① 滚动轴承的游隙是怎样调整的
滚动轴承的游隙调整方法常用调整垫片法和螺钉调整法。
滚动轴承装配时,其游隙不能太大,也不能太小。游隙太大,会造成同时承受载荷的滚动体的数量减少,使单个滚动体的载荷增大,从而降低轴承的旋转精度,减少使用寿命,游隙太小,会使摩擦力增大,产生的热量增加,加剧磨损,同样能使轴承的使用寿命减少。因此许多轴承在装配时都要严格控制和调整游隙。
(1)滚动轴承如何减速扩展阅读:
注意事项:
在北方地区,当冬季环境温度较低时,在修理减速机时,因轴承油膜受冷冻结,容易造成检测得到的轴承的工作油隙较小的错觉,如果把实测的轴承工作游隙调整到既定标准时,无形中加大了轴承的工作游隙。
因此在调整轴承的工游隙时,通常以测得的工作游隙小于轴承的工作游隙标准 10~20m, 并长时间跑合看轴承是否发热。如果轴承不发热,则说明满足技术要求,如果轴承发热则重新调整。
② 减速器的结构是怎样的
减速器的外形虽然各式各样,但基本构造均是由轴系部件、箱体及附件等组成。下面以单级圆柱齿轮减速器为例进行行明。
(1)轴系部件。
轴的作用是支承轴上旋转的零部件(如齿轮、滚动轴承等),并传递扭矩。轴系部件是轴及其上所安装的齿轮、套筒、轴承、轴承端盖等零件的总称,它是减速器的核心部分。图3-21为低速轴系部件,从左端起轴段①用于安装外联零部件(齿轮、链轮或联轴器),轴段②上装有毛毡密封圈(防止箱内润滑油外泄)和轴承端盖,轴段③安装有滚动轴承与套,轴段④安装有齿轮,轴段⑦上装有滚动轴承。其中①—②、④—⑤、⑥—⑦之间的台阶分别用于确定外联零部件、齿轮以及滚动轴承的轴向位置。为便于装拆滚动轴承及齿轮,②—③以及③—④之间也各自留有一个台阶。
③ 摩擦滚动轴承减速器的传动比怎么计算
不知道你是想做啥用的,计算需要已知数据的,比如我想要一个输出轴转1圈,高速轴转59圈的减速机,速比传动比就是1:59,或者我有一个减速机,但不知道速比,怎么去计算,查齿数计算是最精确。手动盘转输入轴至输出轴旋转一圈,记录输入轴转数,计算两者数据比为次。测速仪测量为再次。
但是这个转速比就是齿轮齿数决定的,比如拿一个二级减速机速比是1:12,传动比=输出轴齿数是输入轴齿数的12倍。但根据减速器扭矩大小,可改变减速器大小,其转速比或传动比不变。
④ 传动装置总效率怎么算
传动装置的效率分析
传动装置的总效率,即其将发动机动力传递给驱动车轮的能力,是由一系列复杂部件的效率共同决定的。首先,运输机传送带效率η1起着基础作用,它直接影响到动力的初步传递。接下来,运输机轴承效率η2是关键环节,其稳定性和耐磨性对整体效率有显著影响。运输机与减速器之间的联轴器效率η3,作为连接桥梁,其精度和设计对效率有直接影响。
在减速器内部,三对滚动轴承效率η4和两对圆柱齿轮啮合传动效率η5更是不可或缺。滚动轴承的精度和润滑状况,以及齿轮的齿形匹配,都会影响到传动效率。最后,电动机与减速器间联轴器效率η6,作为动力传递的最终环节,同样不容忽视。
计算传动装置总效率的公式为:η = η1×η2×η3×η4×η5×η6。通过这个公式,我们可以评估传动装置的整体性能,了解各个部件效率对总效率的贡献。传动装置的作用至关重要,它将发动机的驱动力传递给车辆,确保汽车能在预设速度下行驶。
设计和优化传动系统时,必须考虑这些关键部件的效率,因为它们的性能直接影响到传动装置的总效率。通过提升每个环节的效率,可以提升整个系统的性能,从而提高汽车的动力传递效率和行驶性能。
在实际应用中,对传动装置总效率的计算能帮助我们发现潜在的性能瓶颈,为优化提供方向。通过比较不同传动装置的总效率,我们能选择最高效、最可靠的方案,进一步提升汽车的性能和燃油经济性。
⑤ 轴承间隙怎么计算
在各种传动设备的安装过程中,或多或少会遇到轴承的间隙问题,蜗轮减速机与齿轮减速机作为最常见的传动设备,下面对减速机滚动轴承的间隙产生原因及调整方式进行介绍:
一、滚动轴承的故障原因
滚动轴承依靠主要元件之闻的滚动接触来支持转动零件。滚动轴承因具有摩擦阻力小、功率消耗少、起动容易、能自动调整中心以补偿轴弯曲及适量的装配误差等优点,故以滚动轴承的滚动摩擦取代了滑动轴承的滑动摩撩,因而在现代机器设备中得到广泛运用。
在生产运用中,滚动轴承也易发生故障,究其主要原因为间隙调整不当。在实际生产过程中,滚动轴承在机器设备中最常见的故障有:脱皮剥落、磨损、过热变色、锈蚀裂纹和破碎等。
制造质量不合格及润滑保养不良问题,只需在检修安装前仔细检查,检修安装后建立起严格的定期加油保养制度,就能克服由此而引起的轴承故障。因此,间隙调整不当就成为轴承故障的主要原因。
二、滚动轴承的基本结构
滚动轴承是由内圈,外圈,滚动体和保持架4部分组成。内圈与轴颈装配,外圈与轴承座装配。当内外圈相对转动时,滚动体即在内外圈的滚道问滚动。
三、齿轮减速机滚动轴承的间隙及其量方法
1、滚动轴承的间隙
轴承问隙是保证油膜润滑和滚动体转动畅通无阻所必须的。其间隙数值均有标准或规定。根据轴承所处的状态不同,其间隙有原始间隙、配合间隙和工作间隙。
原始间隙是轴承未装配前自由状态下的间隙值。
配合间隙是轴承安装到轴和轴承座后的间隙。由于配合的过盈关系,配合间隙永远小于原始间隙。
工作间隙是轴承工作时的间隙。由于内外圈的温差使工作间隙小于配合间隙,又由于旋转离心力的作用使滚动体和内外圈产生弹性变形,工作间隙又大于配合间隙(一般情况下,工作间隙太于配合间隙)。
2、间隙的测量
测量原始间隙可用百分表。测量配合间隙时,可用塞尺或铅丝放入滚动体与内外圈之间,盘动转子,使滚动体滚过塞尺或铅丝,其塞尺或被压扁铅丝厚度即为轴承的径向配合间隙。轴向配合间隙可用深度卡尺测量或压铅丝法测量。
四、间隙的调整
齿轮减速机运行时转轴温度较高,调整后,将垫片增加到0.20ram。即:调整后膨胀端径向间隙(ram):0.014-}-0.20:0.214
膨胀间隙可根据公式计算,该引风机设计运行温度为135℃,室温按20℃计算,因此为115℃(135—20),两轴承座中心距离f为5m。故:膨胀间隙f(mm):1.2×(115+SO)×C100—9·9。
根据引风机要求还应考虑冷缩间隙,一般冷鳍间隙为0.50mm。因此,通过加垫片调整,把膨胀间隙调整到11.5mm,同时解决冷缩间隙。
通过以上分析可知,造成引风机轴承温度高的主要原因是,由于原来的两端轴承径向间隙太小,受热后膨胀,产生紧力,导致膨胀端无法游动,所以轴承温升。
⑥ 滚动轴承在减速箱中的轴向间隙是如何调整的
轴承内部的轴向间隙可以借助移动外圈的轴向位置来实现。
1 调整垫片法:
在轴承端盖与轴承座端面之间填放一组软材料(软钢片或弹性纸)垫片;调整时,先不放垫片装上轴承端盖,一面均匀地拧紧轴承端盖上的螺钉,一面用手转动轴,直到轴承滚动体与外圈接触而轴内部没有间隙为止;这时测量轴承端盖与轴承座端面之间的间隙,再加上轴承在正常工作时所需要的轴向间隙;这就是所需填放垫片的总厚度,然后把准备好的垫片填放在轴承端盖与轴承座端面之间,最后拧紧螺钉。
2 调整螺栓法:
把压圈压在轴承的外圈上,用调整螺栓加压;在加压调整之前,首先要测量调整螺栓的螺距,然后把调整螺栓慢慢旋紧,直到轴承内部没有间隙为止,然后算出调整螺栓相应的旋转角。例如螺距为1.5mm,轴承正常运转所需要的间隙,那么调整螺栓所需要旋转角为3600×0.15/l.5=360;这时把调整螺栓反转360,轴承就获得0.5mm的轴向间隙,然后用止动垫片加以固定即可。