『壹』 关于轴承计算
先受力分析,再比较向左的力之和与向右力之和,就可以了
轴向力的计算原则:
不管是正装还是反装,方法可以归结为:先通过派生轴向力及外加轴向载荷的计算与分析,判定被"放松"和被"压紧"的轴承,然后确定被"放松"轴承的轴向力仅为其本身派生的轴向力,被"压紧"轴承的轴向力则为除去本身派生的轴向力外其余各轴向力的代数和.
其他的一系列计算跟正装时一样.
我们都是用这种方法来计算的.
如果有什么不明白的地方,QQ:263810840,我尽力帮你解决.
『贰』 轴承尺寸计算公式
这个真的有,在机械技术手册里有,多看几遍就能记住了,轴承型号由基本代号,前置代号和后置代号构成。基本代号表示轴承系列及尺寸,前置代号表示轴承类型及轴承零件,位于基本代号之前,后置代号表示轴承的结构,保持架,密封与防尘,公差,油隙,热处理等技术要求,位于基本代号之后。
基本代号:代号,宽度系列(高度系列),直径系列,内径代码。
轴承的基本代号一般是5位数,如22310,从右往左数:10-表示轴承的内径尺寸是d=10*5=50mm;3-表示轴承的直径尺寸是“3”系列;2-表示轴承的宽度尺寸是“2”系列;2-表示轴承的结构形式是调心滚子轴承;大部分轴承内径尺寸都是最后两位数*5,但还有以下情况:1.当d<10mm,代码即实际尺寸;2.当10mm≤d≤17mm,00的内径尺寸为10mm,01-12mm,02-15mm,03-17mm;3.当20mm≤d≤495mm,d=代码*5;d=22.28.32时,代码放在“/”,如6228,d=28*5,62/28,d=28mm;4.当d>495mm,则直接放在“/”后面。记得采纳哦
『叁』 轴承间隙怎么计算
在各种传动设备的安装过程中,或多或少会遇到轴承的间隙问题,蜗轮减速机与齿轮减速机作为最常见的传动设备,下面对减速机滚动轴承的间隙产生原因及调整方式进行介绍:
一、滚动轴承的故障原因
滚动轴承依靠主要元件之闻的滚动接触来支持转动零件。滚动轴承因具有摩擦阻力小、功率消耗少、起动容易、能自动调整中心以补偿轴弯曲及适量的装配误差等优点,故以滚动轴承的滚动摩擦取代了滑动轴承的滑动摩撩,因而在现代机器设备中得到广泛运用。
在生产运用中,滚动轴承也易发生故障,究其主要原因为间隙调整不当。在实际生产过程中,滚动轴承在机器设备中最常见的故障有:脱皮剥落、磨损、过热变色、锈蚀裂纹和破碎等。
制造质量不合格及润滑保养不良问题,只需在检修安装前仔细检查,检修安装后建立起严格的定期加油保养制度,就能克服由此而引起的轴承故障。因此,间隙调整不当就成为轴承故障的主要原因。
二、滚动轴承的基本结构
滚动轴承是由内圈,外圈,滚动体和保持架4部分组成。内圈与轴颈装配,外圈与轴承座装配。当内外圈相对转动时,滚动体即在内外圈的滚道问滚动。
三、齿轮减速机滚动轴承的间隙及其量方法
1、滚动轴承的间隙
轴承问隙是保证油膜润滑和滚动体转动畅通无阻所必须的。其间隙数值均有标准或规定。根据轴承所处的状态不同,其间隙有原始间隙、配合间隙和工作间隙。
原始间隙是轴承未装配前自由状态下的间隙值。
配合间隙是轴承安装到轴和轴承座后的间隙。由于配合的过盈关系,配合间隙永远小于原始间隙。
工作间隙是轴承工作时的间隙。由于内外圈的温差使工作间隙小于配合间隙,又由于旋转离心力的作用使滚动体和内外圈产生弹性变形,工作间隙又大于配合间隙(一般情况下,工作间隙太于配合间隙)。
2、间隙的测量
测量原始间隙可用百分表。测量配合间隙时,可用塞尺或铅丝放入滚动体与内外圈之间,盘动转子,使滚动体滚过塞尺或铅丝,其塞尺或被压扁铅丝厚度即为轴承的径向配合间隙。轴向配合间隙可用深度卡尺测量或压铅丝法测量。
四、间隙的调整
齿轮减速机运行时转轴温度较高,调整后,将垫片增加到0.20ram。即:调整后膨胀端径向间隙(ram):0.014-}-0.20:0.214
膨胀间隙可根据公式计算,该引风机设计运行温度为135℃,室温按20℃计算,因此为115℃(135—20),两轴承座中心距离f为5m。故:膨胀间隙f(mm):1.2×(115+SO)×C100—9·9。
根据引风机要求还应考虑冷缩间隙,一般冷鳍间隙为0.50mm。因此,通过加垫片调整,把膨胀间隙调整到11.5mm,同时解决冷缩间隙。
通过以上分析可知,造成引风机轴承温度高的主要原因是,由于原来的两端轴承径向间隙太小,受热后膨胀,产生紧力,导致膨胀端无法游动,所以轴承温升。
『肆』 轴承的尺寸是怎么算的
第一个数字或第一个字母或字母组合表示轴承类型;可以在示意图中看到实际轴承类型。
后面两位数字确定ISO尺寸系列;第一位数字代表宽度或高度系列(分别是尺寸B、T或H),第二位数代表直径系列(尺寸D) 。
基本型号的最后两位数字是轴承的尺寸代号;乘以5就能得出以毫米为单位的内径。
(4)轴承紧端松端如何计算扩展阅读:
在一些情况下,表示轴承类型的数字和/或表示尺寸系列的第一个数字被省略。这些数字在表中放在括号里。
对于内径小于等于10毫米或者大于等于500毫米的轴承,内径通常用毫米表示,不用代号。尺寸与轴承型号的其余部分用斜线分开,例如:618/8 (d = 8毫米)或511/530 (d = 530毫米)。
按照ISO15:1998内径为22、28或32毫米的标准轴承也适用该方法,例如62/22 (d = 22毫米)。
内径为10、12、15与17毫米的轴承有下列尺寸代号标志:00 = 10毫米01 = 12毫米;02 = 15毫米
03 = 17毫米;
对于一些内径小于10毫米的较小轴承,例如深沟、自调心与角接触球轴承,内径也用毫米来表示(不用代号),但是它与系列型号之间不用斜线分开, 例如629或129 (d = 9毫米)。
偏离标准内径的轴承内径总是不用代号,而是用多达三位小数的毫米来表示。该内径标志是基本型号的一部分,它与基本型号之间用斜线分开,例如6202/15875 (d = 15875毫米=5/8英寸)。
『伍』 轴紧度的计算方法
是装轴承的位置吗,要看周的使用场合,如果是和轴承配合,一般采用基孔制,如果是和齿轮一类配合一般采用基轴制。以上情况也不一定,你可以去看一下机械设计手册第二册第6章
『陆』 轴承被压紧和放松是怎么判断的
正装的话向里凸,轴的移动方向指的一端被压紧,反装向外凸,轴的移动方向相反的一端被压
『柒』 轴承的计算公式
(一)滚动进口轴承疲劳寿命的校核计算一、基本额定寿命和基本额定动载荷
所谓NSK轴承寿命,对于单个滚动轴承来说,是指其中一个套圈或滚动体材料首次出现疲劳点蚀之前,一套圈相对于另一套圈所能运转的转数。
由于对同一批轴承(结构、尺寸、材料、热处理以及加工等完全相同),在完全相同的工作条件下进行寿命实验,滚动轴承的疲劳寿命是相当离散的,所以只能用基本额定寿命作为选择轴承的标准。
基本额定寿命:是指一批相同的NTN轴承,在相同条件下运转,其中90%的轴承在发生疲劳点蚀以前能运转的总转数(以转为单位)或在一定转速下所能运转的总工作小时数。
基本额定动载荷C:当轴承的基本额定寿命为转时,轴承所能承受的载荷值。基本额定动载荷,对向心FAG轴承,指的是纯径向载荷,并称为径向基本额定动载荷,用表示;对推力轴承,指的是纯轴向载荷,并称为轴向基本额定动载荷,用表示;对角接触球轴承或圆锥滚子轴承,指的是使套圈间只产生纯径向位移的载荷的径向分量。
不同型号的轴承有不同的基本额定动载荷值,它表征了不同型号轴承承载能力的大小。二、滚动轴承疲劳寿命计算的基本公式 图9-7nachi轴承的载荷-寿命曲线图9-7是轴承的载荷-寿命曲线,它表示了载荷P与基本额定寿命之间的关系。此曲线用公式表示为:
(转) (9-1)
式中:P 为当量动载荷(N);
ε 为寿命指数,对于球轴承 ε =3;对于滚子轴承 ε =10/3。实际计算时,常用小时数表示轴承寿命为:
(h)(9-2)
式中:n为代表INA轴承的转速(r/min)。
温度的变化通常会对轴承元件材料产生影响,轴承硬度将要降低,承载能力下降。所以需引入温度系数 ft (见表9-5),对寿命计算公式进行修正:
(转)(9-3)
(h)(9-4)表9-5温度系数 ft轴承工作温度(℃) ≤120 125 150 175 200 225 250 300 350
温度系数ft 1.00 0.95 0.90 0.85 0.80 0.75 0.70 0.6 0.5 疲劳寿命校核计算应满足的约束条件为
'
式中:' 为koyo轴承预期计算寿命,列于表9-6,可供参考。
如果当量动载荷P和转速n已知,预期计算寿命' 也已被选定,则可从公式(9-5)中计算出轴承应具有的基本额定动载荷' 值,从而可根据' 值选用所需轴承的型号:
(9-5)表9-6推荐的timken轴承预期计算寿命机器类型 预期计算寿命 (h)
不经常使用的仪器或设备,如闸门开闭装置等 300~3000
短期或间断使用的机械,中断使用不致引起严重后果,如手动机械等 3000~8000
间断使用的机械,中断使用后果严重,如发动机辅助设计、流水作业线自动传送装置、长降机、车间吊车、不常使用的机床等 8000~12000
每日8小时工作的机械(利用率较高),如一般的齿轮传动、某些固定电动机等 12000~20000
每日8小时工作的机械(利用率不高),如金属切削机床、连续使用的起重机、木材加工机械、印刷机械等 20000~30000
24小时连续工作的机械,如矿山升降机、纺织机械、泵、电机等 40000~60000
24小时连续工作的机械,中断使用后果严重。如纤维生产或造纸设备、发电站主电机、矿井水泵、船舶浆轴等 100000~200000
三、滚动轴承的当量动载荷
滚动IKO轴承的基本额定动载荷对于向心轴承,是指内圈旋转、外圈静止时的径向载荷,对向心推力轴承,是使滚道半圈受载的载荷的径向分量。对于推力轴承,基本额定动载荷是中心轴向载荷。因此,必须将工作中的实际载荷换算为与基本额定动载荷条件相同的当量动载后才能进行计算。换算后的当量动载荷是一个假想的载荷,用符号表示。在当量动载荷作用下的轴承寿命与工作中的实际载荷作用下的寿命相等。在不变的径向和轴向载荷作用下,当量动载荷的计算公式是:
(9-6a)
式中:为轴承所受的径向载荷(N),即轴承实际载荷的径向分量;
为轴承所受的轴向载荷(N),即轴承实际载荷的轴向分量;
为径向载荷系数,将实际径向载荷转化为当量动载荷的修正系数,见表9-7;
为轴向载荷系数,将实际轴向载荷转化为当量动载荷的修正系数,见表9-7。
对于只能承受纯径向载荷的向心圆柱滚子轴承、滚针轴承、螺旋滚子轴承:
=(9-6b)
对于只能承受纯轴向载荷的推力轴承:
=(9-6c)
根据轴承的实际工作情况,还需引入载荷系数(表9-8)对其进行修正,修正后的当量动载荷应按下面的公式进行计算:
=(+)(9-7a)
= (9-7b)
= (9-7c)表9-8载荷系数 f p 载荷性质 f p 举例
无冲击或轻微冲击 1.0~1.2 电机、汽轮机、通风机、水泵等
中等冲击或中等惯性力 1.2~1.8 车辆、动力机械、起重机、造纸机、冶金机械、选矿机、卷扬机、机床等
强大冲击 1.8~3.0 破碎机、轧钢机、钻探机、振动筛等 在表9-7中,e为轴向载荷影响系数或称判别系数:
当时,表示轴向载荷的影响较大,计算当量动载荷时必须考虑的作用,此时:
=(+)
当时,表示轴向载荷的影响较小,计算当量动载荷时可忽略,此时:
=注意:
1、在式9-7中,是轴承所受的径向载荷,通常为轴承水平面径向支反力与垂直面径向支反力的矢量和;
2、对于深沟球轴承,其轴向载荷由外界作用在轴上的轴向力决定,所指向的轴承,其所承受的轴向力为外界作用在轴上的轴向力(=),另一轴承所承受的轴向力为零;对于角接触球轴承和圆锥滚子轴承,其轴向力由外界的总轴向作用力与各轴承因径向载荷产生的派生轴向力S之间的平衡条件得出。
四、角接触球轴承与圆锥滚子轴承的轴向载荷的计算。
角接触球轴承和圆锥滚子轴承承受纯径向载荷时,要产生派生的轴向力,图9-7所示为两种不同安装方式时,由纯径向载荷产生派生轴向力的情况。其中:
a)为正装(或称为"面对面"安装,这种安装方式可以使支点中心靠近)(图9-8a);
b)为反装(或称"背靠背"安装,支点中心距离加长)(图9-8b)。
安装方式不同时,所产生的派生轴向力的方向也不同,但其方向总是由轴承宽度中点指向载荷中心的。 (a)正装 (b)反装图9-8角接触球轴承轴向载荷分析角接触球轴承及圆锥滚子轴承的派生轴向力的大小按表9-9计算。但计算支反力时,若两轴承支点间的距离不是很小,为简便起见,可以轴承宽度中点作为支反力的作用点,这样处理,误差不大。表9-9约有半数滚动体接触时派生轴向力S 的计算公式圆锥滚子轴承 角接触球轴承
70000C(a =15°) 70000AC(a =25°) 70000B(a =40°)
S=Fr/(2Y)① S=0.5Fr S=0.7Fr S=1.1Fr 注:① Y 是对应于表9-7中Fa/Fr>e时的Y 值。
图9-9所示为一成对安装的向心角接触轴承(可以是角接触球轴承或圆锥滚子轴承),及分别为作用于轴上的径向外载荷及轴向外载荷。两轴承所受的径向载荷为及,相应的派生轴向力为及。 图9-9向心角接触轴承的轴向载荷取轴和轴承内圈为分离体,当轴处于平衡状态时,应满足:
+=
如果+>,如图9-10所示,则轴有右移的趋势,此时右边轴承Ⅱ被"压紧",左边轴承Ⅰ被"放松"。但实际上轴并没有移动。因此,根据力的平衡关系,作用在轴承Ⅱ的外圈上的力应是+',且有:
+=+'
故
' =+- 图9-10轴向力示意图(S1+FA>S2时)作用在轴承Ⅱ上的总的轴向力为:
=+' =+(9-8a)
作用在轴承Ⅰ上的轴向力为(即轴承1只受其自身的派生轴向力):
=(9-8b)
如果+<(见图9-11)。此时轴有左移的趋势,轴承Ⅰ被"压紧",轴承Ⅱ被"放松",为了保持轴的平衡,在轴承Ⅰ的外圈上必有一个平衡力' 作用,作与上述同样的分析,得作用在轴承Ⅰ及轴承Ⅱ上的轴向力分别为: 图9-11轴向力示意图(S1+FA<S2时)=-(9-9a)
=(9-9b)
综上可知,计算角接触球轴承和圆锥滚子轴承所受轴向力的方法可归结为:
(1) 根据轴承的安装方式及轴承类型,确定轴承派生轴向力、的方向、大小;
(2) 确定轴上的轴向外载荷的方向、大小(即所有外部轴向载荷的代数和);
(3) 判明轴上全部轴向载荷(包括外载荷和轴承的派生轴向载荷)的合力指向;根据轴承的安装形式,找出被"压紧"的轴承及被"放松"的轴承;
(4) 被"压紧"轴承的轴向载荷等于除本身派生轴向载荷以外的其它所有轴向载荷的代数和(即另一个轴承的派生轴向载荷与外载荷的代数和);
(5) 被"放松"轴承的轴向载荷等于轴承自身的派生轴向载荷。(二)极限转速校核滚动轴承转速过高,会使摩擦表面间产生很高的温度,影响润滑剂的性能,破坏油膜,从而导致滚动体回火或元件胶合失效。因此,对于高速滚动轴承,除应满足疲劳寿命约束外,还应满足转速的约束,其约束条件为
式中:为滚动轴承的最大工作转速;
为滚动轴承的极限转速。滚动轴承的极限转速值已列入轴承样本中,在有关标准和手册可以查到。但这个转速是指负荷不太大(P≤0.1C,C为基本额定动载荷),冷却条件正常,且轴承公差等级为0级时的最大允许转速。当轴承在重负荷(P>0.1C)下工作时,接触应力将增大;向心轴承受轴向力作用时,将使受载滚动体增加,增大轴承接触表面间的摩擦,使润滑态变坏。这时,要用负荷系数 f1 和负荷分布系数 f2 对手册中的极限转速值进行修正。这样,滚动轴承极限转速的约束条件为:
≤ f1f2
式中:f1、f2的值可从图9-12中查得。 (a)载荷系数 (b)载荷分配系数图9-12载荷系数和载荷分配系数(三)静强度校核由于不转动或转速极低的轴承,其主要的失效形式是产生过大的塑性变形,因此,静强度的校核的目的是要防止轴承元件产生过大的塑性变形。其约束强度条件为
或式中:
S0为轴承静强度安全系数,其值见表9-10;为径向额定静载荷。它是在最大载荷滚动体与滚道接触中心处,引起与下列计算接触应力相当的径向静载荷:对调心球轴承为4600MPa;对所有其它的向心球轴承为4200MPa;对所有向心滚子轴承为4000MPa。对单列角接触球轴承,其径向额定静载荷是指使轴承套圈间仅产生相对纯径向位移的载荷的径向分量。为轴向额定静载荷。它是在最大载荷滚动体与滚道接触中心处,引起与下列计算接触应力相当的中心轴向静载荷:对推力球轴承为4200MPa;对所有推力滚子轴承为4000MPa。为径向当量静载荷。它是指最大载荷滚动体与滚道接触中心处,引起与实际载荷条件下相同接触应力的径向静载荷。为轴向当量静载荷。它是指最大载荷滚动体与滚道接触中心处,引起与实际载荷条件下相同接触应力的轴向静载荷。
、 可从有关设计手册中查到。、可分别按下面的公式进行计算。(1)对深沟球轴承、角接触球轴承、调心球轴承:
(取上两式计算值较大者)(2)向心球轴承和0°的向心滚子轴承:
0°;;
(取上两式计算值较大者)
a=0°(且仅承受径向载荷的向心滚子轴承);(3)a=90°的推力轴承:
=(4)90°的推力轴承:
=2.3tga+对于双向SKF轴承,此公式适用于径向载荷与轴向载荷之比为任意值的情况。对于单向轴承,当/≤0.44ctga时,该公式是可靠的。当/大至0.67ctga时,该公式仍可给出满意的值。式中:和分别为当量静载荷的径向载荷系数和轴向载荷系数,其值见表9-11。
为轴承径向载荷即轴承实际载荷的径向分量(N);
为轴承轴向载荷即轴承实际载荷的轴向分量(N);
a 为接触角。表9-10静载荷安全系数轴承使用性况 使用要求、负荷性质及使用场合
旋转轴承 对旋转精度和平稳性要求较高,或受强大冲击负荷
一般情况
对旋转精度和平稳性要求较低,没有冲击或振动 1.2~2.5
0.8~1.2
0.5~0.8
在工作载荷下基本不
旋转或摆动轴承 水坝门装置
吊桥
附加动载荷较小的大型起重机吊钩
附加动载荷很大的小型装卸起重机吊钩 ≥1.0
≥1.5
≥1.0
≥1.6
各种使用场合下的推力调心滚子轴承 ≥2 表9-11系数和的值轴承类型 单列向心球轴承 双列向心球轴承 0°的向心滚子轴承
② ①② ①
深沟球轴承 0.6 0.5 0.6 0.5 0.5 1 0.22ctga 0.44ctga
角接触球轴承a(°) 15
20
25
30
35
40
45 0.5
0.5
0.5
0.5
0.5
0.5
0.5 0.46
0.42
0.38
0.33
0.29
0.26
0.22 1
1
1
1
1
1
1 0.92
0.84
0.76
0.66
0.58
0.52
0.44
圆锥滚子轴承 0.5 0.22ctga 1 0.44ctga
调心球轴承(0°) 0.5 0.22ctga 1 0.44ctga 注:
①对于两套相同的单列深沟球轴承以"背对背"或“面对面”安装(成对安装)在同一轴上作为一个支承整体运转情况下,计算其径向当量静载荷时用双列轴承的和值,以和为作用在该支承上的总载荷。
②对于中间接触的值,用线性内插法求得。本文地址: http://www.nskfag.org/news/201012_32335.html
『捌』 轴承预紧力如何计算是否有标准借鉴
预紧力的大小必须经过计算得出,计算必须考虑轴承的内部结构及相关尺寸,包括沟曲率、钢球曲率、材料性能等。计算出来后再转化为螺栓的扭矩,因为一般预紧 力都是通过螺栓来施加,所以可以通过扭矩扳手来施加预紧力。需要说明的是,国内很多场合都是靠经验来控制预紧力,这种方法一是因为国内轴承精度的一致性比 较差,二是对预紧力的控制方法不是很规范所致。圆锥滚子轴承无论正负游隙都是纯滚动,其最大的发热源是在滚子大端面与内圈大挡边处的滑动摩擦, 而调心滚子轴承无论正负游隙其滚子的不同点与内外圈滚道都有滑动摩擦。一般在负游隙时发热量急剧增大的原因时预载荷破坏了润滑油膜,使两金属接触表面直接 粘连。对角接触球轴承则不然,轴承在装配后是否纯滚动取决于轴承的装配状态。假如圆锥滚子轴承内外套没有足够的反方向压紧,它就不是纯滚动状态。
轴承预紧一般用于高精密运转条件下的工况场合。从理论上讲,轴承在零游隙甚至一定程度下的负游隙工况场合运转才最平稳,此时轴承刚度得到最有效发挥,轴承 运转时的噪音也最低,因此,应尽量保证轴承在此条件下工作。但是考虑到轴承的安装配合、工作时温度变化所引起的材料变形等因素,轴承在加工时都是预留有正 向游隙的。为了能在高精密运转条件下的工况场合使用,就在轴承和相关部件安装配合后,采取一定的措施来施加预紧力,通过调整内外套圈的位置,来调整轴承游 隙,使得轴承工作时的游隙值为零或负,这样就可以保证高精密运转下轴承运转的平稳。
关于要实施预紧的轴承型号,基本上覆盖了所有常规型号,也可以说,高精密场合用到的所有类型轴承,都需要进行预紧。包括:深沟球轴承(家用电器用到)、角 接触球轴承(其在高速机床主轴上使用时必须进行预紧)、推力轴承类、圆锥滚子轴承、圆柱滚子轴承等,都可以见到预紧的情况。需要说明的是:预紧也有个度, 预紧太过了也会造成轴承工作温升过高,容易造成轴承的早期失效。但是预紧太小,高速运转时,轴承又不能平稳运行。所以目前也开发出预紧力可变调整机构。
预紧分为轻度预紧、中度预紧和重度预紧。当轴承需要高速运转并要求运转平稳时,应该实施轻度预紧;当轴承需要提高承载力和刚度,且转速不高时,应实施中度 或重度预紧。轻度预紧只是为了减少轴承在工作运转时,非接触区内滚动体与滚道间因游隙所产生的窜动,因此,保证轴承游隙为零或者零上游隙即可;中度或重度 游隙为零下负游隙。