导航:首页 > 轴承铸造 > 半连续铸造冷隔是什么原因造成的

半连续铸造冷隔是什么原因造成的

发布时间:2023-09-25 09:29:37

㈠ 消失模结疤是如何形成的

看废品,查原因,找出解决问题的方法,然后,规范工艺纪律,使企业的效益上一个新的台阶。本文就消失模铸造常见的:碳缺陷、冷隔、皱皮、表面多肉、进渣、进砂、塌箱、粘砂、压痕、鼠咬痕等缺陷总结出产生的原因并提出解决方案。
1 碳缺陷产生的原理和解决方法
碳缺陷是消失模铸造特有的一种缺陷,表现为塑料泡沫熔化产物残留在铸件上,占据了铁液位置,造成碳缺陷。原因如下:

图1
1.1 负压不够
A. 工艺设计不够:有的企业片面控制粘砂,负压设计太低,如:灰铁铸件用-0.03Mpa,薄壁件勉强交货,厚大件因为气化物多,负压抽不及产生碳缺陷。
解决方法:修改工艺,提高箱内真空度。
B. 设备缺陷
(1)砂箱漏气:砂箱在负压作用下有丝丝漏气声,虽然主管道负压表真空度很高,但砂箱内负压不够,抽不及泡沫气化物,形成碳缺陷。
解决方法:焊补砂箱。
(2)砂箱纱网堵塞使负压抽不走气泡沫气化物,致使箱内负压低,形成碳缺陷。
解决方法:更换砂箱纱网。
(3)砂箱负压管道设计时截面积小,抽气流量不够, 虽然主管道负压表真空度很高,但砂箱内负压不够,抽不及泡沫气化物而形成碳缺陷。
解决方法:加大抽气管道截面积a.加粗管道b.增加负压抽气管道。

图2
(4)自动负压对接装置偏移漏气,造成箱内负压低。
解决方法:检查负压对接装置。
(5)水循环真空泵缺水:无水密封引起负压低。
解决方法:检查水源供水。
(6)砂箱上口有浇注垃圾(塑料薄膜。铁和砂混合物),使塑料薄膜封不严砂箱,抽真空时漏气,形成碳缺陷。
解决方法:清理砂箱上口浇注垃圾。

图3
(7)橡胶管道与砂箱和负压阀门接口处漏气,箱内负压降低,形成碳缺陷。
解决方法: 用塑料薄膜堵漏。
(8)塑料薄膜抽到主管道内,阻挡气流畅通过,形成碳缺陷。
解决方法:一旦发现负压管道真空度不够,其他原因排除后,检查滤砂罐。
1.2 浇注过程引起负压不够
(1)浇口杯底部塑料薄膜在铁液浇注时被烫破,使箱内负压降低。形成碳缺陷。
解决方法: 浇口杯底部用泥条隔离塑料薄膜,避免烫破塑料薄膜。
(2)浇注时浇包没有对准浇口杯,使铁液洒到浇口杯外,因散砂厚度不够,铁液烫破塑料薄膜,使箱内负压降低,形成碳缺陷。
解决方法:增加散砂厚度,铁液对准浇口杯浇注。
(3)浇注速度慢或断流时,大量空气进入型腔,使塑料泡沫液化物氧化,产生大量气体,负压抽出流量赶不上塑料泡沫气体产生的量,使多余气化物占据了铁液位置,形成碳缺陷。
解决方法:浇注时,铁液应始终充满浇口杯。(或直浇道)
1.3 铁液碳含量过高
解决方法:降低碳当量。
1.4 白模密度过大
为了追求白模表面质量,忽识了白模密度控制。
解决方法:控制预发密度及烘干工艺。
1.5 涂料透气性差
解决方法:更换涂料配方或使用(三门峡阳光)商品涂料。
2 冷隔缺陷的产生原理和解决方法
冷隔,就是铁液温度低造成的,导致铸件打压漏气,表面质量差。造成铁液温度低有以下三个方面。
2.1 铁液温度没浇注前温度已经低了
铸件表现为:铸件大面积冷隔。
解决方法:提高浇注温度。
2.2 浇注操作不合理,导致铁液在铸件上降温太快
(1)浇注流速慢:刚开始浇注时流进的铁液,要熔化浇道部分,损失大量的热量!这股凉铁液流到铸件任何部位都是冷隔。

图4
解决方法:在不反喷的情况下,加快浇注速度。
(2)浇注时断流:铁液断流后,先浇注铁液降温,后浇注铁液如果不能和原铁液熔融,就会出现冷隔。

图5
解决方法:避免断流。
(3)反喷引起:由于黄模没有烘干或白模密度太大或涂料透气性差,浇注时出现反喷,影响浇注工正常浇注,致使铁液流速小或断流,出现铸件冷隔。

图6
解决方法:增加黄模烘干时间;降低白模密度;增加涂料透气性。
2.3 浇注系统设计不合理
内浇道引入位置不合理,使铁液流道太长,铸件出现冷隔。
解决方法:正确设计浇注系统,并加设冷铁液储存包。
3 皱皮缺陷的产生原理和解决方法
皱皮的产生是两股及多股铁液对接熔融不良造成(又叫对火),严重时有空洞出现。铸件打压漏气。

图7

图8
A. 浇注速度过快,铁液飞溅卷起泡沫塑料,形成碳渣影响铁液熔融。
解决方法:控制浇注速度。适当阻流。增大负压解决皱皮缺陷不合适。
B. 铁液温度低, 两股铁液对接熔融不良,
解决方法:增加浇注温度
皱皮和冷隔的共同处:是温度低时缺陷一样,区别是:温度高时冷隔没了但皱皮存在。
4 铸件表面多肉缺陷的原理及解决方法
消失模铸件表面光滑平整,是客户和铸造厂家共同的愿望。如果工艺控制不当或生产管理失控,就会出现表面如癞蛤蟆皮状丘疹。针刺。如蚊虫叮咬包状等铸件表面多肉缺陷。即影响外观质量,又增加了打磨工作量。
4.1 丘疹状缺陷
丘疹状缺陷是由于白模或黄模在烘干过程中温度失控引起三次发泡。特征是:铸件表面呈珠粒样均匀凸起,象癞蛤蟆皮样丘疹,凸起面积大并密集,凸起上部光滑无刺,如果是壳体类铸件,凸起部分在外表面。
解决办法:控制烘房温度,避免局部过热。
4.2 针刺缺陷
针刺缺陷是由于负压过高引起,遍布铸件表面, 如果是壳体类铸件,凸起部分内外表面均匀分布,凸起上部有刺状。
解决办法:控制负压。

图9
4.3 包状缺陷

图10
包状缺陷是涂料进烘房后湿热过大起泡形成,铸件表面如蚊子叮咬人后起的包,铸件内外可见。
解决办法:待黄模表面涂层水份少时,再关闭烘房门加热。
4.4 垃圾状缺陷
垃圾状缺陷是由于白模在打磨飞边毛刺时,所产生的泡沫垃圾由于静电原因吸附于白模上,在浸涂时,白模遇水释放塑料泡沫垃圾,并混于涂料上层,塑料泡沫垃圾少时,铸件上不明显,积累的多时,就影响到铸件外观。其特征是:泡沫垃圾堆积到一定区域,伴有整个珠粒形状铁豆。
解决方法:a过滤涂料;b涂挂前用气吹掉白膜上面泡沫垃圾。
4.5 涂料引起表面缺陷
涂料发酵引起黄模表面起泡,铸件表面有丘疹状缺陷,和三次发泡丘疹状区别是:起泡不密集。(加入图片)
解决方法:a当班涂料当班用完。b更换涂料配方或使用三门峡阳光涂料。
5 进渣缺陷的原理和解决方法
进渣(泡沫塑料碳渣见皱皮),有以下几种:炉渣(耐火骨料和熔渣)。覆盖剂渣。涂料渣。泥条等。
5.1 熔炼工序产生进渣
A. 中频炉垃圾含金属锈皮及耐火材料熔渣和骨料渣,铸件上形状为不规则渣孔,熔渣呈黑色,骨料渣呈白色。

图11

图12
B. 浇包耐火材料的热熔物(熔渣也有叫糖渣),铸件表面呈现黑色渣。

图13
C. 覆盖剂渣是用珍珠岩做覆盖剂或除渣剂,遇热膨胀,落在浇包上口或铁液表面,随铁液进入型腔内,铸件表面呈白色球状渣孔
解决方法:(1)使用档渣棉挡渣,(2)使用茶壶包隔离渣,(3) 浇包上部使用压缩气吹干净后再浇注。(4)浇注时用小铁棍在包口拨渣。(5)炉内和包内使用高效除渣剂除渣。(6)使用陶瓷过滤片或纤维过滤网隔离渣。(7)浇注系统设计聚渣包聚渣。(8)使用茶壶包时,每包浇注前,先把包口渣打干净或先倒出少量铁液,使渣随铁液流出。
5.2 涂料(或泥条) 渣
A. 由局部塌箱损坏涂料层导致涂料上浮
解决方法:见局部塌箱
B. 由于空心直浇道内径热胶粘接不牢进涂造成,
解决方法:严格白模组模工艺。
C. 塑料泡沫浇口杯涂料层被铁液冲破随铁液进入型腔。
解决方法:塑料泡沫浇口杯比白模多涂刷2—3次,或使用耐火陶瓷浇口杯。

图14
特点:涂料渣外形呈薄壁状,颜色呈灰黑色。
D. 泥条进入是由于封浇口杯用泥条悬于直浇道口内,被铁液冲入型腔,渣孔形状呈泥条状,颜色呈灰黑色。
解决方法:放浇口杯后,清理悬于直浇道内口的泥条。

㈡ 砂型铸造常见的缺陷

砂型铸造铸件缺陷有:冷隔、浇不足、气孔、粘砂、夹砂、砂眼、胀砂等。
1)冷隔和浇不足
液态金属充型能力不足,或充型条件较差,在型腔被填满之前,金属液便停止流动,将使铸件产生浇不足或冷隔缺陷。浇不足时,会使铸件不能获得完整的形状;冷隔时,铸件虽可获得完整的外形,但因存有未完全融合的接缝,铸件的力学性能严重受损。
防止浇不足和冷隔:提高浇注温度与浇注速度。
2)气孔
气体在金属液结壳之前未及时逸出,在铸件内生成的孔洞类缺陷。气孔的内壁光滑,明亮或带有轻微的氧化色。铸件中产生气孔后,将会减小其有效承载面积,且在气孔周围会引起应力集中而降低铸件的抗冲击性和抗疲劳性。气孔还会降低铸件的致密性,致使某些要求承受水压试验的铸件报废。另外,气孔对铸件的耐腐蚀性和耐热性也有不良的影响。
防止气孔的产生:降低金属液中的含气量,增大砂型的透气性,以及在型腔的最高处增设出气冒口等。
3)粘砂
铸件表面上粘附有一层难以清除的砂粒称为粘砂。粘砂既影响铸件外观,又增加铸件清理和切削加工的工作量,甚至会影响机器的寿命。例如铸齿表面有粘砂时容易损坏,泵或发动机等机器零件中若有粘砂,则将影响燃料油、气体、润滑油和冷却水等流体的流动,并会玷污和磨损整个机器。
防止粘砂:在型砂中加入煤粉,以及在铸型表面涂刷防粘砂涂料等。
4)夹砂
在铸件表面形成的沟槽和疤痕缺陷,在用湿型铸造厚大平板类铸件时极易产生。
铸件中产生夹砂的部位大多是与砂型上表面相接触的地方,型腔上表面受金属液辐射热的作用,容易拱起和翘曲,当翘起的砂层受金属液流不断冲刷时可能断裂破碎,留在原处或被带入其它部位。铸件的上表面越大,型砂体积膨胀越大,形成夹砂的倾向性也越大。
5)砂眼
在铸件内部或表面充塞着型砂的孔洞类缺陷。
6)胀砂
浇注时在金属液的压力作用下,铸型型壁移动,铸件局部胀大形成的缺陷。为了防止胀砂,应提高砂型强度、砂箱刚度、加大合箱时的压箱力或紧固力,并适当降低浇注温度,使金属液的表面提早结壳,以降低金属液对铸型的压力。

㈢ 浇注温度过度或过低,易产生哪些差异产生哪些铸造缺陷

铸造浇注工部必须注意三大要点:1、合格的化学成分;2、铁水的纯净度;3、合适的流动性。
解决的基本办法就是:1、高温出炉——为后处理做准备,也为调整化学成分留出温度空间;2、出水后保证一定的静止时间——可肆缓得到纯净毁陪铁水,且避免偏析。
过高温度浇注易造成的缺陷:粘砂、铁夹砂、缩孔、缩松、热裂、跑火、局部纤雹蠢氧化、尺寸不合格、反应性气孔偏多等等。
过低温度浇注易造成的缺陷:浇不足、冷隔、过渡圆角偏大、夹渣、夹砂、析出性气孔偏多等等。

㈣ 铍在铝中的偏析及烧损

铝锭铸造技术与管理

一、概述
铝电解槽中生产出的原铝,在质量上相差较大。另外,还含有一些金属杂质,气体和非金属固态夹杂物。铝锭铸造的任务是提高低品位铝液的利用率,并尽可能除去其中的杂质。原铝中的杂质可分为以下三类:第一类是金属元素,如铁、硅、铜、钙、镁、钛、钒、硼、镍、锌、镓、锡、铅、磷等,其中主要元素是铁和硅;第二类是非金屑固态夹杂物,Al2O3,AlN和Al4C3;第三类是气体,H2,CO2,CO,CH4,N2,其中主要的是H2。在660C下,100g铝液中大约溶解0.2cm3的氢气。气体在铝液中的溶解度随温度升高而增加。从电解槽吸出的铝液,都要经过净化处理,清除掉一部分杂质,然后铸成商品铝锭(99.85%A1)。含99.996%Al纯铝(铝丝φ2mm,硬拔者),电阻率为2.668×10-8Ω·m。纯铝中如有杂质元素,则电阻率增大。.影响最大者为铬、钒、锰、锂、钛。影响较小者为铟、铅、锌、镉、锡、铍、铁。
1.铝中杂质元素的平衡
用拜耳法从铝土矿生产出的工业氧化铝中,杂质的含量相对于原料铝土矿来说大为减少。除了从碱液中带来的碱以外,杂质元素的分析值总量通常少于l%。其中主要杂质是SiO2和Fe2O3。除了氧化铝给电解槽带来杂质外,炭阳极和熔剂冰晶石也带来不少杂质。炭阳极带来的杂质主要是铁和硅,冰晶石也是这样。
如果原料的杂质元素全部析出在原铝里,则所得铝的品位只有99.7%Al。然而,实际生产出来的铝却具有较高的品位99.8%Al。这种差别主要是由于杂质元素的蒸发造成的。铁、钛、磷、锌和镓从氧化铝来的占多数,而硅和钒则从炭阳极来的占多数。从熔剂来的杂质元素,以磷为多,约占磷总量的20%,其余硅、铁,钛和钒都很少。
平衡表的支出,硅和铁都超过了从原料带来的数量,其中硅超过60%左右,铁超过37%左右。电解槽的内衬材料,例如高灰分的槽底炭块和炭糊以及耐火材料,是这些杂质元素的另一个重要来源。此外,由于操作工具和阴极钢棒遭受侵蚀,使铁也进入了平衡。其余几种元素,收支接近平衡。
支出分配在原铝和废气中的杂质元素量是不一样的。蒸发量最大的是磷,占收入总量的72%,钒占64.4%,铁占62.4%,钛占57.7%,镓占49.6%,锌占19.7%。最小的是硅,仅占收入总量的13.3%。之所以如此,原因是:①硅和锌在电解质里以比较难蒸发甚至不蒸发的化合物形态存在,倒如SiO2,ZnO或ZnF2。硅和锌明显地积累在铝液里。铝液被硅和锌污染的程度,主要是由物料平衡中供入的硅化合物和锌化合物总量来决定的。在这种情形下,槽罩的收集效率无关紧要。②铁、镓、钛和镍至少部分地以挥发性化合物的形态存在于体系中。这些化合物大概是在进入电解质之后才生成的。可能的化合物是Fe(CO)5,Ni(CO)4,TiF3,TiF4和GaF3等。如果槽罩的收集效率提高,则会在一定程度上影响铝的质量。③钒和磷只以挥发性化合物形态存在。可能的化合物,首先是氟化物(VF3和PF3)和五氧化二磷(P2O5)。由于电解质中磷含量升高会影响电流效率,而铝中钒量增多则会减小铝的导电性能,所以可以预料到提高槽罩的收集效率会对原铝质量以及最佳生产效果方面带来损害。
2.铝锭的分类
铝锭按成分不同分重熔用铝锭、高纯铝锭和铝合金锭三种:按形状和尺寸又可分为条锭、圆锭、板锭、T形锭等几种,下面是几种常见的铝锭;
重熔用铝锭--15kg,20kg(≤99.80%Al):
T形铝锭--500kg,1000kg(≤99.80%Al):
高纯铝锭--l0kg,15kg(99.90%~99.999%Al);
铝合金锭--10kg,15kg(Al--Si,Al--Cu,Al--Mg);
板 锭--500~1000kg(制板用);
圆 锭--30~60kg(拉丝用)。
3.铝锭铸造工艺流程
出铝—扒渣—检斤—配料—装炉—精练—浇铸—重熔用铝锭—成品检查—成品检斤—入库
出铝—扒渣—检斤—配料—装炉—精练—浇铸—合金锭—铸造合金锭—成品检查—成品检斤—入库
二、原铝净化
从电解槽吸出的铝液中含有各种杂质,因此铸造之前需要进行净化。工业上主要采用澄清、熔剂、气体等净化方法,也有的试用定向凝固和过滤方法进行净化。
1.熔剂净化
熔剂净化是利用加入铝液中的熔剂形成大量的细微液滴,使铝液中的氧化物被这些液滴湿润吸附和溶解,组成新的液滴升到表面,冷却后形成浮渣除去。
净化用的熔剂选用熔点低、密度小,表面张力小、活性大、对氧化渣有很强吸附能力的盐组成。使用时,先将小块熔剂装入铁笼里,再插入混合炉底部来回搅动,至熔剂化完后取出铁笼,静止5~10min。捞出表面浮渣即可浇铸。根据需要也可将熔剂撤在表面上起覆盖作用。
2.气体净化
气体净化是一种主要的原铝净化法,所用气体是氯气、氮气或氯氮混合气体。
(1)氯气净化。以前采用活性气体氯气作净化剂(氯化法)。在氯化法中,把氯气通入铝液内时生成很多异常细小的AlCl3,气泡,充分地混合在铝液内。溶解在铝液中的氢,以及一些机械夹杂物便吸附在AlCl3气泡上,随着AlCl3气泡上升到铝液表面而排出。通入氯气时还能使某些比铝更加负电性的元素氯化,如钙、钠、镁等均因通入氯气而生成相应的氯化物,得以分离出来。所以氯化法是一种非常有效的原铝净化法。氯气用量为每吨铝500-700g。但因为氧气有毒而且比较贵重,为了避免空气被污染和降低铝锭生产的成本,故在现代铝工业上已逐渐废去了氯化法改成惰性气体--氮气净化法。
(2)氮气净化法。又称为无烟连续净化法,用氧化铝球(418mm)作过滤介质。N2直接通入铝液内。铝液连续送入净化炉内,通过氧化铝球过滤层,并受到氮气的冲洗,于是铝液中的非金属夹杂物以及溶解的氢得以清除,然后连续排出,从而使细微的氮气泡均匀分布在受处理的铝液内起到净化的作用。氮气对大气无污染,且净化处理量大,每分钟可处理200~600kg铝液,净化过程中造成的铝损失量相对减少,故现在广泛应用。但它不象氯气那样能够清除铝液中的钙、钠、镁。
(3)混合气体净化法。采用氯气和氮气的混合物来净化铝液,其作用是一方面脱去氢气和分离氧化物,另一方面清除铝中某些金属杂质(如镁),常用的组成是90%氮气+10%氯气。也有采用10%氯气+10%二氧化碳+80%氮气。这样效果更好,二氧化碳能使氯气与氮气很好的扩散,可缩短操作时间。
四、铸锭工艺
现在铝锭铸造工艺一般采用浇铸工艺,就是把铝液直接浇到模子里,待其冷却后取出。
产品质量的好坏主要在这一步骤,而且整个铸造工艺,也是以这一过程为主。铸造过程是一个由液态铝冷却、结晶成为固体铝锭的物理过程。
1.连续浇铸
连续浇铸可分为混合炉浇铸和外铸两种方式。均使用连续铸造机。混合炉浇铸是将铝液装入混合炉后,由混合炉进行浇铸,主要用于生产重熔用铝锭和铸造合金。外铸是由抬包直接向铸造机浇铸,主要是在铸造设备不能满足生产,或来料质量太差不能直接入炉的情况下使用。由于无外加热源,所以要求抬包具有一定的温度,一般夏季在690~740℃,冬季在700~760℃,以保证铝锭获得较好的外观。
混合炉浇铸,首先要经过配料,然后倒人混合炉中,搅拌均匀,再加入熔剂进行精炼。浇铸合金锭必须澄清30min以上,澄清后扒渣即可浇铸。浇铸时,混合炉的炉眼对准铸造机的第二、第三个铸模,这样可保证液流发生变化和换模时有一定的机动性。炉眼和铸造机用流槽联接,流槽短一些较好,这样可以减少铝的氧化,避免造成涡旋和飞溅,铸造机停用48h以上时,重新启动前,要将铸模预热4h。铝液经流槽流入铸模中,用铁铲将铝液表面的氧化膜除去,称为扒渣。流满一模后,将流槽移向下一个铸模,铸造机是连续前进的。铸模依次前进,铝液逐渐冷却,到达铸造机中部时铝液已经凝固成铝锭,由打印机打上熔炼号。当铝锭到达铸造机顶端时,已经完全凝固成铝锭,此时铸模翻转,铝锭脱模而出,落在自动接锭小车上,由堆垛机自动堆垛、打捆即成为成品铝锭。铸造机由喷水冷却,但必须在铸造机开动转满一圈后方可给水。每吨铝液大约消耗8-10t水,夏季还需附吹风进行表面冷却。铸锭属于平模浇铸,铝液的凝固方向是自下而上的,上部中间最后凝固,留下一条沟形缩陷。铝锭各部位的凝固时间和条件不尽相同,因而其化学成分也将各异,但其整体上是符合标准的。
重熔用铝锭常见的缺陷有:①气孔。主要是由于浇铸温度过高,铝液中含气较多,铝锭表面气孔(针孔)多,表面发暗,严重时产生热裂纹。②夹渣。主要是由于一是打渣不净,造成表面夹渣;二是铝液温度过低,造成内部夹渣。③波纹和飞边。主要是操作不精细,铝锭做的太大,或者是浇铸机运行不平稳造成。④裂纹。冷裂纹主要是浇铸温度过低,致使铝锭结晶不致密,造成疏松甚而裂纹。热裂纹则由浇铸温度偏高引起。⑤成分偏析。主要是铸造合金时搅拌不均匀引起的。
2.竖式半连续铸造
竖式半连续铸造主要用于铝线锭、板锭以及供加工型材用的各种变形合金的生产。铝液经配料后倒入混合炉,由于电线的特殊要求,铸造前需加入中间合盘Al-B脱出铝液中的钛、钒(线锭);板锭需加入Al-Ti--B合金(Ti5%B1%)进行细化处理。使表面组织细密化。高镁合金加2#精炼剂,用量5%,搅拌均匀,静置30min后扒去浮渣,即可浇铸。浇铸前先将铸造机底盘升起,用压缩空气吹净底盘上的水分。再把底盘上升入结晶器内,往结晶器内壁涂抹一层润滑油,向水套内放些冷却水,将干燥预热过的分配盘、自动调节塞和流槽放好,使分配盘每个口位于结晶器的中心。浇铸开始时,用手压住自动调节塞,堵住流嘴,切开混合炉炉眼,让铝液经流槽流入分配盘,待铝液在分配盘内达到2/5时,放开自动调节塞,使铝液流进结晶器中,铝液即在底盘上冷却。当铝液在结晶器内达到30mm高时即可下降底盘,并开始送冷却水,自动调节塞控制铝液均衡地流入结晶器中,并保持结晶器内的铝液高度不变。对铝液表面的浮渣和氧化膜要及时清除。铝锭长度约为6m时,堵住炉眼,取走分配盘,待铝液全部凝固后停止送水,移走水套,用单轨吊车将铸成的铝锭取出,在锯床上按要求的尺寸锯断,然后准备下一次浇铸。
浇铸时,混合炉中铝液温度保持在690~7l0℃,分配盘中的铝液温度保持在685-690℃,铸造速度为190~21Omm/min,冷却水压为0.147~0.196MPa。铸造速度与截面为正方形的线锭成比例关系:
VD=K
式中 V为铸造速度,mm/min或m/h;D为锭截面边长,mm或m;K为常值,m2/h,一般为1.2~1.5。
竖式半连续铸造是顺序结晶法,铝液进入铸孔后,开始在底盘上及结晶器内壁上结晶,由于中心与边部冷却条件不同,因此结晶形成中间低、周边高的形式。底盘以不变速度下降。同时上部不断注入铝液,这样在固体铝与液体铝之间有一个半凝固区.由于铝液在冷凝时要收缩,加上结晶器内壁有一层润滑油,随着底盘的下降,凝固的铝退出结晶器,在结晶器下部还有一圈冷却水眼,冷却水可以喷到已脱出的铝锭表面,为二次冷却,一直到整根线锭铸完为止。
顺序结晶可以建立比较满意的凝固条件,对于结晶的粒度、机械性能和电导率都较有利。比种铸锭其高度方向上没有机械性能上的差别,偏析也较小,冷却速度较快,可以获得很细的结晶组织。
铝线锭表面应平整光滑,无夹渣、裂纹、气孔等,表面裂纹长度不大于1.5mm,表面的渣子和棱部皱纹裂痕深度不许超过2mm,断面不应有裂纹、气孔和夹渣,小于lmm的夹渣不多于5处。
铝线锭的缺陷主要有:①裂纹。产生的原因是铝液温度过高,速度过快,增加了残余应力;铝液中含硅大于0.8%,生成铝硅同熔体,再生成一定的游离硅,增加了金属的热裂性:或冷却水量不足。在结晶器表面粗糙或没有使用润滑油时,锭的表面和角部也会产生裂纹。②夹渣。铝线锭表面夹渣是由于铝液波动、铝液表面的氧化膜破裂、表面的浮渣进入铸锭的侧面造成。有时润滑油也可带入一些夹渣。内部夹渣是由于铝液温度过低、粘度较大、渣子不能及时浮起或浇铸时铝液面频繁变动造成。③冷隔。形成冷隔主要是由于结晶器内铝液水平波动过大,浇铸温度偏低,铸锭速度过慢或铸造机震动、下降不均而引起的④气孔。这里所说的气孔是指直径小于1mm的小气孔。其产生的原因是浇铸温度过高,冷凝过快,使铝液中所含气体不能及时逸出,凝固后聚集成小气泡留在铸锭中形成气孔。⑤表面粗糙。由于结晶器内壁不光滑,润滑效果不好,严重时形成晶体表面的铝瘤。或由于铁硅比太大,冷却不均产生的偏析现象。⑥漏铝和重析。主要是操作问题,严重的也造成瘤晶。
3.铸锭质量的保证
(1)重熔用铝锭。铸锭过程中最重要的技术条件是浇铸温度,在浇铸过程中必须严格控制浇铸温度,一般高于铝液凝固温度30~50℃。
(2)线锭。线锭的浇铸略为复杂,需控制的条件有铸锭速度。铸锭速度与铸锭直径有关。其浇铸温度保持680~690℃,冷却水压为0.147~0.196MPa,结晶器内壁铝液水平控制在30mm左右。控制好以上条件,并加强操作管理,即可获得较好的质量。

阅读全文

与半连续铸造冷隔是什么原因造成的相关的资料

热点内容
五金件深拉伸用什么材料 浏览:176
公路验收长度需要哪些仪器 浏览:131
kfr36g加什么制冷剂 浏览:331
机床斜铁怎么用磨床磨 浏览:568
冰箱制冷管结冰漏水怎么办 浏览:971
洗手台热水阀门漏水怎么办 浏览:64
3系改装排气阀门控制盒放哪 浏览:4
医药器材公司内勤工作怎么样 浏览:954
刚开始做直播哪个设备较好 浏览:871
什么叫设备内密封点 浏览:100
水质检测仪器哪些比较好 浏览:681
以下模拟性状分离比实验装置 浏览:568
如何找到qq我的设备 浏览:706
捷达高配仪表功能怎么切换 浏览:358
煮面条的设备多少钱 浏览:239
数学器材室里面有哪些器材 浏览:236
仪器驱蛇的方法有哪些 浏览:566
东莞市电动工具维修点 浏览:468
内径15外径34轴承是什么型号 浏览:976
公司买2000的仪器怎么做账 浏览:602