Ⅰ 滚动轴承故障诊断技术
你好,我是凯美瑞轴承的工程师。滚动轴承故障诊断方法有以下几种
1.温度法通过监测轴承座(或箱体 )处的温度来判断轴承工作是否正常。温度监测对轴承载荷、速度和润滑情况的变化反映比较敏感,尤其是对润滑不良而引起的轴承过热现象很敏感。所以;用于这种场合比较有效。但是,当轴承出现诸如早期点蚀、剥落、轻微磨损等比较微小的故障时,温度监测基本上没有反映,只有当故障达到一定的严重程度时,用这种方法才能监测到。所以,温度监测不适用于点蚀、局部剥落等所谓局的部损伤类故障。
2.油样分析法是一种从轴承所使用的润滑油中取出油样,通过收集和分析油样中金属颗粒的大小和形状来判断轴承工况和故障的方法。这种方法只适用于油润滑轴承,而不适用于脂润滑轴承。另外,这种方法易受其它非轴承损坏掉下的颗粒的影响。所以,这种方法具有很大的局限性。
3.振动法是通过安装在轴承座或箱体适当方位的振动传感器监测轴承振动信号,并对此信号进行分析与处理来判断轴承工况与故障的。由于振动法具有:①、适用于各种类型各种工况的轴承;②、可以有效地诊断出早期微小故障;③、信号测试与处理简单、直观:④、诊断结果可靠等优点,所以在实际中得到了极为广泛的应用。目前,国内外开发生产的各种滚动轴承临测与诊断仪器和系统巾大都是根据振动法的原理制成的,有关轴承监测与诊断方面的文献80% 以上讨论的是振动法。从适用、实用、有效的观点看,目前没有比振动法更好的滚动轴承监视与诊断方法了。与振动法密切相关的是噪声法,即通过滚动轴承在运行过程中的噪声来判断其故障。由于所监测到的噪声信号中混有大量的非轴承原因产生的噪声,要把轴承噪声与其它噪声分离开来十分困难,所以这种方法用得较少。
随着科学技术的不断发展,一些新的监测技术不断出现并应用于滚动轴承的上况监视与诊断中,例如声发射技术,光纤技术,等等。但是由于种种原因和局限性,这些技术真正普及应用于实际的滚动轴承诊断还有一段距离。
Ⅱ 怎样判断洗衣机轴承是否损坏
主要是听洗衣机在转动时,是否发出不正常的杂音,手摸洗衣机箱体是否有较大的振动。正常的洗衣机在运行时这两样都很小。
一般设备上的轴承没有遭受水浸的危险,但洗衣机轴承由于橡胶密封套老化磨损,很容易遭受水浸生锈而损坏。定期进行检修,更换橡胶密封套,并且用一次性注射器给轴承加注润滑油,还是可以延长洗衣机轴承工作寿命的。
基本结构
包括塑料圆柱形内筒和具有至少一个排水口的金属制成的滚筒外筒,所述的内筒和外筒相适配,所述的内筒由底座、圆柱内筒和端口环组成,圆柱内筒一端连接底座,另一端连接端口环,所述的圆柱内筒由2个或2个以上的侧壁板和2个或2个以上的凸棱板相互接合构成,所述侧壁板是具有四个轮廓边的圆弧板,其四个轮廓边分别与底座、端口环和凸棱板连接,并设置有连接结构。
以上内容参考:网络-洗衣机
Ⅲ 轴承的失效原因和失效的形态是什么
轴承的失效原因: 一,轴承往往因安装不合适而导致整套轴承各零件之间的受力状态发生变化,轴承在不正常的状态下运转并过早失效。根据轴承安装、使用、维护、保养的技术要求,对运转中的轴承所承受的载荷、转速、工作温度、振动、噪声和润滑条件进行监控和检查,发现异常立即查找原因,进行调整,使其恢复正常。此外,对润滑脂质量和周围介质、气氛进行分析检验也很重要。 首先,结构设计合理的同时具备有先进性,才会有较长的轴承寿命。轴承的制造一般要经过锻造、热处理、车削、磨削和装配等多道加工工序。各加工工艺的合理性、先进性、稳定性也会影响到轴承的寿命。其中影响成品轴承质量的热处理和磨削加工工序,往往与轴承的失效有着更直接的关系。近年来对轴承工作表面变质层的研究表明,磨削工艺与轴承表面质量的关系密切。 轴承材料的冶金质量曾经是影响滚动轴承早期失效的主要因素。随着冶金技术(例如轴承钢的真空脱气等)的进步,原材料质量得到改善。原材料质量因素在轴承失效分析中所占的比重已经明显下降,但它仍然是轴承失效的主要影响因素之一。选材是否得当仍然是轴承失效分析必须考虑的因素。 轴承失效分析的主要任务,就是根据大量的背景材料、分析数据和失效形式,找出造成轴承失效的主要因素,以便有针对性地提出改进措施,延长轴承的服役期,避免轴承发生突发性的早期失效。 轴承失效基本形态: 1.粘附和磨粒磨损失效 是各类轴承表面最常见的失效模式之一。轴承零件之间相对滑动摩擦导致其表面金属不断损失称为滑动摩损。持续的磨损将使零件尺寸和形状变化,轴承配合间隙增大,工作表面形貌变坏,从而丧失旋转精度,使轴承不能正常工作。滑动磨损形式可分为磨粒磨损、粘附磨损、腐蚀磨损、微动磨损等,其中最常见的为磨粒磨损和粘附磨损。 轴承零件的摩擦面之间由外来硬颗粒或金属磨削引起摩擦面磨损的现象属于磨粒磨损。它常在轴承表面造成凿削式或犁沟式的擦伤。外来硬颗粒常常来自于空气中的尘埃或润滑剂中的杂质。粘附磨损主要是由于摩擦表面的轮廓峰使摩擦面受力不均,局部摩擦热使摩擦表面温度升高,造成润滑油膜破裂,严重时表面层金属将会局部溶化,接触点产生粘着、撕脱、再粘着的循环的过程,严重时造成摩擦面的焊合和卡死。 2.接触疲劳(疲劳磨损)失效 接触疲劳失效是各类轴承最常见的失效模式之一,是轴承表面受到循环接触应力的反复作用而产生的失效。轴承零件表面的接触疲劳剥落是一个疲劳裂纹从萌生、扩展到裂纹的过程。初始的接触疲劳裂纹首先从接触表面以下最大正交切应力处产生,然后扩展到表面形成麻点状剥落或小片状剥落,前者被称为点蚀或麻点剥落;后者被称为浅层剥落。如初始裂纹在硬化层与心部交界区产生,造成硬化层的早期剥落,则称为硬化层剥落。 参考资料: http://www.ttzcw.com/college/coll_info/tp1/2010102915210020504.html
Ⅳ 滚动轴承常见的故障形式有哪些
滚动轴承是转动设备中应用最为广泛的机械零件,同时也是最容易产生故障的零件。据统计,在使用滚动轴承的转动设备中,大约有30%的机械故障都是由于滚动轴承而引起的。滚动轴承的常见故障形式有以下几种。
1. 疲劳剥落(点蚀) 滚动轴承工作时,滚动体和滚道之间为点接触或线接触,在交变载荷的作用下,表面间存在着极大的循环接触应力,容易在表面处形成疲劳源,由疲劳源生成微裂纹,微裂纹因材质硬度高、脆性大,难以向纵深发展,便成小颗粒状剥落,表面出现细小的麻点,这就是疲劳点蚀。严重时,表面成片状剥落,形成凹坑;若轴承继续运转,将形成大面积的剥落。疲劳点蚀会造成运转中的冲击载荷,使设备的振动和噪声加剧。然而,疲劳点蚀是滚动轴承正常的、不可避免的失效形式。轴承寿命指的就是出现第一个疲劳剥落点之前运转的总转数,轴承的额定寿命就是指90%的轴承不发生疲劳点蚀的寿命。(利用轴承故障检测仪对轴承进行诊断)
2. 磨损 润滑不良,外界尘粒等异物侵入,转配不当等原因,都会加剧滚动轴承表面之间的磨损。磨损的程度严重时,轴承游隙增大,表面粗糙度增加,不仅降低了轴承的运转精度,而且也会设备的振动和噪声随之增大。
3. 胶合 胶合是一个表面上的金属粘附到另一个表面上去的现象。其产生的主要原因是缺油、缺脂下的润滑不足,以及重载、高速、高温,滚动体与滚道在接触处发生了局部高温下的金属熔焊现象。 通常,轻度的胶合又称为划痕,重度的胶合又称为烧轴承。 胶合为严重故障,发生后立即会导致振动和噪声急剧增大,多数情况下设备难以继续运转。
4. 断裂 轴承零件的裂纹和断裂是最危险的一种故障形式,这主要是由于轴承材料有缺陷和热处理不当以及严重超负荷运行所引起的;此外,装配过盈量太大、轴承组合设计不当,以及缺油、断油下的润滑丧失也都会引起裂纹和断裂。
5. 锈蚀 锈蚀是由于外界的水分带入轴承中;或者设备停用时,轴承温度在露点以下,空气中的水分凝结成水滴吸附在轴承表面上;以及设备在腐蚀性介质中工作,轴承密封不严,从而引起化学腐蚀。锈蚀产生的锈斑使轴承表面产生早期剥落,同时也加剧了磨损。
6. 电蚀 电蚀主要是转子带电,电流击穿油膜而形成电火化放电,使表面局部熔焊,在轴承工作表面形成密集的电流凹坑或波纹状的凹凸不平。
7. 塑性变形(凹坑及压痕) 对于转速极低(n<1 r/min)的轴承,或间歇摆动的轴承,其故障形式主要是永久性塑性变形,即在滚道上受力最大处形成凹坑。发生塑性变形,主要与过大的挤压应力有关,例如,工作载荷过重,冲击载荷过大,热变形影响等。轴承出现凹坑后,会产生很大的振动和噪声。 此外,当硬颗粒从外界进入滚动体与滚道之间时,会在滚道表面形成压痕。
8. 保持架损坏 润滑不良会使保持架与滚动体或座圈发生磨损、碰撞。装配不当所造成的保持架变形,会使保持架与滚动体或座圈之间产生卡涩,从而加速了保持架的磨损。保持架磨损后,间隙变大,与滚动体之间的撞击力增大,以致使保持架断裂。
滚动轴承的故障种类是多种多样的,然而,在实际应用中最常见和最有代表性的故障类型通常只是三种,,即疲劳剥落(点蚀)、磨损、胶合。其中,胶合从发生到轴承完全损坏的过程往往极短暂,因此一般难以通过定期检查及时发现。
Ⅳ 如何判断电机滚动轴承是否损坏和能否继续使用
如何判断电机滚动轴承是否损坏和能否继续使用
1.对于小型电机,用手将转子的轴伸端上下搬动,如果这时转轴能有较大的活动量,说明轴承磨损严重。
2.拆开电机两端的端盖进行检查,如果发现绕组和铁心表面存在油渍,说明轴承漏油,密封件不严或变形所致。
3.轴承拆下后,抹去轴承里的润滑脂,再用汽油把轴承洗净。然后用手将外圈相对于滚珠来回晃动,好的轴承其间隙几乎觉察不出来。若滚珠与内、外圈间隙很大,说明轴承磨损严重,需更换新的。