① 轴承的计算公式
(一)滚动进口轴承疲劳寿命的校核计算一、基本额定寿命和基本额定动载荷
所谓NSK轴承寿命,对于单个滚动轴承来说,是指其中一个套圈或滚动体材料首次出现疲劳点蚀之前,一套圈相对于另一套圈所能运转的转数。
由于对同一批轴承(结构、尺寸、材料、热处理以及加工等完全相同),在完全相同的工作条件下进行寿命实验,滚动轴承的疲劳寿命是相当离散的,所以只能用基本额定寿命作为选择轴承的标准。
基本额定寿命:是指一批相同的NTN轴承,在相同条件下运转,其中90%的轴承在发生疲劳点蚀以前能运转的总转数(以转为单位)或在一定转速下所能运转的总工作小时数。
基本额定动载荷C:当轴承的基本额定寿命为转时,轴承所能承受的载荷值。基本额定动载荷,对向心FAG轴承,指的是纯径向载荷,并称为径向基本额定动载荷,用表示;对推力轴承,指的是纯轴向载荷,并称为轴向基本额定动载荷,用表示;对角接触球轴承或圆锥滚子轴承,指的是使套圈间只产生纯径向位移的载荷的径向分量。
不同型号的轴承有不同的基本额定动载荷值,它表征了不同型号轴承承载能力的大小。二、滚动轴承疲劳寿命计算的基本公式 图9-7nachi轴承的载荷-寿命曲线图9-7是轴承的载荷-寿命曲线,它表示了载荷P与基本额定寿命之间的关系。此曲线用公式表示为:
(转) (9-1)
式中:P 为当量动载荷(N);
ε 为寿命指数,对于球轴承 ε =3;对于滚子轴承 ε =10/3。实际计算时,常用小时数表示轴承寿命为:
(h)(9-2)
式中:n为代表INA轴承的转速(r/min)。
温度的变化通常会对轴承元件材料产生影响,轴承硬度将要降低,承载能力下降。所以需引入温度系数 ft (见表9-5),对寿命计算公式进行修正:
(转)(9-3)
(h)(9-4)表9-5温度系数 ft轴承工作温度(℃) ≤120 125 150 175 200 225 250 300 350
温度系数ft 1.00 0.95 0.90 0.85 0.80 0.75 0.70 0.6 0.5 疲劳寿命校核计算应满足的约束条件为
'
式中:' 为koyo轴承预期计算寿命,列于表9-6,可供参考。
如果当量动载荷P和转速n已知,预期计算寿命' 也已被选定,则可从公式(9-5)中计算出轴承应具有的基本额定动载荷' 值,从而可根据' 值选用所需轴承的型号:
(9-5)表9-6推荐的timken轴承预期计算寿命机器类型 预期计算寿命 (h)
不经常使用的仪器或设备,如闸门开闭装置等 300~3000
短期或间断使用的机械,中断使用不致引起严重后果,如手动机械等 3000~8000
间断使用的机械,中断使用后果严重,如发动机辅助设计、流水作业线自动传送装置、长降机、车间吊车、不常使用的机床等 8000~12000
每日8小时工作的机械(利用率较高),如一般的齿轮传动、某些固定电动机等 12000~20000
每日8小时工作的机械(利用率不高),如金属切削机床、连续使用的起重机、木材加工机械、印刷机械等 20000~30000
24小时连续工作的机械,如矿山升降机、纺织机械、泵、电机等 40000~60000
24小时连续工作的机械,中断使用后果严重。如纤维生产或造纸设备、发电站主电机、矿井水泵、船舶浆轴等 100000~200000
三、滚动轴承的当量动载荷
滚动IKO轴承的基本额定动载荷对于向心轴承,是指内圈旋转、外圈静止时的径向载荷,对向心推力轴承,是使滚道半圈受载的载荷的径向分量。对于推力轴承,基本额定动载荷是中心轴向载荷。因此,必须将工作中的实际载荷换算为与基本额定动载荷条件相同的当量动载后才能进行计算。换算后的当量动载荷是一个假想的载荷,用符号表示。在当量动载荷作用下的轴承寿命与工作中的实际载荷作用下的寿命相等。在不变的径向和轴向载荷作用下,当量动载荷的计算公式是:
(9-6a)
式中:为轴承所受的径向载荷(N),即轴承实际载荷的径向分量;
为轴承所受的轴向载荷(N),即轴承实际载荷的轴向分量;
为径向载荷系数,将实际径向载荷转化为当量动载荷的修正系数,见表9-7;
为轴向载荷系数,将实际轴向载荷转化为当量动载荷的修正系数,见表9-7。
对于只能承受纯径向载荷的向心圆柱滚子轴承、滚针轴承、螺旋滚子轴承:
=(9-6b)
对于只能承受纯轴向载荷的推力轴承:
=(9-6c)
根据轴承的实际工作情况,还需引入载荷系数(表9-8)对其进行修正,修正后的当量动载荷应按下面的公式进行计算:
=(+)(9-7a)
= (9-7b)
= (9-7c)表9-8载荷系数 f p 载荷性质 f p 举例
无冲击或轻微冲击 1.0~1.2 电机、汽轮机、通风机、水泵等
中等冲击或中等惯性力 1.2~1.8 车辆、动力机械、起重机、造纸机、冶金机械、选矿机、卷扬机、机床等
强大冲击 1.8~3.0 破碎机、轧钢机、钻探机、振动筛等 在表9-7中,e为轴向载荷影响系数或称判别系数:
当时,表示轴向载荷的影响较大,计算当量动载荷时必须考虑的作用,此时:
=(+)
当时,表示轴向载荷的影响较小,计算当量动载荷时可忽略,此时:
=注意:
1、在式9-7中,是轴承所受的径向载荷,通常为轴承水平面径向支反力与垂直面径向支反力的矢量和;
2、对于深沟球轴承,其轴向载荷由外界作用在轴上的轴向力决定,所指向的轴承,其所承受的轴向力为外界作用在轴上的轴向力(=),另一轴承所承受的轴向力为零;对于角接触球轴承和圆锥滚子轴承,其轴向力由外界的总轴向作用力与各轴承因径向载荷产生的派生轴向力S之间的平衡条件得出。
四、角接触球轴承与圆锥滚子轴承的轴向载荷的计算。
角接触球轴承和圆锥滚子轴承承受纯径向载荷时,要产生派生的轴向力,图9-7所示为两种不同安装方式时,由纯径向载荷产生派生轴向力的情况。其中:
a)为正装(或称为"面对面"安装,这种安装方式可以使支点中心靠近)(图9-8a);
b)为反装(或称"背靠背"安装,支点中心距离加长)(图9-8b)。
安装方式不同时,所产生的派生轴向力的方向也不同,但其方向总是由轴承宽度中点指向载荷中心的。 (a)正装 (b)反装图9-8角接触球轴承轴向载荷分析角接触球轴承及圆锥滚子轴承的派生轴向力的大小按表9-9计算。但计算支反力时,若两轴承支点间的距离不是很小,为简便起见,可以轴承宽度中点作为支反力的作用点,这样处理,误差不大。表9-9约有半数滚动体接触时派生轴向力S 的计算公式圆锥滚子轴承 角接触球轴承
70000C(a =15°) 70000AC(a =25°) 70000B(a =40°)
S=Fr/(2Y)① S=0.5Fr S=0.7Fr S=1.1Fr 注:① Y 是对应于表9-7中Fa/Fr>e时的Y 值。
图9-9所示为一成对安装的向心角接触轴承(可以是角接触球轴承或圆锥滚子轴承),及分别为作用于轴上的径向外载荷及轴向外载荷。两轴承所受的径向载荷为及,相应的派生轴向力为及。 图9-9向心角接触轴承的轴向载荷取轴和轴承内圈为分离体,当轴处于平衡状态时,应满足:
+=
如果+>,如图9-10所示,则轴有右移的趋势,此时右边轴承Ⅱ被"压紧",左边轴承Ⅰ被"放松"。但实际上轴并没有移动。因此,根据力的平衡关系,作用在轴承Ⅱ的外圈上的力应是+',且有:
+=+'
故
' =+- 图9-10轴向力示意图(S1+FA>S2时)作用在轴承Ⅱ上的总的轴向力为:
=+' =+(9-8a)
作用在轴承Ⅰ上的轴向力为(即轴承1只受其自身的派生轴向力):
=(9-8b)
如果+<(见图9-11)。此时轴有左移的趋势,轴承Ⅰ被"压紧",轴承Ⅱ被"放松",为了保持轴的平衡,在轴承Ⅰ的外圈上必有一个平衡力' 作用,作与上述同样的分析,得作用在轴承Ⅰ及轴承Ⅱ上的轴向力分别为: 图9-11轴向力示意图(S1+FA<S2时)=-(9-9a)
=(9-9b)
综上可知,计算角接触球轴承和圆锥滚子轴承所受轴向力的方法可归结为:
(1) 根据轴承的安装方式及轴承类型,确定轴承派生轴向力、的方向、大小;
(2) 确定轴上的轴向外载荷的方向、大小(即所有外部轴向载荷的代数和);
(3) 判明轴上全部轴向载荷(包括外载荷和轴承的派生轴向载荷)的合力指向;根据轴承的安装形式,找出被"压紧"的轴承及被"放松"的轴承;
(4) 被"压紧"轴承的轴向载荷等于除本身派生轴向载荷以外的其它所有轴向载荷的代数和(即另一个轴承的派生轴向载荷与外载荷的代数和);
(5) 被"放松"轴承的轴向载荷等于轴承自身的派生轴向载荷。(二)极限转速校核滚动轴承转速过高,会使摩擦表面间产生很高的温度,影响润滑剂的性能,破坏油膜,从而导致滚动体回火或元件胶合失效。因此,对于高速滚动轴承,除应满足疲劳寿命约束外,还应满足转速的约束,其约束条件为
式中:为滚动轴承的最大工作转速;
为滚动轴承的极限转速。滚动轴承的极限转速值已列入轴承样本中,在有关标准和手册可以查到。但这个转速是指负荷不太大(P≤0.1C,C为基本额定动载荷),冷却条件正常,且轴承公差等级为0级时的最大允许转速。当轴承在重负荷(P>0.1C)下工作时,接触应力将增大;向心轴承受轴向力作用时,将使受载滚动体增加,增大轴承接触表面间的摩擦,使润滑态变坏。这时,要用负荷系数 f1 和负荷分布系数 f2 对手册中的极限转速值进行修正。这样,滚动轴承极限转速的约束条件为:
≤ f1f2
式中:f1、f2的值可从图9-12中查得。 (a)载荷系数 (b)载荷分配系数图9-12载荷系数和载荷分配系数(三)静强度校核由于不转动或转速极低的轴承,其主要的失效形式是产生过大的塑性变形,因此,静强度的校核的目的是要防止轴承元件产生过大的塑性变形。其约束强度条件为
或式中:
S0为轴承静强度安全系数,其值见表9-10;为径向额定静载荷。它是在最大载荷滚动体与滚道接触中心处,引起与下列计算接触应力相当的径向静载荷:对调心球轴承为4600MPa;对所有其它的向心球轴承为4200MPa;对所有向心滚子轴承为4000MPa。对单列角接触球轴承,其径向额定静载荷是指使轴承套圈间仅产生相对纯径向位移的载荷的径向分量。为轴向额定静载荷。它是在最大载荷滚动体与滚道接触中心处,引起与下列计算接触应力相当的中心轴向静载荷:对推力球轴承为4200MPa;对所有推力滚子轴承为4000MPa。为径向当量静载荷。它是指最大载荷滚动体与滚道接触中心处,引起与实际载荷条件下相同接触应力的径向静载荷。为轴向当量静载荷。它是指最大载荷滚动体与滚道接触中心处,引起与实际载荷条件下相同接触应力的轴向静载荷。
、 可从有关设计手册中查到。、可分别按下面的公式进行计算。(1)对深沟球轴承、角接触球轴承、调心球轴承:
(取上两式计算值较大者)(2)向心球轴承和0°的向心滚子轴承:
0°;;
(取上两式计算值较大者)
a=0°(且仅承受径向载荷的向心滚子轴承);(3)a=90°的推力轴承:
=(4)90°的推力轴承:
=2.3tga+对于双向SKF轴承,此公式适用于径向载荷与轴向载荷之比为任意值的情况。对于单向轴承,当/≤0.44ctga时,该公式是可靠的。当/大至0.67ctga时,该公式仍可给出满意的值。式中:和分别为当量静载荷的径向载荷系数和轴向载荷系数,其值见表9-11。
为轴承径向载荷即轴承实际载荷的径向分量(N);
为轴承轴向载荷即轴承实际载荷的轴向分量(N);
a 为接触角。表9-10静载荷安全系数轴承使用性况 使用要求、负荷性质及使用场合
旋转轴承 对旋转精度和平稳性要求较高,或受强大冲击负荷
一般情况
对旋转精度和平稳性要求较低,没有冲击或振动 1.2~2.5
0.8~1.2
0.5~0.8
在工作载荷下基本不
旋转或摆动轴承 水坝门装置
吊桥
附加动载荷较小的大型起重机吊钩
附加动载荷很大的小型装卸起重机吊钩 ≥1.0
≥1.5
≥1.0
≥1.6
各种使用场合下的推力调心滚子轴承 ≥2 表9-11系数和的值轴承类型 单列向心球轴承 双列向心球轴承 0°的向心滚子轴承
② ①② ①
深沟球轴承 0.6 0.5 0.6 0.5 0.5 1 0.22ctga 0.44ctga
角接触球轴承a(°) 15
20
25
30
35
40
45 0.5
0.5
0.5
0.5
0.5
0.5
0.5 0.46
0.42
0.38
0.33
0.29
0.26
0.22 1
1
1
1
1
1
1 0.92
0.84
0.76
0.66
0.58
0.52
0.44
圆锥滚子轴承 0.5 0.22ctga 1 0.44ctga
调心球轴承(0°) 0.5 0.22ctga 1 0.44ctga 注:
①对于两套相同的单列深沟球轴承以"背对背"或“面对面”安装(成对安装)在同一轴上作为一个支承整体运转情况下,计算其径向当量静载荷时用双列轴承的和值,以和为作用在该支承上的总载荷。
②对于中间接触的值,用线性内插法求得。本文地址: http://www.nskfag.org/news/201012_32335.html
② 轴承的刚度指的具体是什么意思
轴承刚度是指接触刚度,即计算滚动体与套圈之间接触部分的应变,然后再在受力的方向求偏导即可,有理论计算公式和经验公式。
③ 轴承如何选型在选用轴承时要考虑哪些因素如何计算
根据轴承所受轴向力的大小选型,无轴向力时,可选深沟球轴承、圆柱滚子轴承;有轴向力时,可选角接触球轴承、圆锥滚子轴承。
选用轴承时,要考虑轴承的极限转速和载荷系数。计算方法参阅《机械设计手册》。
④ 轴承刚度跟阻尼怎样算出来的
刚度:
方法1)有限元分析
方法2)使用推荐公式
方法3)实验测试
阻尼:
方法1)理论估计
方法2)实验测试
方法3)借鉴参考
⑤ 轴承刚度的计算方法
一般来说,滚动轴承的刚度比滑动轴承的刚度差,球轴承的刚度比滚子轴承的刚度差!~
⑥ 圆柱滚子轴承径向刚度计算公式
下面给出的都是些经验公式,一般还是试验测试的准确,经验公式可能会有数倍甚至是数十倍的误差!
⑦ 轴承预紧力如何计算是否有标准借鉴
预紧力的大小必须经过计算得出,计算必须考虑轴承的内部结构及相关尺寸,包括沟曲率、钢球曲率、材料性能等。计算出来后再转化为螺栓的扭矩,因为一般预紧 力都是通过螺栓来施加,所以可以通过扭矩扳手来施加预紧力。需要说明的是,国内很多场合都是靠经验来控制预紧力,这种方法一是因为国内轴承精度的一致性比 较差,二是对预紧力的控制方法不是很规范所致。圆锥滚子轴承无论正负游隙都是纯滚动,其最大的发热源是在滚子大端面与内圈大挡边处的滑动摩擦, 而调心滚子轴承无论正负游隙其滚子的不同点与内外圈滚道都有滑动摩擦。一般在负游隙时发热量急剧增大的原因时预载荷破坏了润滑油膜,使两金属接触表面直接 粘连。对角接触球轴承则不然,轴承在装配后是否纯滚动取决于轴承的装配状态。假如圆锥滚子轴承内外套没有足够的反方向压紧,它就不是纯滚动状态。
轴承预紧一般用于高精密运转条件下的工况场合。从理论上讲,轴承在零游隙甚至一定程度下的负游隙工况场合运转才最平稳,此时轴承刚度得到最有效发挥,轴承 运转时的噪音也最低,因此,应尽量保证轴承在此条件下工作。但是考虑到轴承的安装配合、工作时温度变化所引起的材料变形等因素,轴承在加工时都是预留有正 向游隙的。为了能在高精密运转条件下的工况场合使用,就在轴承和相关部件安装配合后,采取一定的措施来施加预紧力,通过调整内外套圈的位置,来调整轴承游 隙,使得轴承工作时的游隙值为零或负,这样就可以保证高精密运转下轴承运转的平稳。
关于要实施预紧的轴承型号,基本上覆盖了所有常规型号,也可以说,高精密场合用到的所有类型轴承,都需要进行预紧。包括:深沟球轴承(家用电器用到)、角 接触球轴承(其在高速机床主轴上使用时必须进行预紧)、推力轴承类、圆锥滚子轴承、圆柱滚子轴承等,都可以见到预紧的情况。需要说明的是:预紧也有个度, 预紧太过了也会造成轴承工作温升过高,容易造成轴承的早期失效。但是预紧太小,高速运转时,轴承又不能平稳运行。所以目前也开发出预紧力可变调整机构。
预紧分为轻度预紧、中度预紧和重度预紧。当轴承需要高速运转并要求运转平稳时,应该实施轻度预紧;当轴承需要提高承载力和刚度,且转速不高时,应实施中度 或重度预紧。轻度预紧只是为了减少轴承在工作运转时,非接触区内滚动体与滚道间因游隙所产生的窜动,因此,保证轴承游隙为零或者零上游隙即可;中度或重度 游隙为零下负游隙。
⑧ 请问轴承轴向刚度怎么求呢
这是 刚度计算公式。刚度E=应力σ/应变ε ---ε弹性范围内的相对变形。
⑨ 轴承中的内径、外径、厚度 是什么意思 如何计算的内径、外径到底是直径还是半径厚度是怎么算的
轴承的内、外径及宽度都是标准值(不同型号的轴承对应不同的尺寸),是不需要计算的。另外轴承内、外径均指的是直径。
轴承与一般机械零件作比较,因其制造精度非常高,在对安装使用有着一定的要求,如不十分注意,就将会对轴承造成损害,无法得到正常的轴承使用寿命,也会导致相关零件的破损。
一般来说,由轴承所产生的事故都是因为安装不当和使用时的不规范所造成,因此,如能按正确的方法安装与使用,就能提高轴承的使用寿命。
(9)轴承外圈刚度怎么算扩展阅读:
工作时应注意事项
在安装轴承时,最为紧要之事就是保持轴承及相关零件的清洁和正确使用安装工具及方法。因此,务必遵守以下注意事项:
1、 清理作业区,使用清洁的工具或辅助工具作业。
2、 安装时应使用塑性良好不易脱落的辅助工具。
3、 确认所有组装零件为合格品。
4、 轴承到使用时才可以启封。
5、 作业时应保持轴承的清洁。
6、 一般情况下,防锈油不必洗去,可以按照原来的状态安装,如需要装润滑油脂,则用汽油清洗轴承上的油膏,然后气枪吹干净。
⑩ 刚度是怎么计算的
对于集中点的刚度,通常是在该点加力,然后取该点的位移,得到刚度。对于面载荷来说,如果想得到保守的刚度,当然是取位移最大的点来代替,但是一般情况都是取一组点来求刚度的平均值。对于特别弱的地方加以说明。