A. 电机轴承要求转速多少
电机轴承一般来说是3000转左右,2级电机使用的迅枯衫轴承转速需要达到3000转/分钟,4级电机使用的轴承转速需要达到1500转/分钟、6级电机使用的轴承转速需要达亩腔到1000转/分钟、8级电机使用的轴承需要达到750转/分败老钟。
参考资料:http://www.sdhrzc.cn
B. 农机轴承常用型号有哪些农机轴承该怎么选型
C. 螺旋千斤顶的设计
一、设计任务书
设计带式输送机的传动装置。
工作条件:带式输送机连续单向运转,工作平稳无过载,空载起动,输送带速度允许误差±5% ;两班制工作(每班按8小时计算),使用期限10年,小批量生产。
具体的设计任务包括:
(1)传动方案的分析和拟定;
(2)电动机的选择,传动装置的运动和动力参数的计算;
(3)传动零件的设计(带传动、单级齿轮传动);
(4)轴和轴承组合设计(轴的结构设计,轴承组合设计,低速轴弯、扭组合强度校核,低速轴上轴承寿命计算);
(5)键的选择及强度校核(低速轴上键的校核);
(6)联轴器的选择;
(7)减速器的润滑与密封;
(8)减速器装配草图俯视图设计(箱体、附件设计等);
二、传动方案的拟定及电动机的选择
已知条件:运输带的有效拉力 F=3000N,传送带的速度为 v=2m/s,滚筒直径为 D=300mm。连续单向运转,工作平稳无过载。
1、 传动方案的拟定
采用V带传动及单级圆柱齿轮传动。
(1)、类型:采用Y系列三相异步电动机
(2)、容量选取:工作机有效功率:
Pw=FV/1000=3000 2/1000=6KW
设 :V型带效率
:滚动轴承效率
:闭式齿轮传动(设齿轮精度为8级)效率
:弹性联轴器效率
:卷筒轴效率
ŋ6: 滚筒效率
查表得 ŋ2=0.99 ŋ3=0.97 ŋ4=0.97 ŋ5=0.98
ŋ6=0.96
传动装置总效率为:
ŋ总= ŋ1 ŋ 2^2 ŋ3 ŋ4 ŋ5 ŋ6
=0.96×0.99^2×0.97×0.97×0.98×0.96=0.83
电动机所需功率为:
Pd=FV/1000×0.83=7.23KW
查《机械设计基础课程设计》附录二, 选取电动机的额定功率 Pe=7.5kW
(3)、确定电动机转速
滚筒转速为:
=60×1000V/πD
=60×1000×2/π×300=127.4r/min
因带传动的传动比2-4为宜,齿轮传动的传动比3-5为宜,则
最大适宜传动比为
最小适宜传动比为
则电动机转速可选范围为:
nd=i =127.4×(6~20)=764.4~2548 r/min
可选的同步转速有
1000r/min 1500r/min 3000r/min
三种,三种方案的总传动比分别为:
i =7.61 i =11.3 =22.76
考虑到电动机转速越高,价格越低,尺寸越小,结构更紧凑,故选用同步转速为 的电动机。
查《机械设计基础课程设计》附录二,得此电动机的型号为 Y132M-4。
电动机型号:Y132M-4
额定功率 :7.5
满载转速 :1440
启动转矩 :2.2
最大转矩 :2.2
由电动机具体尺寸参数 ,得
中心高: 132mm
外型尺寸 : 515*(270/2+210)315
底脚安装尺寸 :216 178
地脚螺孔直径 :12
轴外伸尺寸 :38 80
装键部位尺寸 :10 33 38
2、 计算传动装置的总传动比并分配传动比
(1)、总传动比: i总=11.3
(2)、分配传动比:取带传动比 i带=2.8,则减速器传动比 i齿=11.3/2.8=4。
三、 传动装置的运动和动力参数计算
1、各轴转速计算
nⅠ= /i带=1440/2.8=514.286 r/min
nⅡ=nⅠ/i齿=514.286/4.0=127.4 r/min
滚筒n筒=nⅡ=127.4 r/min
2、各轴输入功率计算
PⅠ= Pd ŋ带=7.23×0.96=6.94kw
PⅡ=PⅠŋ2=6.94×096=6.66 kw
3、 各轴输入转矩计算
Td=9550×Pd/nⅠ=9550×7.23/1440=47.95Nm
TⅠ=9550×PⅠ/nⅠ= 9550×6.94/514.286=128.87Nm
TⅡ=9550×PⅡ/nⅡ=9550×6.66/172.4=499.286Nm
四、传动零件的设计计算
(一)、V带及带轮的设计
已知条件:电动机型号为 Y132M-4 中心高132mm,电动机的输出功率为 7.5kw。满载转速为 1440r/min。每天运转时间为16小时(八小时每班,两班制),I轴转速为 514.286 r/min
齿轮传动传动比:
i=nⅠ/nⅡ=4
(1) 、确定计算功率 每天运转时间为16小时的带式输送机的工况系数 =1.2。则 = Pe=1.2×7.5=9 kw
(2)、 选择V带型号
查表知选A型带
并考虑结构紧凑性等因素,初选用窄V带SPA型。
(3)、确定带轮的基准直径 和
I、初选小带轮直径
一般取 ,并取标准值。查表取小带轮直径为125m m。机中心高为 H=132mm,由 ,故满足要求。
II、验算带速
V=пd1n1/60×1000=3.14×125×1440/60×1000
=9.42m/s
一般应使 ,故符合要求。
III、计算大带轮直径
要求传动比较精确,考虑滑动率 ,取 =0.01
有 =(1- )i带 =(1-0.01)×125×2.825=346.959mm
取标准值 =350mm
则传动比 i=2.8
对减速器的传动比进行修正,得减速器的传动比 i=4
从动轮转速为 n2=127.4r/min
IV、确定中心距和带长
【1】 由式 ,可
得332.5 mm≤a≤950 mm
取初步中心距 =750mm
(需使 a》700)
【2】 初算带长
Dm=(D1+D2)/2=237.5 mm
Δ=(D2-D1)/2=112.5mm
L= +2a+Δ /2=2402mm
选取相近的标准长度 Ld=2500mm
【3】 确定中心距
实际中心距
a≈ +(Ld-L) /2=750+(2500-2402)/2
=800mm
V、验算小轮包角
【1】计算单根V带的许用功率
由SPA带的 =125mm, n=1440r/min
i带=2.8
得 =1.93kw
又根据SPA带 Δ =0.17kw
又由 Ld=2500mm
查表,长度系数
=180°-Δ×60°/a=164.7°
同时由 =164.7°得包角系数 Ka=0.964
【2】、计算带的根数z
Z=Pc/(P0+ΔP0)Kl Ka=4.079
取z=5
SPA带推荐槽数为1-6,故符合要求。
VI、 确定初拉力
单位长度质量 q=0.1kg/m
单根带适宜拉力为:=161.1N
VII、 计算压轴力
压轴力为:
FQ=2z sin( a1/2)= 1596.66N
VIII、张紧装置
此处的传动近似为水平的传动,故可用调节中心距的方案张紧。
VIIII、带轮的结构设计
已知大带轮的直径da2=350mm,小带轮的直径为 da1=125mm。对于小带轮,由于其与电动机输出转轴直接相连,故转速较高,宜采用铸钢材料,
又因其直径小,故用实心结构。
对于大带轮,由于其转速不甚高,可采用铸铁材料,牌号一般为HT150或HT200,
又因其直径大,故用腹板式结构。
(二)、齿轮设计
已知条件:已知输入功率P1=6.94kw ,转速为 n1=514.286 r/min,齿数比 u=4,单向运转,载荷平稳,每天工作时间为16小时,预计寿命为10年。
(1)、选定齿轮类型、材料、热处理方式及精度等级
A、采用直齿圆柱齿轮传动。
B、带式输送机为一般机械,速度不高,选用8级精度。
C、查表 小齿轮材料为45钢,调质处理,平均齿面硬度为250HBS。
大齿轮材料为45钢,正火处理,平均齿面硬度为200 HBS。
(2)、初步计算齿轮参数
因为是闭式齿面齿轮传动,故先按齿面接触疲劳强度设计,按齿根弯曲疲劳强度校核。
小齿轮分度圆的直径为
A、 Ad==85
B、 计算齿轮转矩
TⅠ=9550×PⅠ/nⅠ= 9550×6.94/514.286=128.87 Nm
C、 取齿宽系数
齿数比为u=4
D、 取 ,则大齿轮的齿数: =84
E、 接触疲劳极限
[σH]lim =610MPa, [σH]lim =500MPa
应力循环次数
N1=60×514.286×10×300×16=1.48×10
N2=N1/u=3.7×10
查图得接触疲劳寿命极限系数为 =1, =1.1
取安全系数SH=1
则接触应力:
[σ ] =[σ ]lim1ZN1/SH=610×1/1=610MPa
[σ ] =[σ ]lim2ZN2/SH=550MPa
取 [σ ]=550 MPa
则 =85
>=66mm 取d1=70mm
(3)、确定传动尺寸
1、计算圆周速度
v=pd1n1/60*1000=1.77m/s
2、计算载荷系数
查表得使用系数
由 v=1.77 ,8级精度,查图得动载系数
查表得齿间载荷分配系数
查表得齿向载荷分布系数 (非对称布置,轴刚性小)
得
3、 确定模数: m=d1/z1=70/21=3.33mm,取标准模数为 .5
4、计算中心距:
a=m(z1+z2)/2=183.75mm
圆整为a=185mm
5、精算分度圆直径
d1=mz1=3.5×21=73.5mm
d2=mz2=3.5×84=294mm
6、计算齿宽
b1= d1=1.1×73.5=80mm
取 b2=80mm, b1=85mm
7、计算两齿轮的齿顶圆直径、齿根圆直径
小齿轮:
齿顶圆直径:
da1=m(z1+ha*)=3.5×(21+1)=77mm
齿根圆直径:
df1=m(z1-2ha*-2c)=3.5×(21-2×1-2×0.25)=64.75mm
大齿轮:
齿顶圆直径:
da2=297.5mm
齿根圆直径:
df2=285.25mm
(4)、校核齿根弯曲强度
由
式中各参数的含义
1、 的值同前
2、查表齿形系数 Ya1=2.8 Ya2=2.23
应力校核系数 Ysa1=1.55 Ysa2=1.77
4、许用弯曲应力
查图6-15(d)、(c)的弯曲疲劳强度系数为
=1
查图得弯曲疲劳寿命系数
,取安全系数 ,故有KFN1=0.85 KFN2=0.8
满足齿根弯曲强度。
(5)结构设计
小齿轮的分度圆直径为 ,故可采用实心结构
大齿轮的分度圆直径为 ,故应采用腹板式结构
(6)、速度误差计算
经过带轮和齿轮设计后,
滚筒的实际转速n= /i= =127.57r/min
滚筒理论要求转速为 127.4r/min
则误差为
故符合要求。
五、轴的设计计算
(一)、低速轴的设计校核
低速轴的设计
已知:输出轴功率为 =6.66KW,输出轴转矩为 =499.286Nm,输出轴转速为 =127.4r/min,寿命为10年。
齿轮参数: z1=21, z2=84,m=3.5,
1、 选择轴的材料
该轴无特殊要求,因而选用调质处理的45钢,查得
2、 求输入轴的功率,转速及扭矩
已求得 ,PI=6.94KW , TI=128.872Nm, nI= 514.286r/min
3、 初步估算最小轴径
最小轴径
当选取轴的材料为45钢,C取110
=
输出轴的最小直径显然是安装联轴器处轴的直径 。
考虑到轴上开有键槽对轴强度的影响,轴径需增大5%。
d=(1+5%)41.3=43.4mm
则d=45mm
为使所选直径 与联轴器的孔径相适应,故需同时选择联轴器。
联轴器的扭矩 ,查表得 ,又TII=499.286Nm,则有
Tc=kT=1.5 499.286Nm=748.9Nm
理论上该联轴器的计算转矩应小于联轴器的公称转矩。
从《机械设计基础课程设计》 查得采用 型弹性套柱联轴器。
该联轴器所传递的公称转矩
取与该轴配合的半联轴器孔径为 d=50mm,故轴径为d1=45mm
半联轴器长 ,与轴配合部分长度 L1=84mm。
轴的结构设计
装联轴器轴段I-II:
=45mm,因半联轴器与轴配合部分的长度为 ,为保证轴端挡板压紧联轴器,而不会压在轴的端面上,故 略小于 ,取 =81mm。
(2)、装左轴承端盖轴段II-III:
联轴器右端用轴肩定位,取 =50mm,
轴段II-III的长度由轴承端盖的宽度及其固定螺钉的范围(拆装空间而定),可取 =45mm.
(3)、装左轴承轴段III-VI:
由于圆柱斜齿轮没有轴向力及 =55,初选深沟球轴承,型号为6211,其尺寸为
D×d×B=100×55×21,故 =55。
轴段III-VI的长度由滚动轴承的宽度B=21mm,轴承与箱体内壁的距离s=5~10(取 =10),箱体内壁与齿轮距离a=10~20mm(一般取 )以及大齿轮轮毂与装配轴段的长度差(此处取4)等尺寸决定:
L3=B+s+a+4=21+10+14+4=49mm
取L3=49mm。
(4)、装齿轮轴段IV-V:
考虑齿轮装拆方便,应使d4>d3=55mm, 轴段IV-V的长度由齿轮轮毂宽度 =80mm决定,取 =77mm。
(5)、轴环段V-VI:
考虑齿轮右端用轴环进行轴向定位,取d5=70mm。
轴环宽度一般为轴肩高度的1.4倍,即
=1.4h=10mm。
(6)、自由段VI-VII:
考虑右轴承用轴肩定位,由6211轴承查得轴肩处安装尺寸为da=64mm,取d6=60mm。
轴段VI-VII的长度由轴承距箱体内壁距离 ,轴环距箱体内壁距离 决定,则 =19mm。
(7)、右轴承安装段VII-VIII:
选用6211型轴承,d7=55mm,轴段VII-VIII的长度由滚动轴承宽度B=21mm和轴承与箱体内壁距离决定,取 。
轴总长为312mm。
3轴上零件的定位
齿轮、半联轴器与轴的周向定位均用平键连接。
按 =45mm,由手册查得平键剖面 ,键槽用键槽铣刀加工,长为70mm。
半联轴器与轴的配合代号为
同理由 =60mm,选用平键为10×8×70,为保证良好的对中性,齿轮轮毂与轴的配合代号为 ,滚动轴承与轴的周向定位是靠过盈配合来保证的,此处选 。
4考虑轴的结构工艺性
轴端倒角取 .为便于加工,齿轮、半联轴器处的键槽分布在同一母线上。
5、轴的强度验算
先作出轴的受力计算简图,如图所示,取集中载荷作用在齿轮的中点,
并找出圆锥滚子轴承的支反力作用点。由表查得代号为6211轴承 ,B=21mm。则
L1=41.5+45+21/2=97mm
L2=49+77/2-21/2=77mm
L3=77/2+10+19+31-21/2=88mm
(1)、计算齿轮上的作用力
输出轴大齿轮的分度圆直径为
d2=294mm,
则圆周力
径向力
轴向力
Fa=Ft tan =Ft tan 0°=0
(2)、计算轴承的支反力
【1】、水平面上支反力
R =Ft L3/(L2+L3)=
R =FtL2/(L2+L3)=
【2】、垂直面上支反力
【3】、画弯矩图
截面C处的弯矩
a、 水平面上的弯矩
b、 垂直面上的弯矩
c、 合成弯矩M
d、 扭矩
T=T =499286Nmm
e、 画计算弯矩
因单向运转,视扭矩为脉动循环, ,则截面B、C处的当量弯矩为
=299939Nmm
f、 按弯扭组合成应力校核轴的强度可见截面C的当量弯矩最大,故校核该截面的强度
查表得 ,因 ,故安全。
A截面直径最小,故校核其强度
查表得 ,因 ,故安全。
g、 判断危险截面
剖面A、B、II、III只受扭矩,虽有键槽、轴肩及过渡配合等所引起的应力集中均将削弱轴的疲劳强度,但由于轴的最小直径是按扭转强度较为宽裕地确定的,所以剖面A、B、II、III均无需校核。
从应力集中对轴的疲劳强度的影响来看,剖面IV和V处过盈配合所引起的应力集中最严重;从受载的情况看,剖面C处 最大。剖面V的应力集中的影响和剖面IV的相近,但剖面V不受扭矩作用,同时轴径也比较大,故不必作强度校核。剖面C上虽然 最大,但应力集中不大(过盈配合及键槽引起的应力集中均在两端),而且这里轴的直径最大,故剖面C也不必校核。剖面VI显然更不必校核,又由于键槽的应力集中系数比过盈配合的小,因而该轴只须校核IV既可。
(二)、高速轴的设计校核
高速轴的设计
已知:输入轴功率为PⅠ=6.94 kw ,输入轴转矩为TⅠ= 128.87Nm
,输入轴转速为nⅠ=514.286 r/min,寿命为10年。
齿轮参数: z1=21,z2=84,m=3.5, 。
1、选择轴的材料
该轴无特殊要求,因而选用调质处理的45钢,由表查得
1、 求输出轴的功率 ,转速 及扭矩 。
已求得 =127.4 r/min
=6.66kw
=499.286Nm
初步估算最小轴径
最小轴径 d min=
由表可知,当选取轴的材料为45钢,C取110
d min=26.2 mm
此最小直径显然是安装大带轮处轴的直径 。
考虑到轴上开有键槽对轴强度的影响,轴径需增大5%。
则 d min=1.05 26.2=27.5mm,取 =28 mm
2、 轴的结构设计
(1)、装带轮轴段I-II:
=28 mm,轴段I-II的长度根据大带轮的轮毂宽度B决定,已知 =60mm,为保证轴端挡板压紧带轮,而不会压在轴的端面上,故 略小于 ,故取 =57mm。
(2)、装左轴承端盖轴段II-III:
联轴器右端用轴肩定位,取 ,轴段II-III的长度由轴承端盖的宽度及其固定螺钉的范围(拆装空间而定),可取
(3)、装左轴承轴段III-IV:
由于圆柱直齿轮无轴向力及 ,初选深沟球轴承,型号6207,其尺寸为 , 。
轴段III-VI的长度由滚动轴承的宽度,滚动轴承与箱体内壁距离 ,等尺寸决定: 。
(4)、间隙处IV-V:
高速轴小齿轮右缘与箱体内壁的距离 。
取 ,
(5)、装齿轮轴段V-VI:
考虑齿轮装拆方便,应使 ,取 ,轴段V-VI的长度由齿轮轮毂宽度B=80mm决定,取 。
(6)、轴段VI-VII:
与轴段IV-V同。 。
(7)、右轴承安装段VII-VIII:
选用6207型轴承, B=17mm ,轴VII-VIII的长度取
轴总长为263mm。
3、 轴上零件的定位
小齿轮、带轮与轴的周向定位均用平键连接。
按 =28mm,由手册查得平键剖面 ,键槽用键槽铣刀加工,长为45mm。
带轮与轴的配合代号为 。同理由 ,选用平键为 ,为保证良好的对中性,齿轮轮毂与轴的配合代号为 ,滚动轴承与轴的周向定位是靠过盈配合来保证的,此处选 。
4、 考虑轴的结构工艺性
轴端倒角取 。
为便于加工,齿轮、带轮处的键槽分布在同一母线上。
7、轴的强度验算
先作出轴的受力计算简图,如图所示,取集中载荷作用在齿轮的中点,并找出圆锥滚子轴承的支反力作用点。查《机械设计课程设计指导书》得代号为6207的深沟球轴承 a=17mm,则
L1=57/2+50+17/2=87mm
L2=17/2+12+10+80/2=70.5mm
L3=17/2+12+10+80/2=70.5mm
(1)、计算齿轮上的作用力
输出轴小齿轮的分度圆直径为
d1=mz1=3.5 21=73.5mm
则圆周力
径向力
轴向力 Fa=0
(2)、计算轴承的支反力
【1】、水平面上支反力
RHA=FtL3/(L2+L3)=1/2Ft=1753.4N
RHB=FtL2/(L2+L3)= 1/2Ft=1753.4N
【2】、垂直面上支反力
RVA=3220N
RVB= =347N
【3】、截面C处的弯矩
1、 水平面上的弯矩
2、 垂直面上的弯矩
3、 合成弯矩M
4、 扭矩
T= TⅠ= 128.87Nm
5、 计算弯矩
因单向运转,视扭矩为脉动循环, ,则截面C、A、D处的当量弯矩为
6 、 按弯扭组合成应力校核轴的强度
可见截面A的当量弯矩最大,故校核该截面的强度
查表得 ,因 ,故安全。
截面D的直径最小,故校核该截面的强度
因 ,故安全。
5、 判断危险截面
剖面A、B、II、III只受扭矩,虽有键槽、轴肩及过渡配合等所引起的应力集中均将削弱轴的疲劳强度,但由于轴的最小直径是按扭转强度较为宽裕地确定的,所以剖面A、B、II、III均无需校核。
从应力集中对轴的疲劳强度的影响来看,剖面IV和V处过盈配合所引起的应力集中最严重;从受载的情况看,剖面C处 最大。剖面V的应力集中的影响和剖面IV的相近,但剖面V不受扭矩作用,同时轴径也比较大,故不必作强度校核。剖面C上虽然 最大,但应力集中不大(过盈配合及键槽引起的应力集中均在两端),而且这里轴的直径最大,故剖面C也不必校核。剖面VI显然更不必校核,又由于键槽的应力集中系数比过盈配合的小,因而该轴只须校核IV既可。
六、键连接的校核计算
键连接设计
I、 带轮与输入轴间键连接设计
轴径 ,轮毂长度为 ,查手册,选用A型平键,其尺寸为 。
现校核其强度:
, , 。
查手册得 ,因为 ,故满足要求。
II、 小齿轮与输入轴间键连接设计
轴径 d=50mm,轮毂长度为 ,查手册,选用A型平键,其尺寸为 .
现校核其强度:
TI=128872Nmm, , 。
查手册得 ,因为 ,故满足要求。
键连接设计
III、 大齿轮与输出轴间键连接设计
轴径d=60mm,轮毂长度为 ,查手册,选用A型平键,其尺寸为
现校核其强度:
TII=499.286 Nm, , 。
查手册得 ,因为 ,故满足要求。
IV、 半联轴器与输出轴间键连接设计
轴径 ,半联轴器的长度为 ,查手册,选用A型平键,其尺寸为 .
现校核其强度:
, , 。
查手册得 ,因为 ,故满足要求。
七、 滚动轴承的选择及寿命计算
滚动轴承的组合设计及低速轴上轴承的寿命计算
已知条件:
采用的轴承为深沟球轴承。
一、滚动轴承的组合设计
1、滚动轴承的支承结构
输出轴和输入轴上的两轴承跨距为H1=155mm,H2=150mm ,都小于350mm。且工作状态温度不甚高,故采用两端固定式支承结构。
2、滚动轴承的轴向固定
轴承内圈在轴上的定位以轴肩固定一端位置,另一端用弹性挡圈固定。
轴承外圈在座孔中的轴向位置采用轴承盖固定。
3、滚动轴承的配合
轴承内圈与轴的配合采用基孔制,采用过盈配合,为 。
轴承外圈与座孔的配合采用基轴制。
4、滚动轴承的装拆
装拆轴承的作用力应加在紧配合套圈端面上,不允许通过滚动体传递装拆压力。
装入时可用软锤直接打入,拆卸时借助于压力机或其他拆卸工具。
5、滚动轴承的润滑
对于输出轴承,内径为d=55mm,转速为n=127.4 ,则
,查表可知其润滑的方式可为润滑脂、油浴润滑、滴油润滑、循环油润滑以及喷雾润滑等。
同理,对于输入轴承,内径为35,转速为514.286 r/min
,查表可知其润滑的方式可为润滑脂、油 浴润滑、滴油润滑、循环油润滑以及喷雾润滑等
6、滚动轴承的密封
对于输出轴承,其接触处轴的圆周速度
故可采用圈密封。
二、低速轴上轴承寿命的计算
已知条件:
1轴承 ,
2轴承
轴上的轴向载荷为0径向载荷为
查表得 ,则轴承轴向分力
Fs1=Fr1/2Y=567N
Fs2=Fr2/2Y=496N
易知此时
Fs1 > Fs2
则轴承2的轴向载荷
轴承1轴向载荷为
.
且低速轴的转速为127.4
预计寿命 =16 57600h
I、计算轴承1寿命
6、 确定 值
查《机械设计基础课程设计》表,得6207基本动荷 ,基本额定静载荷 。
7、 确定e值
对于深沟球轴承,则可得 e=0.44
8、 计算当量动载荷P
由
<e
由表查得 ,则
9、 计算轴承寿命
由 =
查可得 ,取 ;查表可得 (常温下工作);6207轴承为深沟球轴承,寿命指数为 ,则
>
故满足要求。
II、计算轴承2寿命
1、确定 值
查《机械设计基础设计》,得6211型轴承基本额定动载荷 ,基本额定静载荷 。
2、 确定e值
对于深沟球轴承6200取,则可得e=0.44
4、 计算当量动载荷P
由
由表10-5查得 ,则
P=Fr2=1687N
5、 计算轴承寿命
由
查表10-7,可得 ,取 ;查表10-6可得 (常温下工作);深沟球轴承轴承,寿命指数为 ,则
> ,故满足要求。
八、 联轴器的选择
与低速轴轴端相连的半联轴器为弹性套柱销联轴器,型号为 ,其公称转矩为 ,而计算转矩值为:
,故其强度满足要求。
九、箱体结构设计
箱体采用灰铸铁铸造而成,采用剖分式结构,由箱座和箱盖两部分组
成,取轴的中心线所在平面为剖分面。
箱体的强度、刚度保证
在轴承座孔处设置加强肋,做在箱体外部。外轮廓为长方形。
机体内零件的密封、润滑
低速轴上齿轮的圆周速度为:
由于速度较小,故采用油池浸油润滑,浸油深度为:
高速轴上的小齿轮采用溅油轮来润滑,利用溅油轮将油溅入齿轮啮合处进行润滑。
3、机体结构有良好的工艺性.
铸件壁厚为8mm,圆角半径为R=5。机体外型简单,拔模方便.
4. 对附件设计
A 视孔盖和窥视孔
在机盖顶部开有窥视孔,能看到传动零件啮合区的位置,并有足够的空间,以便于能伸入进行操作,窥视孔有盖板,机体上开窥视孔与凸缘一块,便于机械加工出支承盖板的表面并用垫片加强密封,盖板用铸铁制成,用M8螺钉紧固。
B 油螺塞:
放油孔位于油池最底处,并安排在减速器不与其他部件靠近的一侧,以便放油,放油孔用螺塞堵住,因此油孔处的机体外壁应凸起一块,由机械加工成螺塞头部的支承面,并加封油圈加以密封。
C 油标:
油标位在便于观察减速器油面及油面稳定之处。
油尺安置的部位不能太低,以防油进入油尺座孔而溢出.
D 通气孔:
由于减速器运转时,机体内温度升高,气压增大,为便于排气,在机盖顶部的窥视孔改上安装通气器,以便达到体内为压力平衡.
E 定位销:
为保证剖分式机体的轴承座孔的加工及装配精度,在机体联结凸缘的长度方向各安装一圆锥定位销,以提高定位精度.
F 吊钩:
在机盖上直接铸出吊钩和吊环,用以起吊或搬运较重的物体.
总结:机箱尺寸
名称 符号 结构尺寸/mm
箱座壁厚
8
箱盖壁厚
8
箱座凸缘厚度
12
箱盖凸缘厚度
12
箱底座凸缘厚度
20
箱座上的肋厚
7
箱盖上的肋厚
7
轴承旁凸台的高度
39
轴承旁凸台的半径
23
轴承盖的外径
140/112
地
脚
螺
钉 直径
M16
数目
4
通孔直径
20
沉头座直径
32
底座凸缘尺寸
22
20
连
接
螺
栓 轴承旁连接螺栓直径
M12
箱座的连接螺栓直径
M8
连接螺栓直径
M18
通孔直径
9
沉头座直径
26
凸缘尺寸 15
12
定位销直径
6
轴承盖螺钉直径
M8A
视孔盖螺钉直径
M6
吊环螺钉直径
M8
箱体内壁至轴承座端面距离
55
大齿轮顶圆与箱体内壁的距离
12
齿轮端面与箱体内壁的距离
15
十、润滑与密封
滚动轴承的润滑
由于轴承周向速度为,所以宜开设油沟、飞溅润滑。
润滑油的选择
齿轮与轴承用同种润滑油较为便利,考虑到该装置用于小型设备,选用GB443-89全损耗系统用油L-AN15润滑油。
密封方法的选取
选用凸缘式端盖易于调整,采用闷盖安装骨架式旋转轴唇型密封圈实现密封。密封圈型号按所装配轴的直径确定为GB894.1-86-25轴承盖结构尺寸按用其定位的轴承的外径决定
十一、设计小结
十二、参考资料
1《画法几何及工程制图 第六版》朱辉、陈大复等编 上海科学技术出版社
2、《机械设计基础课程设计》 陈立德主编 高等教育出版社
3、《机械设计计算手册 第一版》王三民主编 化学工业出版社
4、《机械设计 第四版》邱宣怀主编 高等教育出版社
我的设计作业F=3000N V=2m/s D=300mm
D. 外经100豪米内经55豪米是什么规格轴承
这是常用尺寸系列,有很多不同种类的轴承都有这个尺寸。
如:
轴承类型:深沟球轴承
新型号:6211
国内旧型号:211
内径(mm):55
外径(mm):100
宽度(mm):21
.
轴承类型:调心球轴承
新型号:1211
国内旧型号:1211
内径(mm):55
外径(mm):100
宽度(mm):21
.
轴承类型:角接触球轴承
新型号:3211
国内旧型号:3056211
内径(mm):55
外径(mm):100
宽度(mm):33.3
.
轴承类型:调心滚子轴承
新型号:22211
国内旧型号:3511
内径(mm):55
外径(mm):100
宽度(mm):25
.
供参考。
E. 轴承都分什么级别 没级别转速大约是多少
轴承按照精度等级分为P0级、P6级、P5级、P4级、P2级五个等级。精度从0级起依次提高,对于一般用途0级已足够,但在用于特殊条件或场合时,需要5级或更高的精度。
每一级别的转速没有固定的数据,不同类型、不同型号的轴承转速是不一样的。轴承的转速取决于轴承的结构型式、尺寸和精度、润滑方式、润滑剂的质和量、保持架的材料和型式以及负荷条件等各种因素。
(5)6211轴承转速多少扩展阅读:
轴承的分类与用途:
一、角接触球轴承
套圈与球之间有接触角,标准的接触角为15°、30°和40°,接触角越大轴向负荷能力也越大,接触角越小则越有利于高速旋转,单列轴承可承受径向负荷与单向轴向负荷。结构上为背面组合的两个单列角接触球轴承共用内圈与外圈,可承受径向负荷与双向轴向负荷。
主要用途:
单列:机床主轴、高频马达、燃汽轮机、离心分离机、小型汽车前轮、差速器小齿轮轴。
双列:油泵、罗茨鼓风机、空气压缩机、各类变速器、燃料喷射泵、印刷机械。
二、调心球轴承
双排钢珠,外圈滚道为内球面型,因此可自动调整因轴或外壳的挠曲或不同心引起的轴心不正,圆锥孔轴承通过使用紧固件可方便地安装在轴上,主要承受径向载荷。
主要用途:木工机械、纺织机械传动轴、立式带座调心轴承。
三、调心滚子轴承
该类轴承在球面滚道外圈与双滚道内圈之间装有球面滚子,按内部结构的不同,分为R、RH、RHA和SR四种型式,由于外圈滚道的圆弧中心与轴承中心一致,具有调心性能,因此可自动调整因轴或外壳的挠曲或不同心引起的轴心不正,可承受径向负荷与双向轴向负荷。
主要用途:造纸机械、减速装置、铁路车辆车轴、轧钢机齿轮箱座、轧钢机辊道子、破碎机、振动筛、印刷机械、木工机械、各类产业用减速机、立式带座调心轴承。
四、推力调心滚子轴承
该类轴承中球面滚子倾斜排列,由于座圈滚道面呈球面,具有调心性能,因此可允许轴有若干倾斜,轴向负荷能力非常大,在承受轴向负荷的同时还可承受若干径向负荷,使用时一般采用油润滑。
主要用途:水力发电机、立式电动机、船舶用螺旋桨轴、轧钢机轧制螺杆用减速机、塔吊、碾煤机、挤压机、成形机。
五、圆锥滚子轴承
该类轴承装有圆台形滚子,滚子由内圈大挡边引导,设计上使得内圈滚道面、外圈滚道面以及滚子滚动面的各圆锥面的顶点相交于轴承中心线上的一点。单列轴承可承受径向负荷与单向轴向负荷,双列轴承可承受径向负荷与双向轴向负荷,适用于承受重负荷与冲击负荷。
主要用途:汽车:前轮、后轮、变速器、差速器小齿轮轴。机床主轴、建筑机械、大型农业机械、铁路车辆齿轮减速装置、轧钢机辊颈及减速装置。