A. 铸件要求标准
你这个范围太广,铸件的标准少说也得近百个标准,不同材质的铸件标准是不一样的,如铸铁件、铸钢件、铝合金、铜合金铸件等等,不同的零部件的铸造标准也不一样,如阀门铸件、气缸、建筑用铸件、大型铸件等等。几个例了如:GB/T 11352-2009《一般工程用铸造碳钢件》、GB/T 1150-2010《内燃机 湿式铸铁气缸套 技术条件》、GB/T 12225-2018《通用阀门铜合金铸件技术条件》GB/T 12226-2005《通用阀门灰铸铁件技术条件》、GB/T 13820-2018《镁合金铸件》、GB/T 14408-2014《一般工程与结构用低合金钢铸件》。
B. 铸造工艺设计的依据是什么
设计者应掌握生产任务和要求,熟悉工厂和车间的生产条件,这些是铸造工艺设计的基本依据,同时应具有一定的生产和设计经验,并了解铸造先进生产技术。
1.生产任务
(1)铸造零件图纸:应认真审查图纸、零件的结构是否适合铸造工艺性,如需修改,应与图纸提供者研究并取得一致意见后修改。
(2)零件技术要求:应满足金属牌号、金相组织、机械兆察性能、尺寸偏差等要求。
(3)产品数量和生产早猜正期限:大批量产品应采用先进技术,生产期限要求紧的产品艺装备尽可能简单。
2.生产条件
(1)设备能力:起重机吨位、熔炉形式、造型机种类、热处理能陆悔力、厂房高度、机械化程度、地坑尺寸等。
(2)车间原材料的应用和供应情况。
(3)工人技术水平和生产经验。
(4)模具等工艺装备、车间的加工能力等。
3.生产经济性
了解各种原材料价格、金属液成本、工时费用等,掌握生产工艺的经济性。
C. 铸造安全技术详解
铸造安全技术详解
铸造作为一种金属热加工工艺,将熔融金属浇注、压射或吸入铸型型腔中,待其凝固后而得到一定形状和性能铸件的方法。铸造作业一般按造型方法来分类,习惯上分为普通砂型铸造和特种铸造。下面一起和我来看看看吧!
铸造设备就是利用这种技术将金属熔炼成符合一定要求的液体并浇进铸型里,经冷却凝固、清整处理后得到有预定形状、尺寸和性能的铸件的能用到的所有机械设备。铸造设备主要包括:
(1)砂处理设备,如碾轮式混砂机、逆流式混砂机、叶片沟槽式混砂矶、多边筛等。
(2)有造型造芯用的各种造型机、造芯机,如高、中、低压造型机、抛砂机、无箱射压造型机、射芯机、冷和热芯盒机等。
(3)金属冶炼设备,如冲天炉、电弧炉、感应炉、电阻炉、反射炉等。
(4)铸件清理设备,如落砂机、抛丸机、清理滚筒机等。
一、铸造作业危险有害因素
铸造作业过程中存在诸多的不安全因素.可能导致多种危害,需要从管理和技术方面采取措旒,控制事故的发生,减少职业危害。
1.火灾及爆炸
红热的铸件、飞溅铁水等一旦遇到易燃易爆物品,极易引发火灾和爆炸事故。
2灼烫
浇注时稍有不慎,就可能被熔融金属烫伤;经过熔炼炉时,可能被飞溅的铁水烫伤;经过高温铸件时,也可能被烫伤。
3.机械伤害
铸造作业过程中,机械设备、工具或工件的非正常选择和使用,人的违章操作等,都可导致机械伤害。如造型机压伤,设备修理时误启动导致砸伤、碰伤。
4高处坠落
由于工作环境恶劣、照明不良,加上车间设备立体交叉,维护、检修和使用时,易从高处坠落。
5尘毒危害
在型砂、芯砂运输、加工过程中,打箱、落砂及铸件清理中,都会使作业地区产生大量的粉尘,因接触粉尘、有害物质等因素易引起职业病。冲天炉、电炉产生的烟气中含有大量对人体有害的一氧化碳,在烘烤砂型或砂芯时也有二氧化碳气体排出;利用焦炭熔化金属,以及铸型、浇包、砂芯干燥和浇铸过程中都会产生二氧化硫气体,如处理不当,将引起呼吸道疾病。
6噪声振动
在铸造车间使用的震实造型机、铸件打箱时使用的震动器,以及在铸件清理工序中,利用风动工具清铲毛刺,利用滚筒清理铸件等都会产生大量噪声和强烈的振动。
7高温和热辐射
铸造生产在熔化、浇铸、落砂工序中都会散发出大量的热量,在夏季车间温度会达到40℃或更高,铸件和熔炼炉对工作人员健康或工作极为不利。
二、铸造作业安全技术措施
由于铸造车间的工伤事故远较其他车间为多,因此,需从多方面采取安全技术措施。
(一)工艺要求
l工艺布置
应根据生产工艺水平、设备特点、厂区场地和厂房条件等,结合防尘防毒技术综合考虑工艺设备和生产流程的布局。污染较小的造型、制芯工段在集中采暖地区应布置在非采暖季节最小频率风向的下风侧,在非集中采暖地区应位于全面最小频率风向的下风侧。砂处理、清理等工段宜用轻质材料或实体墙等设施与其他部分隔开;大型铸造车间的砂处理、清理工段可布置在单独的厂房内。造型、落砂、清砂、打磨、切割、焊补等工序宜固定作业工位或场地,以方便采取防尘措施。在布置工艺设备和工作流程时,应为除尘系统的合理布置提供必要条件。
2.工艺设备
凡产生粉尘污染的定型铸造设备(如混砂机、筛砂机、带式运输机等)。制造厂应配置密闭罩,非标准设备在设计时应附有防尘设施。型砂准备及砂的处理应密闭化、机械化。输送散料状干物料的`带式运输机应设封闭罩。混砂不宜采用扬尘大的爬式翻斗加料机和外置式定量器,宜采用带称量装置的密闭混砂机。炉料准备的称量、送料及加料应采用机械化装置。
3工艺方法
在采用新工艺、新材料时,应防止产生新污染。冲天炉熔炼不宜加萤石。应改进各种加热炉窑的结构、燃料和燃烧方法,以减少烟尘污染。回用热砂应进行降温去灰处理。
4.工艺操作
在工艺可能的条件下,宜采用湿法作业。落砂、打磨、切割等操作条件较差的场合,宜采用机械手遥控隔离作业。
(1)炉料准备。炉料准备包括金属块料(铸铁块料、废铁等)、焦炭及各种辅料。在准备过程中最容易发生事故的是破碎金属块料。
(2)熔化设备。用于机器制造工厂的熔化设备主要是冲天炉(化铁)和电弧炉(炼钢)。
冲天炉熔炼过程是:从炉顶加料口加入焦炭、生铁、废钢铁和石灰石,高温炉气上升和金属炉料下降,伴随着底焦的燃烧,使金属炉料预热和熔化以及铁水过热,在炉气和炉渣及焦炭的作用下使铁水成分发生变化。所以,其安全技术主要从装料、鼓风、熔化、出渣出铁、打炉修炉等环节考虑。
(3)浇注作业。浇注作业一般包括烘包、浇注和冷却三个工序。浇注前检查浇包是否符合要求.升降机构、倾转机构、自锁机构及抬架是否完好、灵活、可靠;浇包盛铁水不得太满,不得超过容积的80%,以免洒出伤人}浇注时,所有与金属溶液接触的工具,如扒渣棒、火钳等均需预热,防止与冷工具接触产生飞溅。
(4)配砂作业。配砂作业的不安全因素有粉尘污染;钉子、铁片、铸造飞边等杂物扎伤;混砂机运转时,操作者伸手取砂样或试图铲出型砂,结果造成被打伤或被拖进混砂机等。
(5)造型和制芯作业。制造砂型的工艺过程叫做造型,制造砂芯的工艺过程叫做制芯。生产上常用的造型设备有震实式、压实式、震压式等,常用的制芯设备有挤芯机、射芯机等。很多造型机、制芯机都是以压缩空气为动力源,为保证安全,防止设备发生事故或造成人身伤害,在结构、气路系统和操作中,应设有相应的安全装置,如限位装置、联锁装置、保险装置。
(6)落砂清理作业。铸件冷却到一定温度后,将其从砂型中取出,并从铸件内腔中清除芯砂和芯骨的过程称为落砂。有时为提高生产率,若过早取出铸件,因其尚未完全凝固而易导致烫伤事故。
(二)建筑要求
铸造车间应安排在高温车间、动力车间的建筑群内,建在厂区其他不释放有害物质的生产建筑的下风侧。
厂房主要朝向宜南北向。厂房平面布置应在满足产量和工艺流程的前提下同建筑、结构和防尘等要求综合考虑。铸造车间四周应有一定的绿化带。
铸造车间除设计有局部通风装置外,还应利用天窗排风或设置屋顶通风器。熔化、浇注区和落砂、清理区应设避风夭窗。有桥式起重设备的边跨,宜在适当高度位置设置能启闭的窗扇。
(三)除尘
1炉窑
(1)炼钢电弧炉。排烟宜采用炉外排烟、炉内排烟、炉内外结合排烟。通风除尘系统的设计参数应按冶炼氧化期最大的烟气量考虑。电弧炉的烟气净化设备宜采用干式高效除尘器。
(2)冲天炉。冲天炉的排烟净化宜采用机械排烟净化设备,包括高效旋风除尘器、颗粒层除尘器、电除尘器。
2破碎与碾磨设备
颚式破碎机上部,直接给料,落差小于1m时,可只做密闭罩而不排风。不论上部有无排风,当下部落差大于等于lm时,下部均应设置排风密封罩。球磨机的旋转滚筒应设在全封闭罩内。
;D. 铸造都有哪些标准
1 铸造通用基础及工艺标准规范汇编
1.1 GBT 5611-1998 铸造术语
1.1.1 基本术语1.1.2 砂型铸造1.1.3 特种铸造1.1.4 造型材料1.1.5 铸件后处理1.1.6 铸件质量1.1.7 铸造工艺设计及工艺装备1.1.8 铸造合金及熔炼、浇注
1.2 GBT 5678-1985铸造合金光谱分析取样方法
1.3 GBT 60601-1997 表面粗糙度比较样块铸造表面
1.4 GBT 6414-1999 铸件尺寸公差与机械加工余量
1.5 GBT1 1351-1989 铸件重量公差
1.6 GBT 15056-1994 铸造表面粗糙度评定方法
1.7 JBT 2435-1978 铸造工艺符号及表示方法
1.8 JBT 40221-1999 合金铸造性能测定方法
1.9 JBT 40222-1999 合金铸造性能测定方法
1.10 JBT 5105-1991 铸件模样起模斜度
1.11 JBT5106-1991 铸件模样型芯头基本尺寸
1.12 JBT 6983-1993 铸件材料消耗工艺定额计算方法
1.13 JBT7528-1994 铸件质量评定方法
1.14 JBT 7699-1995 铸造用木制模样和芯盒技术条件
2 铸铁标准规范汇编
2.1 GBT 1348-1998 球墨铸铁件
2.2 GBT 3180-1982 中锰抗磨球墨铸铁件技术条件
2.3 GBT 5612-1985 铸铁牌号表示方法
2.4 GBT 5614-1985 铸铁件热处理状态的名称、定义和代号
2.5 GBT 6296-1986 灰铸铁冲击试验方法
2.6 GBT 7216-1987 灰铸铁金相
2.7 GBT 8263-1999 抗磨白口铸铁件
2.8 GBT 8491-1987 高硅耐蚀铸铁件
2.9 GBT 9437-1988 耐热铸铁件
2.10 GBT 9439-1988 灰铸铁件
2.11 GBT 9440-1988 可锻铸铁件
2.12 GBT 9441-1988 球墨铸铁金相检验
2.13 GBT 17445-1998 铸造磨球
2.14 JBT 2122-1977 铁素体可锻铸铁金相标准
2.15 JBT 3829-1999 蠕墨铸铁金相
2.16 JBT 4403-1999 蠕墨铸铁件
2.17 JBT 5000.4-1998 重型机械通用技术条件铸铁件
2.18 JBT 7945-1999 灰铸铁力学性能试验方法
2.19 JBT 9219-1999 球墨铸铁超声声速测定方法
2.20 JBT 9220.1-1999 铸造化铁炉酸性炉渣化学分析方法总则及—般规定
2.21 JBT 9220.2-1999 铸造化铁炉酸性炉渣化学分析方法高氯酸脱水重量法测定二氧化硅量
2.22 JBT 9220.3-1999 铸造化铁炉酸性炉渣化学分析方法重铬酸钾容量法测定氧化亚铁量
2.23 JBT 9220.4-1999 铸造化铁炉酸性炉渣化学分析方法亚砷酸钠—亚硝酸钠容量法测定—氧化锰量
2.24 JBT 9220.5-1999 铸造化铁炉酸性炉渣化学分析方法氟化钠—EDTA容量法测定三氧化二铝量
2.25 JBT 9220.6-1999 铸造化铁炉酸性炉渣化学分析方法 DDTC分离EGTA容量法测定氧化钙量
2.26 JBT 9220.7-1999 铸造化铁炉酸性炉渣化学分析方法高锰酸钾容量法测定氧化钙
2.27 JBT 9220.8-1999 铸造化铁炉酸性炉渣化学分析方法DDTC分离EDTA容量法测定氧化镁
2.28 JBT 9220.9-1999 铸造化铁炉酸性炉渣化学分析方法磷矾钼黄—甲基异丁基甲酮萃取光度法测定五氧化二磷量
2.29 JBT 9220.10-1999 铸造化铁炉酸性炉渣化学分析方法硫酸钡重量法测定硫量
2.30 JBT9220.11-1999 铸造化铁炉酸性炉渣化学分析方法燃烧—碘酸钾容量法测定硫量
2.31 JBT 9228-1999球墨铸铁用球化剂
3 铸钢标准规范汇编
3.1 GBT 2100-2002 —般用途耐蚀钢铸件
3.2 GBT 5613-1995 铸钢牌号表示方法
3.3 GBT 5615-1985 铸钢件热处理状态的名称、定义及代号
3.4 GBT 5677-1985 铸钢件射线照相及底片等级分类方法
3.5 GBT 5680-1998 高锰钢铸件
3.6 GBT 6967-1986 工程结构用中、高强度不锈钢铸件
3.7 GBT 7233-1987 铸钢件超声探伤及质量评级方法
3.8 GBT 7659-1987 焊接结构用碳素钢铸件
3.9 GBT 8492-2002 —般用途耐热钢和合金铸件
3.10 GBT 8493-1987 —般工程用铸造碳钢金相
3.11 GBT 9943-1988 铸钢件渗透探伤及缺陷显示迹痕的评级方法
3.12 GBT 9444-1988 铸钢件磁粉探伤及质量评级方法
3.13 GBT 11352-1989 —般工程用铸造碳钢件
3.14 GBT 13925-1992 铸造高锰钢金相
3.15 GBT 14408-1993 —般工程与结构用低合金铸钢件
3.16 GBT 16253-1996 承压钢铸件
3.17 JBT 50006-1998 重型机械通用技术条件铸钢件
3.18 JBT 500014-1998 重型机械通用技术条件铸钢件无损探伤
3.19 JBT 6402-1992 大型低合金钢铸件
3.20 JBT 6403-1992 大型耐热钢铸件
3.21 JBT 404-1992 大型高锰钢铸件
3.22 JBT 6405-1992 大型不锈钢铸件
3.23 IBT 7024-1993 300~600MW 汽轮机缸体铸钢件技术条件
3.24 JBT 7349-2002 混流式水轮机焊接转轮不锈钢叶片铸件
3.25 JBT 7350-2002 轴流式水轮机不锈钢叶片铸件
3.26 JBT 1026-2001 混流式水轮机焊接转轮上冠、下环铸件
4 铸造有色合金标准规范汇编
4.1 GBT 1173-1995 铸造铝合
4.2 GBT 1174-1992 铸造轴承合金
4.3 GBT 1175-1997 铸造锌合金
4.4 GB 1176-1987 铸造铜合金技术条件
4.5 GB 1177-1991 铸造镁合
4.6 GBT 6614-1994 钛及钛合金铸件
4.7 GBT 8063-1994 铸造
4.8 GBT 9438-1999 铝合金铸件
4.9 GB 11346-1989 铝合金铸件 射线照相检验针孔(圆形)分级
4.10 GBT 15073-1994 铸造钛及钛合金牌号和化学成分
4.11 GBT 16746-1997 锌合金铸件
4.12 GBT 8733-2000 铸造铝合金锭
5 压铸合金标准规范汇编
5.1 GBT 13818-1992 压铸锌合金
5.2 GBT13821-1992 锌合金压铸件
5.3 GBT 13822-1992 压铸有色合金试样
5.4 GBT 15114-1994 铝合金压铸件
5.5 GBT 15115-1994压铸铝合金
5.6 GBT 15116-1994 压铸铜合金
5.7 GBT 15117-1994 铜合金压铸件
5.8 JB 3070-1982 压铸镁合金技术条件
6 熔模铸造标准规范汇编
6.1 GB 12214-1990 熔模铸造用硅砂、粉
6.2 GB 12215-1090 熔模铸造用铝矾土砂、粉
6.3 GBT 14235.1-1993 熔模铸造模料熔点测定方法(冷却曲线法)
6.4 GBT 14235.2-1993 熔模铸造模料抗弯强度测定方法
6.5 GBT 14235.3-1993 熔模铸造模料灰分测定方法
6.6 GBT 14235.4-1993 熔模铸造模料线收缩率测定方法
6.7 GBT 14235.5-1993 熔模铸造模料表面硬度测定方法
6.8 GBT 14235.6-1993 熔模铸造模料酸值测定方法
6.9 GBT 14235.7-1993 熔模铸造模料流动性测定方法
6.10 GBT 14235.8-1993 熔模铸造模料粘度测定方法
6.11 GBT 14235.9-1993 熔模铸造模料热稳定性测定方法
6.12 JBT 2980.1-1999 熔模铸造型壳高温热变形试验方法
6.13 JBT 2980.2-1999 熔模铸造型壳高温抗弯强度试验方法
6.14 JBT 4007-1999 熔模铸造涂料试验方法
6.15 JBT 4153-1999 型壳高温透气性试验方法
6.16 JBT 5100-91 熔模铸造碳钢件技术条件
7 铸造用生铁及铁合金标准规范汇编
7.1 GBT 717-1998炼钢用生铁
7.2 GBT 718-2005 铸造用生铁
7.3 GBT 1412-2005 球墨铸铁用生铁
7.4 GB 2272-1987 硅铁
7.5 GB 3282-1987 钛铁
7.6 GBT 3648-1996 钨铁
7.7 GB 3649-1987 钼铁
7.8 GBT 3650-1995 铁合金验收、包装、储运、标志和质量证明书的一般规定
7.9 GBT 3795-2006锰铁
7.10 GBT 4008-1996 锰硅合金
7.11 GB 4009-1989 硅铬合金
7.12 GBT 4010-1994 铁合金化学分析用试样的采取和制备
7.13 GBT 4137-2004 稀土硅铁合金
7.14 GBT 4138-2004 稀土镁硅铁合金
7.15 GBT 41390-2004 钒铁
7.16 GB 5683-1987 铬铁
7.17 GB 5684-1987 真空法微碳铬铁
7.18 GB/T 7737-1997铌铁
7.19 GB 7738-1987 铁合金产品牌号表示方法
7.20 GB 8729-1988 铸造焦炭
7.21 GBT 9971-2004 原料纯铁
7.22 GBT 13247-1991 铁合金产品粒度的取样和检测方法
7.23 GBT 1 4984-1994 铁合金术语
7.24 GBT 15710-1995 硅钡合金
7.25 YBT 092-1996合金铸铁球
7.26 YBT 093-1996 低铬合金铸铁段
8 铸造用造型材料标准规范汇编
8.1 GBT 2684-1981 铸造用原砂及混合料试验方法
8.2 GBT 7143-1986 铸造用硅砂化学分析方法
8.3 GBT9442-1998 铸造用硅砂
8.4 GBT 12216-1990 铸造用合脂粘结剂
8.5 JBT 2755-1980 铸造用亚硫酸盐木浆废液粘结剂
8.6 JBT 3828-1999 铸造用热芯盒树脂
8.7 JBT 5107-1991 砂型铸造用涂料试验方法
8.8 JBT 6984-1993 铸造用铬铁矿砂
8.9 JBT 6985-1993 铸造用镁橄榄石砂
9 性能试验方法标准规范汇编
9.1 GBT 228-2002 金属材料室温拉伸试验方法
9.2 GBT 229-1994 金属夏比缺口冲击试验方法
9.3 GBT 230.1-2004 金属洛氏硬度试验第1 部分:试验方法(A、B、C、D、E、F、G、H、K、N、T标尺)
9.4 GB/T 230.2-2002 金属洛氏硬度试验第2 部分:硬度计(A、B、C、D、E、F、G、H、K、N、T标尺)的检验与校准
9.5 GBT 230.3-2002 金属洛氏硬度试验第3 部分:标准硬度块(A、B、C、D、E、F、G、H、K、N、T标尺)的标定
9.6 GBT 231.1-2002 金属布氏硬度试验第1 部分1试验方法
9.7 GBT 231.2-2002 金属布氏硬度试验第2 部分:硬度计的检验与校准
9.8 GBT 231.3-2002 金属布氏硬度试验第3部分:标准硬度块的标定
9.9 GBT 232-1999 金属材料弯曲试验方法
9.10 GBT 1172-1999 黑色金属硬度及强度换算值
9.11 GBT 2039-997 金属拉伸蠕变及持久试验方法
9.12 GBT 4337-1984 金属旋转弯曲疲劳试验方法
9.13 GBT 4338-1995 金属材料高温拉伸试验
9.14 GBT 7314-2005 金属压缩试验方法
9.15 GBT 12778-1991 金属夏比冲击断口测定方法
9.16 GBT 13239-1991 金属低温拉伸试验方法
9.17 GBT 13298-1991 金属显微组织检验方法
E. 铸造的方法和选择条件是什么
铸造是一种古老的制造方法,在我国可以追溯到6000年前。随着工业技术的发展,铸造技术的发展也很迅速,特别是19世纪末和20世纪上半叶,出现了很多的新的铸造方法,如低压铸造、陶瓷铸造、连续铸造等,在20世纪下半叶得到完善和实用化。由于现今对铸造质量、铸造精度、铸造成本和铸造自动化等要求的提高,铸造技术向着精密化、大型化、高质量、自动化和清洁化的方向发展,例如我国这几年在精密铸造技术、连续铸造技术、特种铸造技术、铸造自动化和铸造成型模拟技术等方面发展迅速
铸造主要工艺过程包括:金属熔炼、模型制造、浇注凝固和脱模清理等。铸造用的主要材料是铸钢、铸铁、铸造有色合金(铜、铝、锌、铅等)等。铸造方法常用的是砂型铸造,其次是特种铸造方法,如:金属型铸造、熔模铸造、石膏型铸造......等。而砂型铸造又可以分为粘土砂型、有机粘结剂砂型、树脂自硬砂型、消失模等等,如下图:
铸造方法选择的原则:
1.优先采用砂型铸造
据统计,我国或是国际上,在全部铸件产量中,60~70%的铸件是用砂型生产的,而且其中70%左右是用粘土砂型生产的。主要原因是砂型铸造较之其它铸造方法成本低、生产工艺简单、生产周期短。所以象汽车的发动机气缸体、气缸盖、曲轴等铸件都是用粘土湿型砂工艺生产的。当湿型不能满足要求时再考虑使用粘土砂表干砂型、干砂型或其它砂型。粘土湿型砂铸造的铸件重量可从几公斤直到几十公斤,而粘土干型生产的铸件可重达几十吨。
一般来讲,对于中、大型铸件,铸铁件可以用树脂自硬砂型、铸钢件可以用水玻璃砂型来生产,可以获得尺寸精确、表面光洁的铸件,但成本较高。
当然,砂型铸造生产的铸件精度、表面光洁度、材质的密度和金相组织、机械性能等方面往往较差,所以当铸件的这些性能要求更高时,应该采用其它铸造方法,例如熔模(失腊)铸造、压铸、低压铸造等等。
2.铸造方法应和生产批量相适应
例如砂型铸造,大量生产的工厂应创造条件采用技术先进的造型、造芯方法。老式的震击式或震压式造型机生产线生产率不够高,工人劳动强度大,噪声大,不适应大量生产的要求,应逐步加以改造。对于小型铸件,可以采用水平分型或垂直分型的无箱高压造型机生产线、实型造型生产效率又高,占地面积也少;对于中件可选用各种有箱高压造型机生产线、气冲造型线,以适应快速、高精度造型生产线的要求,造芯方法可选用:冷芯盒、热芯盒、壳芯等高效制芯方法。中等批量的大型铸件可以考虑应用树脂自硬砂造型和造芯。
单件小批生产的重型铸件,手工造型仍是重要的方法,手工造型能适应各种复杂的要求比较灵活,不要求很多工艺装备。可以应用水玻璃砂型、VRH法水玻璃砂型、有机酯水玻璃自硬砂型、粘土干型、树脂自硬砂型及水泥砂型等;对于单件生产的重型铸件,采用地坑造型法成本低,投产快。批量生产或长期生产的定型产品采用多箱造型、劈箱造型法比较适宜,虽然模具、砂箱等开始投资高,但可从节约造型工时、提高产品质量方面得到补偿。
低压铸造、压铸、离心铸造等铸造方法,因设备和模具的价格昂贵,所以只适合批量生产。
3.造型方法应适合工厂条件
例如同样是生产大型机床床身等铸件,一般采用组芯造型法,不制作模样和砂箱,在地坑中组芯;而另外的工厂则采用砂箱造型法,制作模样。不同的企业生产条件(包括设备、场地、员工素质等)、生产习惯、所积累的经验各不一样,应该根据这些条件考虑适合做什么产品和不适合(或不能)做什么产品。
4.要兼顾铸件的精度要求和成本
各种铸造方法所获得的铸件精度不同,初投资和生产率也不一致,最终的经济效益也有差异。因此,要做到多、快、好、省,就应当兼顾到各个方面。应对所选用的铸造方法进行初步的成本估算,以确定经济效益高又能保证铸件要求的铸造方法。
铸造方法的特点和适用范围见下表:
铸造方法 铸件材质 铸件重量 表面光洁度 铸件复杂程度 生产成本 适用范围 工艺特点
砂型铸造 各种材质 几十克~很大 差 简单 低 最常用的铸造方法
手工造型:单件、小批量和难以使用造型机的形状复杂的大型铸件
机械造型:适用于批量生产的中、小铸件 手工:灵活、易行,但效率低,劳动强度大,尺寸精度和表面质量低
机械:尺寸精度和表面质量高,但投资大
金属型铸造 有色合金 几十克~20公斤 好 复杂铸件 金属模的费用较高 小批量或大批量生产的非铁合金铸件,也用于生产钢铁铸件。 铸件精度、表面质量高,组织致密,力学性能好,生产率高。
熔模铸造 铸钢及有色合金 几克~几公斤 很好 任何复杂程度 批量生产时比完全用机加工生产便宜 各种批量的铸钢及高熔点合金的小型复杂精密铸件,特别适合铸造艺术品、精密机械零件 尺寸精度高、表面光洁,但工序繁多,劳动强度大
陶瓷型铸造 铸钢及铸铁 几公斤~几百公斤 很好 较复杂 昂贵 模具和精密铸件 尺寸精度高、表面光洁,但生产率低
石膏型铸造 铝、镁、锌合金 几十克~几十公斤 很好 较复杂 高 单件到小批量
低压铸造 有色合金 几十克~几十公斤 好 复杂(可用砂芯) 金属模的制作费用高 小批量,最好是大批量的大、中型有色合金铸件, 可生产薄壁铸件 铸件组织致密,工艺出品率高,设备较简单,可采用各种铸型,但生产效率低
差压铸造 铝、镁合金 几克~几十公斤 好 复杂(可用砂芯) 高性能和形状复杂的有色合金铸件 压力可控,铸件成型好,组织致密,力学性能好,但生产效率低
压力铸造 铝、镁合金 几克~几十公斤 好 复杂(可用砂芯) 金属模的制作费用很高 大量生产的各种有色合金中小型铸件、薄壁铸件、耐压铸件 铸件尺寸精度高、表面光洁,组织致密,生产率高,成本低。但压铸机和铸型成本高
离心铸造 灰铁、球铁 几十公斤~几吨 较好 一般为圆筒形铸件 较低 小批量到大批量的旋转体形铸件、 各种直径的管件 铸件尺寸精度高、表面光洁,组织致密,生产率高
连续铸造 钢、有色 很大 较差 长形连续铸件 低 固定截面的长形铸件,如钢锭、钢管等 组织致密,力学性能好,生产率高
消失模铸造 各种 几克~几吨 较好 较复杂 较低 不同批量的较复杂的各种合金铸件 铸件尺寸精度较高,铸件设计自由度大,工艺简单,但模样燃烧影响环境
F. 合格的铸造厂应该具备哪些能力
1、合格的铸造厂应该具备高端环保的生产设备
随着环保要求越来越高,作为传统高能耗、高污染的铸造行业必须要在节能减排上下功夫,而对于铸钢件厂家环保的关键就在设备上。传统铸钢生产采用中频炉等,其污染程度非常严重,现在越来越多厂家采用电弧炉加精炼炉,以电作动力,不仅无污染,而且效率和可控性更高。
此外,要生产高端铸钢件还必须配有真空炉、智能退火炉等。而在铸钢件厂家生产过程中产生的烟尘、废气等需要有相应的环保设施予以及时清理,大型高效除尘器和除烟器变得非常必要,现在铸造准入条件中,除尘除烟设备是必须具备的设备设施,否则不予准入。
2、铸造厂应该具备先进检测仪器
要想保证铸钢件的高品质,就必须在生产之前确保原材料的合格;生产过程中需要不断对钢液质量进行检测;生产之后还要对成分、组织、内部结构等进行检验检测,这样才能够确保高质量的铸钢件生产。然而,这一切的实现都离不开先进的检测仪器,因此,铸钢件厂家通常需要配套光谱分析仪、万能材料试验机、冲击机、硬度计等。
3、铸造厂应拥有高水平的技术队伍和员工队伍
铸钢件是一项非常有技术含量的产品,高水准的技术队伍和娴熟的生产队伍是必须的条件,如果脱离了人再好的设备也发挥不出应有的水平。纵观全国铸造行业,由于作业条件恶劣很多人不愿从事此项工作,导致技术和生产人员非常缺乏,多数铸钢件厂家的一线和技术年龄较大,而正因年龄原因,很多新工艺、新设备、新技术(比如计算机模拟)很难得以推行,导致整体铸钢行业水平难以前进。
4、铸造厂应该有高水准的管理
管理是企业的灵魂和牵引,如果没有良好的管理,再好的设备、再好的技术和员工都无法发挥他们的自身水平,这就是为什么很多厂家硬件设备设施非常之高,但产品质量怎么也上不去的根本原因。
如果从以上4点进行衡量的话,目前国内能够达标的铸造厂屈指可数。新乡市长城铸钢有限公司作为河南省铸锻行业综合实力五十强企业,拥有年产2.5万吨铸钢件生产能力,并且配套了铸钢件加工所需的全部高端仪器,可为客户提供大型铸钢件成品加工解决方案。