① 解析:滚动轴承钢生产工艺及热处理
适于制造在不同环境中工作的各类滚动轴承套圈和滚动体的钢,统称为(滚珠) 滚动轴承钢 。由于对轴承能适应的工作环境不同,如低温、高温、耐锈蚀、防磁性、耐振动冲击等,轴承钢可以是专用的碳铬轴承钢,也可以采用工具钢、结构钢、不锈钢及耐热钢。目前使用最广的是碳铬轴承钢。下面就让我们一起来了解下 滚动轴承钢 的相关知识介绍吧!
滚动轴承钢介绍
滚动轴承钢(rolling bearing steel)是用于制造滚动轴承的滚动体和内外套圈的钢,通常在淬火状态下使用。滚动轴承在工作中需承受很高的交变载荷,滚动体与内外伍皮圈之间的接触应力大,同时又工作在润滑剂介质中。因此,滚动轴承钢具有高的抗压强度和抗疲劳强度,有一定的韧性、塑性、耐磨性和耐蚀性,钢的内部组织、成分均匀,热处理后有良好的尺寸稳定性。常用的滚动轴承钢是含碳0.95%~1.10%、含铬0.40%~1.60%的高碳低铬轴承钢,如GCr6、GCr9、GCr15等。
为了满足轴承在不同工作情况下的使用要求,还发展了特殊用途的轴承钢,如制造轧钢机轴承用的耐冲击渗碳轴承钢、航空发动机轴承用的高温轴承钢和在腐蚀介质中工作的不锈轴承钢等。
滚动轴承钢分类
现代的滚动轴承钢可分为高碳铬轴承钢、渗碳铬轴承用钢、不锈轴承用钢和高温轴承用钢四大类。在轴承制造工业中应用面广、使用量大的是高碳铬轴承钢。
滚动轴承钢生产工艺
轴承钢一般用碱性电炉冶炼,也可加炉外真空脱气处理或钢包真空精炼。轴承钢的铸锭工艺和锭型设计对非金属夹杂物和唯基碳化物在钢中的分布都有很大影响。轴承钢容易产生白点,所以钢锭和钢坯都要缓冷。航空用优质轴承钢需用电渣重熔或真空自耗重熔等特殊方法冶炼。
滚动轴承钢技术要求
轴承钢锭一般要在1200~1250℃高温下进行长时间扩散退火,以改善碳化物偏析。热加工时要控制炉内气氛,钢坯加热温度不宜过高,保温时间不宜过长,以免发生严重脱碳。终轧(锻)温度通常在800~900℃之间,过高易出现粗大网状碳化物,过低易形成轧(锻)裂纹。轧(锻)材成品应快冷至650℃,以防止渗碳体在晶界上呈网状析出,有条件时可采用控制轧制工艺。
为了取得良好的切削性和淬火前的预组织,冷加工用轴承钢材要进行完全的球化退火。退火温度一般为780~800℃,退火时要防止脱碳。如果轧制钢材存在过粗的网状渗碳体,则退火前需先进行正火处理。铬轴承钢通常在830~860℃之间加热,油淬,150~180℃回火。精密轴承的组织中,应尽可能降低残余奥氏体量或使残余奥氏体在使用过程中保持稳定,因此常需在淬火后进行-80℃(或更低温度)冷处理和在 120~140℃下进行长时间的稳定化处理。
滚动轴承钢热处理
热处理工艺一般包括加热、保温、冷却三个过程,有时只有加热和冷却两个过程。这些过程互相衔接,不可间断。加热是热处理的重要步骤之一。滚动轴承钢热处理的加热方法很多,最早是采用木炭和煤作为热源,进而应用液体和气体燃料。电的应用使加热易于控制,且无环境污染。利用这些热源可以直接加热,也可以通过熔融的盐或滚动轴承钢,以至浮动粒子进行间接加热。 滚动轴承钢加热时,工件暴露在空气中,常常发生氧化、脱碳(即钢铁零件表面碳含量降低),这对于热处理后零件的表面性能有很不利的影响。
因而滚动轴承钢通常应在可控气氛或保护气氛中、熔融盐中和真空中加热,也可用涂料或包装方法进行保护加热。 加热温度是热处理工艺的重要工艺参数之一,选择和控制加热温度 ,是保证热处理质量的主要问题。加热温度随被处理的滚动轴承钢材料和热处理腔山差的目的不同而异,但一般都是加热到相变温度以上,以获得需要的组织。另外转变需要一定的时间,因此当滚动轴承钢工件表面达到要求的加热温度时,还须在此温度保持一定时间,使内外温度一致,使显微组织转变完全,这段时间称为保温时间。
编辑总结:通过以上对滚动轴承钢及其热处理的分析,我们已经可以初步了解滚动轴承钢的基本信息。滚动轴承钢离我们日常生活比较遥远,但是这类产品对于工业生产十分重要。对于用户来说,如果需要这类产品就要对它对更多了解。
② 轴承整体热处理流程和技术要求
NSK轴承零件经热处理流程后常见的质量缺陷有:淬火显微组织过热、欠热、淬火裂纹、硬度不够、热处理变形、表面脱碳、软点等。
1.过热
从FAG轴承整体零件粗糙口上可观察到淬火后的显微组织过热。但要确切判断其过热的程度必须观察显微组织。若在GCr15钢的淬火组织中出现粗针状马氏体,则为淬火过热组织。形成原因可能是淬火加热温度过高或加热保温时间太长造成的全面过热;也可能是因原始组织带状碳化物严重,在两带之间的低碳区形成局部马氏体针状粗大,造成的局部过热。过热组织中残留奥氏体增多,尺寸稳定性下降。由于淬火组织过热,钢的晶体粗大,会导致零件的韧性下降,抗冲击性能降低,轴承的寿命也降低。过热严重甚至会造成淬火裂纹。
2.欠热
淬火温度偏低或冷却不良则会在显微组织中产生超过标准规定的托氏体组织,称为欠热组织,它使硬度下降,耐磨性急剧降低,影响NTN轴承寿命。
3.淬火裂纹
SKF轴承零件在淬火冷却过程中因内应力所形成的裂纹称淬火裂纹。造成这种裂纹的原因有:由于淬火加热温度过高或冷却太急,热应力和金属质量体积变化时的组织应力大于钢材的抗断裂强度;工作表面的原有缺陷(如表面微细裂纹或划痕)或是钢材内部缺陷(如夹渣、严重的非金属夹杂物、白点、缩孔残余等)在淬火时形成应力集中;严重的表面脱碳和碳化物偏析;零件淬火后回火不足或未及时回火;前面工序造成的冷冲应力过大、锻造折叠、深的车削刀痕、油沟尖锐棱角等技术要求。总之,造成淬火裂纹的原因可能是上述因素的一种或多种,内应力的存在是形成淬火裂纹的主要原因。淬火裂纹深而细长,断口平直,破断面无氧化色。它在轴承套圈上往往是纵向的平直裂纹或环形开裂;在轴承钢球上的形状有S形、T形或环型。淬火裂纹的组织特征是裂纹两侧无脱碳现象,明显区别与锻造裂纹和材料裂纹。
4.热处理变形
NACHI轴承零件在热处理时,存在有热应力和组织应力,这种内应力能相互叠加或部分抵消,是复杂多变的,因为它能随着加热温度、加热速度、冷却方式、冷却速度、零件形状和大小的变化而变化,所以热处理变形是难免的。认识和掌握它的变化规律可以使轴承零件的变形(如套圈的椭圆、尺寸涨大等)置于可控的范围,有利于生产的进行。当然在热处理过程中的机械碰撞也会使零件产生变形,但这种变形是可以用改进操作加以减少和避免的。
5.表面脱碳
INA轴承零件在热处理过程中,如果是在氧化性介质中加热,表面会发生氧化作用使零件表面碳的质量分数减少,造成表面脱碳。表面脱碳层的深度超过最后加工的留量就会使零件报废。表面脱碳层深度的测定在金相检验中可用金相法和显微硬度法。以表面层显微硬度分布曲线测量法为准,可做仲裁判据。
6.软点
由于加热不足,冷却不良,淬火操作不当等原因造成的IKO轴承零件表面局部硬度不够的现象称为淬火软点。它象表面脱碳一样可以造成表面耐磨性和疲劳强度的严重下降。本文地址: http://www.nskfag.org/news/201105_36734.html
③ 轴承套圈开裂的原因是什么
轴承套全裂开的原因,可能是因为温度过低导致。