程也不尽相同。故必须针对铝合金特性,合理选择铸造方法,才能防止或在许可范围内减少铸造缺陷的产生,从而优化铸件。1、铝合金铸造工艺性能铝合金铸造工艺性能,通常理解为在充满铸型、结晶和冷却过程中表现最为突出的那些性能的综合。流动性、收缩性、气密性、铸造应力、吸气性。铝合金这些特性取决于合金的成分,但也与铸造因素、合金加热温度、铸型的复杂程度、浇冒口系统、浇口形状等有关。(1)流动性流动性是指合金液体充填铸型的能力。流动性的大小决定合金能否铸造复杂的铸件。在铝合金中共晶合金的流动性最好。影响流动性的因素很多,主要是成分、温度以及合金液体中存在金属氧化物、金属化合物及其他污染物的固相颗粒,但外在的根本因素为浇注温度及浇注压力(俗称浇注压头)的高低。(2)收缩性收缩性是铸造铝合金的主要特征之一。一般讲,合金从液体浇注到凝固,直至冷到室温,共分为三个阶段,分别为液态收缩、凝固收缩和固态收缩。合金的收缩性对铸件质量有决定性的影响,它影响着铸件的缩孔大小、应力的产生、裂纹的形成及尺寸的变化。通常铸件收缩又分为体收缩和线收缩,在实际生产中一般应用线收缩来衡量合金的收缩性。铝合金收缩大小,通常以百分数来表示,称为收缩率。①体收缩体收缩包括液体收缩与凝固收缩。铸造合金液从浇注到凝固,在最后凝固的地方会出现宏观或显微收缩,这种因收缩引起的宏观缩孔肉眼可见,并分为集中缩孔和分散性缩孔。集中缩孔的孔径大而集中,并分布在铸件顶部或截面厚大的热节处。分散性缩孔形貌分散而细小,大部分分布在铸件轴心和热节部位。显微缩孔肉眼难以看到,显微缩孔大部分分布在晶界下或树枝晶的枝晶间。缩孔和疏松是铸件的主要缺陷之一,产生的原因是液态收缩大于固态收缩。生产中发现,铸造铝合金凝固范围越小,越易形成集中缩孔,凝固范围越宽,越易形成分散性缩孔,因此,在设计中必须使铸造铝合金符合顺序凝固原则,即铸件在液态到凝固期间的体收缩应得到合金液的补充,是缩孔和疏松集中在铸件外部冒口中。对易产生分散疏松的铝合金铸件,冒口设置数量比集中缩孔要多,并在易产生疏松处设置冷铁,加大局部冷却速度,使其同时或快速凝固。②线收缩线收缩大小将直接影响铸件的质量。线收缩越大,铝铸件产生裂纹与应力的趋向也越大;冷却后铸件尺寸及形状变化也越大。对于不同的铸造铝合金有不同的铸造收缩率,即使同一合金,铸件不同,收缩率也不同,在同一铸件上,其长、宽、高的收缩率也不同。应根据具体情况而定。(3)热裂性铝铸件热裂纹的产生,主要是由于铸件收缩应力超过了金属晶粒间的结合力,大多沿晶界产生从裂纹断口观察可见裂纹处金属往往被氧化,失去金属光泽。裂纹沿晶界延伸,形状呈锯齿形,表面较宽,内部较窄,有的则穿透整个铸件的端面。不同铝合金铸件产生裂纹的倾向也不同,这是因为铸铝合金凝固过程中开始形成完整的结晶框架的温度与凝固温度之差越大,合金收缩率就越大,产生热裂纹倾向也越大,即使同一种合金也因铸型的阻力、铸件的结构、浇注工艺等因素产生热裂纹倾向也不同。生产中常采用退让性铸型,或改进铸铝合金的浇注系统等措施,使铝铸件避免产生裂纹。通常采用热裂环法检测铝铸件热裂纹。(4)气密性铸铝合金气密性是指腔体型铝铸件在高压气体或液体的作用下不渗漏程度,气密性实际上表征了铸件内部组织致密与纯净的程度。铸铝合金的气密性与合金的性质有关,合金凝固范围越小,产生疏松倾向也越小,同时产生析出性气孔越小,则合金的气密性就越高。同一种铸铝合金的气密性好坏,还与铸造工艺有关,如降低铸铝合金浇注温度、放置冷铁以加快冷却速度以及在压力下凝固结晶等,均可使铝铸件的气密性提高。也可用浸渗法堵塞泄露空隙来提高铸件的气密性。(5)铸造应力铸造应力包括热应力、相变应力及收缩应力三种。各种应力产生的原因不尽相同。①热应力热应力是由于铸件不同的几何形状相交处断面厚薄不均,冷却不一致引起的。在薄壁处形成压应力,导致在铸件中残留应力。②相变应力相变应力是由于某些铸铝合金在凝固后冷却过程中产生相变,随之带来体积尺寸变化。主要是铝铸件壁厚不均,不同部位在不同时间内发生相变所致。③收缩应力铝铸件收缩时受到铸型、型芯的阻碍而产生拉应力所致。这种应力是暂时的,铝铸件开箱是会自动消失。但开箱时间不当,则常常会造成热裂纹,特别是金属型浇注的铝合金往往在这种应力作用下容易产生热裂纹。铸铝合金件中的残留应力降低了合金的力学性能,影响铸件的加工精度。铝铸件中的残留应力可通过退火处理消除。合金因导热性好,冷却过程中无相变,只要铸件结构设计合理,铝铸件的残留应力一般较小。(6)吸气性铝合金易吸收气体,是铸造铝合金的主要特性。液态铝及铝合金的组分与炉料、有机物燃烧产物及铸型等所含水分发生反应而产生的氢气被铝液体吸收所致。铝合金熔液温度越高,吸收的氢也越多;在700℃时,每100g铝中氢的溶解度为0.5~0.9,温度升高到850℃时,氢的溶解度增加2~3倍。当含碱金属杂质时,氢在铝液中的溶解度显著增加。铸铝合金除熔炼时吸气外,在浇入铸型时也会产生吸气,进入铸型内的液态金属随温度下降,气体的溶解度下降,析出多余的气体,有一部分逸不出的气体留在铸件内形成气孔,这就是通常称的“针孔”。气体有时会与缩孔结合在一起,铝液中析出的气体留在缩孔内。若气泡受热产生的压力很大,则气孔表面光滑,孔的周围有一圈光亮层;若气泡产生的压力小,则孔内表面多皱纹,看上去如“苍蝇脚”,仔细观察又具有缩孔的特征。铸铝合金液中含氢量越高,铸件中产生的针孔也越多。铝铸件中针孔不仅降低了铸件的气密性、耐蚀性,还降低了合金的力学性能。要获得无气孔或少气孔的铝铸件,关键在于熔炼条件。若熔炼时添加覆盖剂保护,合金的吸气量大为减少。对铝熔液作精炼处理,可有效控制铝液中的含氢量。二、砂型铸造采用砂粒、粘土及其他辅助材料制成铸型的铸造方法称为砂型铸造。砂型的材料统称为造型材料。有色金属应用的砂型由砂子、粘土或其他粘结剂和水配制而成。铝铸件成型过程是金属与铸型相互作用的过程。铝合金液注入铸型后将热量传递给铸型,砂模铸型受到液体金属的热作用、机械作用、化学作用。因此要获得优质的铸件除严格掌握熔炼工艺外,还必须正确设计型(芯)砂的配比、造型及浇注等工艺。三、金属型铸造1、简介及工艺流程金属型铸造又称硬模铸造或永久型铸造,是将熔炼好的铝合金浇入金属型中获得铸件的方法,铝合金金属型铸造大多采用金属型芯,也可采用砂芯或壳芯等方法,与压力铸造相比,铝合金金属型使用寿命长。2、铸造优点(1)优点金属型冷却速度较快,铸件组织较致密,可进行热处理强化,力学性能比砂型铸造高15%左右。金属型铸造,铸件质量稳定,表面粗糙度优于砂型铸造,废品率低。劳动条件好,生产率高,工人易于掌握。(2)缺点金属型导热系数大,充型能力差。金属型本身无透气性。必须采取相应措施才能有效排气。金属型无退让性,易在凝固时产生裂纹和变形。3、金属型铸件常见缺陷及预防(1)针孔预防产生针孔的措施:严禁使用被污染的铸造铝合金材料、沾有有机化合物及被严重氧化腐蚀的材料。控制熔炼工艺,加强除气精炼。控制金属型涂料厚度,过厚易产生针孔。模具温度不宜太高,对铸件厚壁部位采用激冷措施,如镶铜块或浇水等。采用砂型时严格控制水分,尽量用干芯。(2)气孔预防气孔产生的措施:修改不合理的浇冒口系统,使液流平稳,避免气体卷入。模具与型芯应预先预热,后上涂料,结束后必须要烘透方可使用。设计模具与型芯应考虑足够的排气措施。(3)氧化夹渣预防氧化夹渣的措施:严格控制熔炼工艺,快速熔炼,减少氧化,除渣彻底。Al-Mg合金必须在覆盖剂下熔炼。熔炉、工具要清洁,不得有氧化物,并应预热,涂料涂后应烘干使用。设计的浇注系统必须有稳流、缓冲、撇渣能力。采用倾斜浇注系统,使液流稳定,不产生二次氧化。选用的涂料粘附力要强,浇注过程中不产生剥落而进入铸件中形成夹渣。(4)热裂预防产生热裂的措施:实际浇注系统时应避免局部过热,减少内应力。模具及型芯斜度必须保证在2°以上,浇冒口一经凝固即可抽芯开模,必要时可用砂芯代替金属型芯。控制涂料厚度,使铸件各部分冷却速度一致。根据铸件厚薄情况选择适当的模温。细化合金组织,提高热裂能力。改进铸件结构,消除尖角及壁厚突变,减少热裂倾向。(5)疏松预防产生疏松的措施:合理冒口设置,保证其凝固,且有补缩能力。适当调低金属型模具工作温度。控制涂层厚度,厚壁处减薄。调整金属型各部位冷却速度,使铸件厚壁处有较大的激冷能力。适当降低金属浇注温度。
⑦ 铸件内应力的消除一般有哪几种办法
1、合理地设计铸件的结构。
铸件的形状愈复杂,各部分壁厚相差愈大,冷却时温度愈不均匀,铸造应力愈大。因此,在设计铸件时应尽量使铸件形状简单、对称、壁厚均匀。
2、采用同时凝固的工艺。
所谓同时凝固是指采取一些工艺措施,使铸件各部分温差很小,几乎同时进行凝固。因各部分温差小,不易产生热应力和热裂,铸件变形小。设法改善铸型、型芯的退让性,合理设置浇冒口等。同时凝固的示意图,该工艺是在工件厚壁处加冷铁,冒口设薄壁处。
3、时效处理是消除铸造应力的有效措施。
时效分自然时效、热时效和共振时效等。所谓自然时效,是将铸件置于露天场地半年以上,让其内应力消除。热时效(人工时效)又称去应力退火,是将铸件加热到550-650℃,保温2-4h,随炉冷却至150-200T,然后出炉。共振法是将铸件在其共振频率下震动10-60ndn,以消除铸件中的残留应力。
物体由于外因(受力、湿度、温度场变化等)而变形时,在物体内各部分之间产生相互作用的内力,单位面积上的内力称为应力。
⑧ 热裂都有哪些防治措施
影响铸件形成热裂的因素很多,因此,考虑防止热裂的措施还要结合具体的合金和铸件结构做具体分析,并采取相应的措施。
1、铸件结构方面
在设计铸件时应注意几点:两截面相交处不要做成直角转弯,而应做成圆角或比较平缓的过渡;避免采用十字交叉截面,应将交叉的截面错开;如必须在铸件上采用不等厚截面时,应尽量使各部分收缩时互不阻碍;当采用铸一焊联合结构时,应把一个复杂的铸件分成几部分铸出,然后再把它们焊接或连结起来。
2、合金成分、熔炼工艺及精炼方面
在不影响铸件使用性能的前提下,可适当调整合金的化学成分,缩小凝固温度范围,减少凝固期的收缩量,选择抗裂性较好的共晶成分或接近共晶成分;对碳钢及合金钢进行微合金和变质处理,可大大提高铸钢件的抗裂强度。加入稀土元素或其它元素可以达到此目的,加入量一般均在0.3%以下;改进铸钢的脱氧工艺及对钢液进行真空处理,可使钢中气体含量显著下降,减少非金属夹杂物,提高铸钢的抗裂性能;采用悬浮浇注法,即在钢水浇注的同时通过浇口或其它通道加入细颗粒金属粉末使初晶组织化。
3、造型工艺方面
(1)增加铸型退让性,减少铸型对铸件的收缩阻力,其措施有:采用粘土砂时,可加入一些细木屑或其它物质以降低砂型的高温强度或采用以有机化合物为粘结剂的型砂;采用薄壳或中空砂芯,或在粗大的砂芯中间放置松散物质,如焦炭、炉渣等;减少芯骨和箱档可能引起的阻碍;采用涂料,使铸型和型芯表面光滑,防止粘砂,以减少铸件收缩阻力。
(2)减少铸件各部分温差的措施从以下两方面着手:将内浇道开在铸件较薄的部分或将内浇道分散多处注入型腔,使铸件各部分的温度趋于一致;采用冷铁加速局部冷却。
(3)在铸件上设置防裂筋。在铸件上开设的铸筋有两种。一种是防变形筋;另一种就是防裂筋,用来增强铸件易裂处的强度,防止热裂。收缩筋一般取连接壁薄壁部分的1/3左右,筋间距可取铸件壁厚的3—5倍,筋的长度应足以连接热节两侧的铸件壁,并设置在受拉的一侧,以承受拉应力。收缩筋由于壁薄、冷却快,当铸件壁凝固收缩时,已具有较高的强度防止拉裂。防裂筋可在清理时除去,如不影响使用也可以不去除。
⑨ 铸造热裂与冷裂的区别
铸造件冷裂纹与热裂纹的区别
铸钢的熔炼一般采用平炉,电弧炉和感应炉等。平炉的特点是容量大、可利用废钢作原料、能准确控制钢的成分并能熔炼优质钢及低合金钢,多用于熔炼质量要求高的、大型铸钢件用的钢液。但是如果控制不好,就容易出现裂纹。
防止铸造热裂缺陷的措施
为使树脂砂铸造,尤其呋喃树脂砂铸造避免或减少热裂,可采取以下几个方面的措施:
1.合金方面
(1)控制铸件的含硫量,宜在0.03%以下,并且避免铸件中出现Ⅱ型硫化物。(铸钢件中的硫化物呈三种形态,即Ⅰ型、Ⅱ型和Ⅲ型,其中Ⅱ型的硫化物沿晶界分布,呈断续状,容易引起铸件热裂。)通过调整锰硫比来改变硫的分布型态。
(2)对于碳钢件,应使S+P≤0.07%,因为硫与磷的叠加作用,使热裂倾向性增加。
(3)用A1脱氧时,应将铝的残留量A1残留控制≤0.1%;过高的A1残量,有利于形成A12S3,甚至可能形成A1N,使钢的断口呈现“岩石状”,大大降低铸钢件的抗热裂能力。
(4)使钢的晶粒能细化。如在钢液中加入稀土和硅钙,既可脱氧、脱硫,又可以细化晶粒。对NiCrMoV钢的测定表明:在相同的条件下,经稀土+硅钙处理的钢液,较之未处理的钢液,其抗裂能力高2倍以上。
2.树脂砂铸造工艺方面
(1)在满足铸件的充填性的要求时,尽量降低钢液的浇注温度。对0.19%C的碳钢,在1550℃时浇注比在1600℃时浇注,其抗热裂能力几乎高一倍。
(2)对于薄壁铸件,宜采用较高的浇注速度。如对某铸钢件,重量为 125Kg,壁厚为15mm,浇注时间为14秒时不出现热裂;延长至40秒就观察到裂纹。
(3)在铸件易发生裂纹处设置防裂筋,是防止铸钢件热裂的有效措施。
(4)及时松箱,也有助于减少热裂,因为可以减少铸件的收缩应力。
3.造型材料方面
(1)降低树脂加入量,或对树脂改性,使树脂具有热塑性,让呋喃树脂在高温时不结焦或少结焦,从而保证其有良好的高温容让性。
(2)在呋喃树脂砂中加入附加物,使树脂砂具有热塑性;或者在收缩受阻最严重处,加入木粉、泡沫珠粒;或者在铸型中相应部位放塑性好的退让块,提高其高温退让性。
(3)采用磷酸固化剂。因为磺酸类固化剂容易引起铸件表面渗硫,在铸件表面引起微裂纹,成为龟裂源。
(4)使用热膨胀系数较小的造型材料,如用铬铁矿砂等代替石英砂等。
(5)减薄砂芯(型)的砂层厚度,如采用中空砂芯。例如:某类阀门铸件,仅仅通过减薄型芯砂层厚度,改变芯骨的连接方法,就消除了铸件的热裂缺陷。
(6)在易产生裂纹的地方合理使用冷铁或找其它激冷措施。
(7)采用能有效减少渗硫的涂料。
4.铸件结构方面
铸件的形状与尺寸,是由设计者决定的,生产方无法改变。但是,对于园角的大小,壁厚过渡处的处理等,可以与有关设计部门协商,按照铸造生产要求作适当修改。
上述几方面的因素对铸钢件热裂都有影响,但对于某一具体铸件,可能只有其中的部分因素是主要的。
冷裂纹是铸件凝固后冷却到弹性状态时,因局部铸造应力大于合金极限强度而引起的开裂。冷裂纹总是发生在冷却过程中承受拉应力的部位,特别是拉应力集中的部位。
冷裂纹与热裂纹不同,冷裂纹往往穿晶扩展到整个截面,外形呈宽度均匀细长的直线或折线状,冷裂纹的断口表面子净有金属光泽或呈轻度氧化色,裂纹走向平滑,而非沿晶界发生。这与热裂纹有显著的不同。冷裂纹检验用肉眼可见,可根据其宏观形貌及穿晶扩展的微观特征,与热裂纹区别。
⑩ 热裂纹产生的原因及防治方法
热裂纹常发生在铸件最后凝固并且容易产生应力集中的部位,如热节、拐角或靠近内浇口等处。热裂纹分为内裂纹和外裂纹。内裂纹产生在铸件内部最后凝固的地方,有时与晶间缩孔、缩松较难区别。外裂纹在铸件的表面可以看见,其始于铸件的表面,由大到小逐渐向内部延伸,严重时裂纹将贯穿铸件的整个断面。
宏观裂纹:由于热裂纹是在高温下形成的,因此裂纹的表面与空气接触并被氧化而呈暗褐色甚至黑色,同时热裂纹呈弯曲状而不规则。
微观裂纹:沿晶界发生与发展,热裂纹的两侧有脱碳层并且裂纹附近的晶粒粗大,并伴有魏氏组织
热裂纹形成的温度范围
熔模铸件的热裂纹到底是在什么温度下发生的,长期以来说法不一.到目前为止归纳起来仍有两种:其一,热裂纹是在凝固温度范围内但接近于固相线温度时形成的,此时合金处于固-液态;其二,热裂纹是在稍低于固相线温度时形成的,此时合金处于固态。
热裂纹的防止措施
1.提高铸件在高温时的强度与塑性
(1)合理选材
选材是一项极为复杂的技术和经济问题。所渭合理选材就是选用的材质应该同时满足铸件的使用性、工艺性和经济性。对于铸件而言,主要是铸造工艺性(热裂性、流动性和收缩性等)。如果该材质的铸造工艺性能不佳,热裂倾向性大,那么浇注出来的铸件产生热裂纹的废品率就高。
(2)保证熔炼质量
在铸钢合金成分中,最有害的化学成分是硫。当wS>0.03%,以O.05%的临界铝含量脱氧,硫化物以链状共晶形式分布时,塑性很低,易引起热裂纹。在熔炼时,可以加入适量的强脱硫剂稀土元素,以减少合金中的含硫量。只要稀土元素的加入工艺合理,其脱硫效果为40%~50%:并且稀土元素能细化晶粒,改变夹杂物的形态与分布,从而减轻了热裂纹的程度(指裂纹的大小与深浅)和降低了热裂纹的数量。
另外,分布于铸钢晶界的低熔点夹杂物将降低它的强度和塑性,并且随着夹杂物的增多,强度和塑性下降,促使形成热裂纹。在熔炼时,应选用干净、清洁的炉料;采用合理的熔炼工艺,加强操作,才能保证熔炼质量。
2.提高型壳的退让性,减少铸造应力
(1)铸件的结构
其与形成热裂纹的关系很大。结构不合理,如壁厚相差较大、热节较多而且较大、壁厚薄的转角处圆角太小或呈尖角引起应力集中等,均会引起热裂纹的产生。
铸件的壁厚不匀,导致铸件的冷却速度不一致。薄壁处先冷凝,并且有一定的强度,其对厚壁处的冷凝收缩起到阻碍作用(使厚壁处收缩时受到拉应力)。当阻力超过此时厚壁处合金的强度极限时,就产生热裂纹。
铸件壁厚薄的转角处圆角太小或呈尖角,引起应力集中,促使热裂纹的产生;圆角太大,又出现新的热节。因此,应通过实验选择适当的铸造圆角。
(2)浇注系统
浇冒口的设置可能造成铸件收缩时的热阻碍和机械阻碍。铸件在靠近内浇道的部位,凝固的较晚、冷却较慢。因此,铸件在此薄弱的部位容易引起热裂纹。如果将内浇道分散,使金属液从几处进入型腔,就能分散热应力,减少铸件收缩时的热阻碍和机械阻碍,防止或减少热裂纹的产生。
为了使熔模铸件顺序凝固,以利于补缩,而把内浇道设置在铸件厚大处。这使铸件上的热量分布极不均匀,产生较大的温度梯度,铸件收缩很不一致,易造成热裂纹。这就需要改变内浇道的位置,使铸件由顺序凝固变为同时凝固。铸件各处的温度均匀,冷凝较一致,可以减少或防止了铸件形成热裂纹。这样做可能减少了热裂纹,却可能使铸件产生缩孔和缩松。
(3)浇注工艺
浇注温度和浇注速度对铸件产生热裂纹的影响比较复杂。一般来说,对于薄壁件宜采用较高的浇注温度和较快的浇注速度。这可以使铸件温度很快趋向均匀,防止局部过热,同时可以使铸件冷凝较慢,减少铸件的收缩应力,从而减少或防止热裂纹的产生。对于厚壁件宜采用较低的浇注温度和较慢的浇注速度。如果厚壁件也采用高的浇注温度和快的浇注速度,则金属液的收缩大、晶粒粗化,更易使铸件产生热裂纹;严重时将使铸件同时形成热裂纹和缩孔(如果两个缺陷出现在同一个部位,即为缩裂)。
(4)型壳的退让性
铸件在冷凝过程中收缩受到型壳的阻碍时产生了收缩应力,收缩应力的大小直接影响到铸件是否产生热裂纹。因此,提高型壳的退让性非常重要。型壳的退让性好,则铸件收缩时的阻力小,形成热裂纹的可能性小。