❶ 什么是脱蜡铸造法
脱蜡铸造是玻璃加工成形方法之一,其主要过程是将玻璃加热到高温使其具有流动性,流入预先制好的模壳内成形。由于模壳是经由加热后脱除蜡模而制得,故称脱蜡铸造。
一、介绍
由于含氧化铅的玻璃(俗称人造水晶)具有钻石般的高折光率及在高温下的高流动性,因此,铸造玻璃常选用人造水晶为材质。在目前的中国市场上,一般将上述脱蜡铸造铅水晶玻璃制品称作琉璃。采用脱蜡铸造法可制作出造型复杂精美的工艺品。[1]二、脱蜡精密铸造法 脱蜡铸造工艺是由古代铸造工艺发展而来的。距今5000多年前的新石器时代晚期,我国古代工匠就在青铜器的制造中广泛采用了失蜡铸造工艺。当时的工匠根据蜂蜡的可塑性和热挥发性的特点,首先将蜂蜡雕刻成需要形状的蜡模,再在蜡模外包裹黏土并预留一个小洞,晾干后焙烧,使蜡模气化挥发,同时黏土则成为陶瓷壳体,壳体内壁留下了蜡模的阴模。这时再将熔化的金属沿小孔注入壳体,冷却后打破壳体,即获得所需的金属铸坯。现代失蜡铸造技术的基本原理并无二致,只不过更加复杂精密。这主要体现在对蜡模的型位精确的要求更加严格。现代工艺中蜡模的获得不只是对蜡的直接雕刻,还可以通过对金属原模(版)的硅胶模压得到阴模,再由硅胶阴模注蜡后得到蜡模。浇铸材料也不再是黏土,而代以铸造石膏。这样的产品比古代的铸件精细得多。流程编辑❷ 铸造金属中的流动性
流动性是指合金液体充填铸型的能力。流动性的大小决定合金能否铸造复杂的铸件。换句话说,制定工艺时要考虑流动性对铸模复杂程度的影响。
浇铸温度高,则流动性好;提高模样的厚度,则流动性增加;降低涂料的厚度和密度,则流动性增加。
❸ 铸造,锻造适用于什么情况下生产
铸造大多用于农业生产、宗教、生活等方面的工具或用具,18世纪的工业革命以后,蒸汽机、纺织机和铁路等工业兴起,铸件进入为大工业服务的新时期,铸造技术开始有了大的发展。进入20世纪,机械工业本身和其他工业如化工、仪表等的发展,给铸造业创造了有利的物质条件。
锻造用于飞机锻件、柴油机锻件、船用锻件、兵器锻件、矿山锻件、核电锻件、石油化工锻件。
(3)铸造的实质是利用什么的流动性扩展阅读
从历史悠久的铸造技术发展到今天的现代铸造技术或液态凝固成形技术这不仅与金属与合金的结晶与凝固理论研究的深入和发展、各种凝固技术的不断的出现和提高、计算机技术的应用等有关 , 而且还与化学工业、机械制造业、制造方法和技术的发展密切相关。
与铸件相比,金属经过锻造加工后能改善其组织结构和力学性能。铸造组织经过锻造方法热加工变形后由于金属的变形和再结晶,使原来的粗大枝晶和柱状晶粒变为晶粒较细、大小均匀的等轴再结晶组织,使钢锭内原有的偏析、疏松、气孔、夹渣等压实和焊合,其组织变得更加紧密,提高了金属的塑性和力学性能。
❹ 铸造流动性的名词解释
铸造合金流动性
液态金属充满铸型型腔,获得形状完整、轮廓清晰的铸件的能力,称为液态金属的充型能力。它首先取决于金属本身的流动性,同时又受铸型性质、浇注条件、铸件结构等因素的影响。
液态金属的流动性是金属的铸 造性能之一,与金属的成份、温度、 杂质含量及其物理性能有关。流动性好的合金,由于其充型能力强因此易充满型腔,有利于获得形状完整、轮廓清晰的铸件;流动性差的合金,充型能力就差,容易使铸件产生浇不足、冷隔等铸造缺陷。
❺ 什么是压铸的流动性
压铸的流动性:流动性是指合金液体充填铸型的能力。流动性的大小决定合金能否铸造复杂的铸件。在铝合金中共晶合金的流动性最好。影响流动性的因素很多,主要是成分、温度以及合金液体中存在金属氧化物、金属化合物及其他污染物的固相颗粒,但外在的根本因素为浇注温度及浇注压力(俗称浇注压头)的高低。实际生产中,在合金已确定的情况下,除了强化熔炼工艺(精炼与除渣)外,还必须改善铸型工艺性(砂模透气性、金属型模具排气及温度),并在不影响铸件质量的前提下提高浇注温度,保证合金的流动性。
压力铸造简称压铸,是一种将熔融合金液倒入压室内,以高速充填钢制模具的型腔,并使合金液在压力下凝固而形成铸件的铸造方法。压铸区别于其它铸造方法的主要特点是高压和高速。①金属液是在压力下填充型腔的,并在更高的压力下结晶凝固,常见的压力为15—100MPa。②金属液以高速充填型腔,通常在10—50米/秒,有的还可超过80米/秒,(通过内浇口导入型腔的线速度—内浇口速度),因此金属液的充型时间极短,约0.01—0.2秒(须视铸件的大小而不同)内即可填满型腔。压铸压铸机、压铸合金与压铸模具是压铸生产的三大要素,缺一不可。所谓压铸工艺就是将这三大要素有机地加以综合运用,使能稳定地有节奏地和高效地生产出外观、内在质量好的、尺寸符合图样或协议规定要求的合格铸件,甚至优质铸件。
压铸是一种精密的铸造方法,经由压铸而铸成的压铸件之尺寸公差甚小,表面精度甚高,在大多数的情况下,压铸件不需再车削加工即可装配应用,有螺纹的零件亦可直接铸出。从一般的照相机件、打字机件、电子计算器件及装饰品等小零件,以及汽车、机车、飞机等交通工具的复杂零件大多是利用压铸法制造的。
❻ 金属的铸造性能用什么衡量对铸件的质量有何影响
金属的铸造性能一般用流动性和收缩性来衡量。
合金的铸造性能表示合金铸造成型获得优质铸件的能力。
❼ 详细阐述金属的铸造性能
学铸造技术,上:铸件订单网
1.金属铸造性能包括:合金的流动性、凝固特性、收缩性、吸气性。
2. 流动性:液态合金本身的流动能力。
3. 流动性不足产生的缺陷:形成的晶粒将充型的通道堵塞,金属液被迫停止流动,于是铸
件将产生浇不到或冷隔等缺陷。 4. 提高流动性的措施(简答):浇注温度 浇注温度对合金充型能力有着决定性的影响。浇
注温度越高,合金的粘度下降,且因过热度高,合金在铸型中保持流动的时间长,故充型能力强,反之,充型能力差。充型压力 砂型铸造时,提高直浇道高度,使液态合金压力加大,充型能力可改善。压力铸造、低压铸造和离心铸造时,因充型压力提高甚多,股充型能力强。
5. 既然提高浇注温度可改善充型能力,为什么又要防止浇注温度过高?
答:浇注温度过高,铸件容易产生缩孔、缩松、粘砂、析出性气孔、粗晶等缺陷,故在保证充型能力足够的前提下,浇注温度不宜过高。
6. 合金收缩经历的3个阶段:液态收缩 凝固收缩 固态收缩。 液态收缩和凝固收缩是体
收缩,体积减小,产生孔洞、缩孔、缩松。固态收缩是线收缩,三维方向尺寸减小,产生内应力。
7. 缩孔:(1)位置:它是集中在逐渐上部或最后凝固部位容积较大的孔洞。(2)判断热接
位置:画等温线、画最大内接圆、用计算机凝固模拟法。(3)如何消除缩孔:顺序凝固,顺序凝固是在铸件上可能出现缩孔的厚大部位通过安放冒口等工艺措施,使铸件远离冒口的部位先凝固,然后是靠近冒口部位凝固,最后才是冒口本身的凝固。
8. 热应力:(1)热应力使铸件的厚壁或心部受拉伸,薄壁或表层受压缩。铸件的壁厚差别
越大,合金线收缩率越高,弹性模量越大,产生的热应力越大。(2)去除热应力的方法:采用同时凝固原则可减少铸造内应力,防止铸件的变形和裂纹缺陷,又可免设冒口而省工省料。
❽ 什么是合金的铸造性能试比较铸铁和铸钢的铸造性能!!!!
合金的铸造性能主要是指合金的流动性能和收缩性能等。铸件的结构,如果不能满足合金铸造性能的要求,则可能产生浇不足、冷隔、缩松、气孔、裂纹和变形等缺陷。
一、合金的铸造性能分流动性能和收缩性能
1、流动性主要受化学成分、浇注温度以及铸型等因素影响,流动性好的材料容易充满型腔,从而获得外形完整、尺寸精确和轮廓清晰的铸件。
金属的流动性可用螺旋线长度来测定,下图为螺旋形试样。将金属液浇注入螺旋形铸型中,在相同的铸造条件下,获得的螺旋线越长,表明金属液的流动性越好。
2、收缩性能包括液态收缩、凝固收缩、固态收缩三个阶段。
二、铸铁的性能
1、铸铁的性能主要取决于基体的性能和石墨的数量、形状、大小、分布状况。其中以细晶粒的珠光体基体和细片状石墨组成的灰铸铁的性能最优,应用范围最广。
2、铸铁的抗拉强度和塑性大大高于具有相同基体的钢,但石墨片对灰铸铁的抗压强度影响不大,所以灰铸铁广泛用作承受压载荷的零件,如机座、轴承座等。
3、铸铁具有良好的铸造性能、切削加工性能,而且石墨的存在可以起到减磨、减震作用。
(8)铸造的实质是利用什么的流动性扩展阅读:
工艺性能是指金属材料对不同加工方法的适应能力,包括铸造性能、压力加工性能、焊接性能、切削加工性能和热处理性能等,是设计零件、选择材料和编制零件加工工艺流程的重要依据之一,对保证产品质量、降低生产成本、提高生产效率有着重大的作用。
❾ 铸造性能指标主要有哪一些影响它们的主要因素有哪一些
铸造性能是指金属材料能否用铸造方法制成优良铸件的性能,即可铸性。铸造性能主要取决于金属材料熔化后金属液体的流动性,冷却时的收缩率和偏析倾向。化学成分、熔炼工艺、出炉温度、浇注温度等都会影响其性能。
化学成分中P、Mo、B、Ti的含量偏高,会促进碳化物与磷共晶生成。而碳化物和磷共晶是影响刀具磨损的要因素(微观显微硬度可达HV1000)。
(9)铸造的实质是利用什么的流动性扩展阅读:
铸造-熔炼金属,制造铸型,并将熔融金属浇入铸型,凝固后获得具有一定形状、尺寸和性能金属零件毛坯的成型方法
铸造是将金属熔炼成符合一定要求的液体并浇进铸型里,经冷却凝固、清整处理后得到有预定形状、尺寸和性能的铸件的工艺过程。铸造毛坯因近乎成形,而达到免机械加工或少量加工的目的降低了成本并在一定程度上减少了制作时间.铸造是现代装置制造工业的基础工艺之一。