1. 轴承外径精磨垂直差不好是怎么导致的
上工序的平行差大或者平面度差,其次是毛坯的质量,再一个就是无心磨机床的毛病,导轮的角度调整不当,中心高,磨削速度,砂轮导轮修整的形状如何等。
2. 风力发电机组常见故障
风电机组的故障率随着风电机组技术的发展而逐渐降低,但是对比于传统的发电系统,如蒸汽轮机、燃气轮机、水轮机等,风电机组的故障率还是相对较高的,其运行可靠性还有待进一步的增强和提高。总的来说,由于工作环境恶劣、载荷复杂多变,风电机组较易发生故障; 海上风电机组由于会受到风暴、波浪的影响以及盐雾的腐蚀,比陆上风电机组更加容易发生故障; 另外风电机组的故障频率也随着风电机组尺寸的增大而相应有所提高。据统计,风电机组中故障率较高的部件有电气系统、转子叶片、变桨系统、液压系统、控制系统和齿轮箱等,各个部件的故障分布如图1 所示。虽然风电机组中发生电气和控制系统的故障较为频繁,但是维修该类故障所导致的风电机组停机时间是比较短的; 传动系统上的主轴、齿轮箱、发电机等故障率较低的故障,维修时间往往比较长,其中齿轮箱故障导致的风电机组停机时间最长,不同部件(子系统)故障引起的停机维修时间如图2所示。
图1 风力发电机组中各零部件引起的故障分布
Fault distribution caused by different parts and subassemblies in wind turbine
图2 风力发电机组中各零部件故障引起的停机时间
Downtime caused by different parts and subassemblies in wind turbine
1 叶片
叶片( 桨叶) 是风电机组捕捉风能的核心部件,其工作环境恶劣,即便在风电机组正常工作时,叶片上往往承受着较高的应力,容易发生如下一些故障: 由于污染、剥落等原因引起叶片表面粗糙度的增加; 由于结构松动导致的叶片内部材料的移动、雨水通过裂纹进入叶片内部等原因导致叶片不平衡; 叶片变形、桨距控制失效等原因引起叶片空气动力学的不平衡; 疲劳、雷击等原因导致的叶片表面或内部结构出现裂纹等故障。
叶片受力产生裂纹或发生变形时,会释放出高频( 一般在1 kHz ~ 1 MHz) 的、时变的、非平稳的、瞬态的声发射信号。因此声发射检测已经被成功地应用于叶片损伤的探测与评估。由于叶片故障导致转子叶片受力不均,这些应力通过主轴传递会最终作用在机舱上,容易引起机舱的晃动,Caselitz P 等人通过在主轴上安装多个振动传感器,采集低频(0.1 ~ 10 Hz) 的振动信号,应用算法成功地分析了叶片转动不平衡等故障。
2 齿轮箱
齿轮箱是连接风电机组主轴和发电机的传动部件,其功能是将主轴上较低的转速提高到相对较高的转速,以满足发电机工作所需的转速要求。齿轮箱一般由一级行星齿轮和两级平行齿轮传动构成,其工作条件恶劣、工况复杂、传递功率大。齿轮箱中的行星齿轮、高速轴侧轴承、中间轴轴承、行星齿轮传动侧轴承以及其润滑系统较容易发生故障。风电机组运行过程中,受交变应力、冲击载荷等作用的影响,齿轮容易发生齿面磨损、齿面擦伤、点蚀、断齿等故障; 轴承容易发生磨损、滚道滑伤、滚子打滑、外圈跑圈等故障。虽然齿轮箱不是风电机组中发生故障最频繁的部件,但是由齿轮箱故障引起的停机维修时间却是最长的,而且维修费用很高。因此齿轮箱的故障诊断与预测得到了广泛的关注。Huang Q 等人通过对齿轮箱的振动信号分析,利用小波神经网络的方法成功地诊断了齿轮箱故障; 另外基于轴承温度、润滑油温度和油液磨粒等信息的分析方法也相继被提出用于齿轮箱故障的检测。
3 电机( 发电机或电动机)
双馈发电机和永磁同步发电机在目前的风力发电机组技术中广泛被使用。其中双馈式风力发电机组的转速较高,其额定转速为1 500 r /min,因此机组中需要齿轮箱用于增速,这样使得机组重量较重,另外发电机的高速运转存在着一定的噪声污染; 电机为异步发电机,变流器连接转子,变流器功率可以双向流动,通过转子交流励磁调节实现变速恒频运行,机组的运行范围很宽,在额定转速60% ~ 110%的范围内都可以获得良好的功率输出。
直驱式风力发电机组由风轮直接耦合电机转子工作,电机转速较低,一般为每分钟几十转。直驱式风力发电机组一般采用永磁同步电机,电机启动转矩较大,定子绕组经全功率变流器接入电网,机组运行范围较宽,但发电机结构复杂、直径较大、成本较高。除了发电机以外,电动机也广泛地应用于风电机组的偏航、变桨等系统中。
电机的故障通常分为电气故障和机械故障。电气方面故障有绕组短路、断路、过热、三相不平衡等。机械故障有轴承过热、损坏,定、转子间的气隙异常,转轴磨损变形等。通过对振动、电流、温度等信号的分析,可实现对电机故障的检测。
4 偏航、变桨和刹车系统
偏航系统主要有两个功能:
1) 使风力发电机组跟踪风向;
2) 由于跟踪风向容易使得从机舱内引出的电缆发生缠绕,当缠绕过多时,偏航系统可用于解除电缆缠绕的问题。
变桨系统的作用是当风速改变时,通过控制叶片的角度来改变风电机组获得空气动力的转矩,实现功率控制; 当风速过高或风电机组故障时,调整叶片到顺桨状态,实现制动。偏航和变桨系统工作较为频繁,偏航和变桨轴承承受的扭矩较大,偏航轴承部分裸露在环境中,容易受到沙尘侵害,盐(水) 雾腐蚀等影响而发生故障。变桨轴承由于其不完全旋转的工作特点,容易发生润滑不良的问题,导致轴承磨损等故障。刹车系统用于防止转子叶片旋转过快,以及当风电机组其他部件发生故障时,实现风电机组的停机。由于摩擦片磨损、受力过大等原因,刹车系统也较容易发生故障。液压系统由于具有单位体积小、动态响应好、传动力大、扭矩大等优良特点,在风电机组的偏航、变桨和刹车系统中都发挥着重要的作用。液压回路相互干涉,使其故障机理复杂,失效模式多样。液压系统常见的故障有液压油污染、漏油、电磁阀、溢流阀故障、液压泵故障、油液过热、异常振动和噪声等。
5 变流器和变压器
随着风电机组单机容量的增加,电气系统能否可靠运行变得越来越重要。据统计资料表明,电气系统是风电机组中故障发生率最高的子系统,电气系统故障在风电机组所有的故障中约占比20%。虽然由电气故障引起的风电机组停机时间不长,但电气系统频繁发生故障,同样会导致高昂维修成本。随着风电机组容量的进一步提高,电气系统的故障频率也会随着增加。
电气系统的故障通常指由于过压、过流、过热、振动、湿度过大等原因所导致的电容、印刷电路板或功率半导体器件(如MOSFET 和IGBT) 等电子元器件的失效。它们的失效分别占了电气系统零部件故障中的30%、26%和21%。
6 控制系统和传感器
风力发电机组的控制系统在偏航、桨距调节、电缆解绕、保护等方面发挥着重要的作用。控制系统中通常包含了各类传感器、控制器和执行机构,经由传感器将各类信号采集并传送至控制器,进行分析处理和逻辑运算,通过执行机构控制和保护风电机组的各个子系统,保障风电机组在安全、可靠、优化的状态下工作。
风力发电机组中安装了各式各样的传感器,如风速仪、风向标、速度解码器、位置编码器、温度传感器、压力传感器、振动传感器、偏航传感器等。由于工作环境恶劣,传感器的故障率较高。有统计资料表明,在风力发电机组中,14% 以上和40% 以上的风电机组故障分别是由传感器本身和传感器相关系统的故障引起的。
除了传感器外,控制系统的其他故障可分为硬件故障和软件故障。硬件故障包括控制板电路故障、伺服机构故障等。软件故障表现为系统出现偶发性的死机、不动作等问题,通常由于设计不合理、内存溢出等原因所导致的,通过重新启动控制系统等动作可消除该类故障。
3. 风力发电机组的故障类型和情况
震动故障可能是由于风力发电机对好风后,偏航系统刹车松动,导致运行过程中风机有摆动。发电机震动,有可能是联轴器松动,或是发电机坏了。电气故障太多,由于好多都是反馈信号中断导致的故障,所以太多,不好说!
4. 影响轴承工件表面粗糙度有哪些因素
轴承表面粗糙度分析
轴承在磨加工过程中,其工作表面是通过高速旋转的砂轮进行磨削的,因此在磨削时如果不按规定进行操作和调整设备,就会在轴承工作表面出现种种粗糙度缺陷,以致影响轴承的整体质量。轴承在精密磨削时,由于表面粗糙度要求很高,工作表面出现的磨削痕迹往往能用肉眼观察到,其表面磨削痕迹主要有以下几种。
一、表现出现交叉螺旋线痕迹
出现这种痕迹的原因主要是由于砂轮的母线平直性差,存在凹凸现象,在磨削时,砂轮与工件仅是部分接触,当工件或砂轮数次往返运动后,在工件表现就会再现交叉螺旋线且肉眼可以观察到。这些螺旋线的螺距与工件台速度、工件转速大小有关,同时也与砂轮轴心线和工作台导轨不平行有关。 (一)螺旋线形成的主要原因:
1.砂轮修整不良,边角未倒角,未使用冷却液进行修整; 2.工作台导轨导润滑油过多,致使工作台漂浮; 3.机床精度不好; 4.磨削压力过大等。
(二)螺旋线形成的具体原因:
1.V形导轨刚性不好,当磨削时砂轮产生偏移,只是砂轮边缘与工作表面接触; 2.修整吵轮时工作台换向速度不稳定,精度不高,使砂轮某一边缘修整略少; 3.工件本身刚性差;
4.砂轮上有破碎太剥落的砂粒和工件磨削下的铁屑积附在砂轮表面上,为此应将修整好的砂轮用冷却水冲洗或刷洗干净; 5.砂轮修整不好,有局部凸起等。 二、表面出现鱼鳞状
表面再现鱼鳞状痕迹的主要原因是由于砂轮的切削刃不够锋利,在磨削时发生“啃住”现象,此时振动较大造成工件表面出现鱼鳞状痕迹的具体原因是: 1. 砂轮表面有垃圾和油污物; 2. 砂轮未修整圆;
var script = document.createElement('script'); script.src = 'http://static.pay..com/resource/chuan/ns.js'; document.body.appendChild(script);
3. 砂轮变钝,修整不够锋利;
4. 金刚石紧固架不牢固,金刚石摇动或金刚石质量不好不尖锐; 5. 砂轮硬度不均匀等。 三、工作面拉毛
表面再现拉毛痕迹的主要原因是由于粗粒度磨粒脱落后,磨粒夹在工件与砂轮之间而造成。工件表面在磨削时被拉毛的具体原因是: 1. 粗磨时遗留下来的痕迹,精磨时未磨掉; 2. 冷却液中粗磨粒与微小磨粒过滤不干净; 3. 粗粒度砂轮刚修整好时磨粒容易脱落; 4. 材料韧性有效期或砂轮太软; 5. 磨粒韧性与工件材料韧性配合不当等。