导航:首页 > 轴承铸造 > 大兆瓦主轴承为什么选用

大兆瓦主轴承为什么选用

发布时间:2025-03-26 07:14:31

Ⅰ 风力发电机组常见故障

1. 风力发电机组的故障类型
风力发电机组主要分为三类:双馈式变桨变速机型、直驱永磁式变桨变速机型和失速定桨定速机型。其中,双馈式变桨变速机型是目前大部分企业采用的主流机型;直驱永磁式变桨变速机型近几年发展起来,是未来风电的发展方向之一;失速定桨定速机型是非主流机型,运行维护方便。发电机是风电机组的核心部件,负责将旋转的机械能转化为电能,并为电气系统供电。随着风力机容量的增大,发电机的规模也在逐渐增加,使得对发电机的密封保护受到制约。发电机长期运行于变工况和电磁环境中,容易发生故障。常见的故障模式有发电机振动过大、发电机过热、轴承过热、转子/定子线圈短路、转子断条以及绝缘损坏等。
2. 风力发电机组叶片故障
风力发电机组安装在野外比较恶劣的环境,经常处于无人值守的状态,对其运行状态的监测尤其重要。由于环境因素,机体各部件故障率较高,叶片作为风力发电机组的主要部件之一,对其故障监测十分必要,一旦出现故障,要是不及时处理,叶片就会很快的断裂。轻则造成停机,重则烧坏机组,影响正常供电,造成不可挽回的损失。风机叶片故障类型可分为裂纹、凹痕和破损等,叶片的振动形式主要包括摆振、挥舞振动、扭转振动和复合振动,叶片的故障信息通常依靠现场监测的震动信号进行反应。在风力发电机组故障中,突变信号和非平稳信号往往会伴随故障存在。理论上讲,当叶片出现裂纹时,振动信号中会伴随有较强的高频冲击波,并且这些离散的故障信号是可能存在任意频段内的。故障诊断常用方法有时域分析方法和频域分析方法,时域分析方法主要研究不同时刻信号之间的关系,对于某些有明显特征的故障信号,可做出定性分析。频域分析方法通过研究波形的谐波分量来识别多种频率成分。这两种方法都具有单一性,而小波分解方法具有局部化分析的功能,在时域和频域都能快速定位。小波分解在低频部分,可以采用宽的时间窗,频率分辨力则大大增强;在高频部分则采用宽的时间窗,频率分辨力则会减弱。小波分解方法的这种特性非常适合非平稳信号的故障诊断。
3. 轴承故障检测
风电机组主要零部件的可靠性研究表明,在风电机组的故障中电气和控制系统故障率最高,传动系统如齿轮箱、主轴承等故障率相对较低。但进一步的研究表明迟饥电气和控制闹旦行系统的故障容易排除,停机时间短,并且也不需要吊车等辅助工具。从机组故障引发的停机时间、维护费用和是否容易造成的继发故障等角度分析,与电气和控制系统相比,机械传动系统的状态监测与预警维护更为重要。轴承是旋转机械的关键部件,也是风电机组机械传动系统的核心部件,机械传动系统的非轴承如齿轮箱、桨叶等故障,亦多是由液哗轴承故障引起或可在轴承的运行状态中得到反映。因此对轴承的运行状态进行实时监测,对整个机械传动系统的故障诊断和运行维护具有重要的意义。风力发电机用轴承大致可以分为四类:变桨轴承、偏航轴承、传动系统轴承(主轴和变速箱轴承)和发电机轴承。偏航轴承安装在塔架与座舱的连接部,变桨轴承安装在每个叶片的根部与轮毂连接部位(除部分小功率兆瓦级以下的风力发电机为不可调桨叶,无变桨轴承外,每台风力发电机设备用一套偏航轴承和三套变桨轴承),主轴连接轮毂和齿轮箱,都是低速重载轴承,其中偏航和变桨轴承还是不完全旋转轴承。齿轮箱为增速箱,将叶轮的低速变为输入到发电机的高转速,二者的轴承与通常的发电机组除了在使用寿命和可靠性方面要求较高,并无其他不同。目前的实际应用的风电轴承运行状态监测与故障识别的方法主要有基于数据采集与监视控制系统(SCADA,Supervisory Control And Data Acquisition)的方法,基于振动分析、润滑油检测的方法,基于声音、红外图像的方法以及多种方法相结合等方法。
4.1 基于SCADA的方法
对于运行状态监测,风电机组与通常的发电机组相比有自己的特点:通常的火力或水利发电机机组的单机功率比风电机组大的多,机组数目少,因此状态监测点少,而一个风电场通常几十台甚至上百台风电机组,因此需要的传感器数目和采集与通讯的数据量比通常的发电机组要大的多,增加了风电机组的成本和复杂性,也限制了监测系统的应用普及。如果能利用机组已有的SCADA数据,不装配额外的传感器获取机组轴承的运行状态,是最经济的方法。研究表明发电机的机械故障可以由感应电机的终端发电机的输出反应出来,通过对感应电机的电压、电流和功率的稳定功率谱分析,对发电机的轴承、转子的断条、气隙偏向等故障进行故障监测。对于传动轴承故障诊断,类似的研究还比较少,用对电机电流解调的方法监测多级齿轮箱的故障,用定子电机电流识别齿轮箱滚动轴承的故障,由于电流的非平稳特点,引入了小波包变换的方法。在缺少振动传感器的情况下,由SCADA参数反应的传动系统轴承的运行状态不够具体。由多所大学、咨询机构和风电机组制造商合作的欧盟项目ReliaWind在主轴承、齿轮箱和发电机轴承处安装振动传感器,通过将每十分钟的振动平均数据和SCADA数据参数相结合判断风电机组的运行状态。
4.2 基于振动的方法
基于振动的方法在旋转机械和其他发电机组的故障诊断中已广泛应用,且取得了很好的效果。风电机组的发电机和齿轮箱高速轴承可以应用现有的基于振动的故障诊断技术,只是由于风电机组的负载是非平稳的变量,常用的时域和频域FFT分析方法的性能会受影响,在信号处理的方法上需要改进。而对于主轴承和齿轮箱低速轴承,由于轴承的转速低(每分钟10—30转),计算出的故障频率低,而高通滤波器会将3Hz以下的频率过滤掉,再加上受到环境噪声的影响,使得频谱分析效果很差甚至无法进行;而在冲击故障的瞬态性问题中,由于每次故障冲击的间隔较长,使用冲击法很难准确地检测到故障信号;同时由故障点产生的冲击响应的频率较低,不能激励起较高的频率成份。以上原因限制了振动监测主轴承运行状态的效果,但可从其运行情况反映叶片的运行状态,比如识别其是否平衡,从而判断其是否遭受冰冻等事故。
4.3 基于润滑油液的方法
资料显示轴承的故障多于润滑不良有关,主要原因有1)由于大气温度过低,润滑剂凝固,造成润滑剂无法到达需润滑部位而造成磨损;2)润滑剂散热不好,经常过热,造成润滑剂提前失效而损坏机械啮合表面;3)滤芯堵塞、油位传感器污染,润滑剂“中毒”而失效引起的故障有粘附磨损、腐蚀磨损、表面疲劳磨损、微动磨损和气蚀。这些磨损出现之后,轻则金属微粒会污染润滑剂,影响功率传递,产生噪音,造成齿面严重磨损或断裂,轴承内外圈或滚珠损坏,严重的使机组无法转动而彻底停机。目前的油液监测系统主要是振动齿轮箱的润滑油液,对于润滑的部件尚没有在线监测的方法。振动监测室风电轴承监测的趋势,但由于风电负载和风力的不稳定影响了传统的时域和频域FFT分析方法的效果,亟需引入新的非平稳信号的处理方法。
5. 风力系统的变频器的故障的分析
变频器的故障种类很多,主要有以下几类:和预先估计的结果差得很远、变频器不正确的动作行为、过电流、过电压以及电压不够等等。风力系统的变频器过电压情形指的是中间的直流回路超过电压,这会使中间直流回路滤波电容器的寿命大大减短。之所以会产生这种故障,是由于电源侧的冲击过电压。风力系统过电流故障是因为变频器负载有突然地变化,并且负载的不均匀分布,输出的还有短路这些种种缘由引起,加上逆变器过载的性能、功能极其差,因此逆变器过载故障诊断可谓是相当重要。另外,整流回路故障会因为输进的电源缺少而致使电压不够的故障发生。还有,低压穿过电网的时候变频器可能会产生故障,这也是一大研究的领域。

Ⅱ 6兆瓦的汽轮机后轴承振动大是怎么回事啊

可能是机组出问题了,或轴承本身就不好。
轴承是汽轮机的一个重要组成部件,主轴承也叫径向轴承。它的作用是承备团郑受转子的全部重量以及由于转子质量不平衡引起的离心力,确定转子在汽缸中的正确径向位置。由于每个轴承都要承受较高的载荷,而且轴颈转速很高,所以汽轮机的轴承都采用液体摩擦为理论基础的轴瓦式滑动轴承,借助仿颂于有一定压力的润滑油在轴颈与轴瓦之间形成油或含膜,建立液体摩擦,使汽轮机安全稳定地运行。

Ⅲ 海上风电主轴用轴承技术

摘 要

我国海上风电市场将在未来十年内飞速发展,针对海上风电恶劣工况要求,风电主轴轴承需 要更高功率密度、可靠性和使用寿命 。本文主要 从轴承设计、材料、表面处理以及工艺等方面阐述了对风电主轴轴承技术的现状和未来发展方向 。

1、海上风电市场和大兆瓦机组发展趋势

全球风能理事会(GWEC)发布的《全球海上风电报告2020》预测: 到2030年,全球海上风电装机量将从现在的29.1GW升至234GW,亚太地区会成为最重要的市场 。2021年9月9日,在英国Shoreham港发布《2021全球海上风电报告》, 2020年全球海上风电新增装机6.1GW ,比2019年的6.24 GW略有降低,但GWEC预计2021年将是全球海上风电装机创纪录的一年。

报告预计,在现有风电政策的情况下,未来十年全球将新增海上风电装机235GW,这一增量相当于现有海上风电装机的七倍。相比于2020年报告,本次预测上调了15%。

中国在2020年实现了3GW以上的海上风电新增并网,连续第三年成为全球最大的海上风电市场。欧洲市场保持稳定增长,荷兰以近1.5 GW的新增装机排在全球第二位,比利时位列第三(706 MW)。

根据国际能源署(IEA)及国际可再生能源署(IRENA)的最新报告,如果希望把地球温度上升控制在1.5℃以内,全球海上风电装机需要在2050年达到2000GW,而现在的装机量还不到这一目标的2%,2030年的预测装机量也只是这一目标的13%。

2、海上风电轴承技术发展现状与技术

由于海上风力发电机的特殊工况,主轴轴承需要安装在离海面数十米高的高空中,轴承运输、安装和更换都极为不便,且费用高昂。于此同时,海上风电轴承所处的环境非常恶劣,包括台风、空气湿度大导致腐蚀等等,因此高性能、高可靠性以及长寿命是主轴轴承必须具备的品质。目前风电主轴轴承主要依赖进口,国际上著名风电主轴轴承厂商主要有瑞典SKF、德国Schaeffler、美国Timken等,在全球市场占据统治地位。 我国风电轴承与国外的仍有较大差距,其中主要在于材料、设计、表面处理、工艺水平和工艺装备。

2.1 海上风电主轴轴承设计

目前,风电机组中主轴轴承主要承受传动链中大部分来自于外部风作用产生的径向力、轴向力以及弯矩,将稳定的转矩传递给风电机组的高速端。因此,主轴轴承的承载能力、可靠性以及使用寿命是非常关键的指标,同时定位端主轴轴承在面对较大轴向力或轴向冲击时,其轴向刚度将决定了其在外力作用下的轴向位移,该轴向位移将对齿轮箱内部的受力稳定产生较大影响。

随着海上风电兆瓦级别的不断提高,无论是单点支撑还是双点支撑的方案布置中,在有限的空间内如何更大程度提高承载能力,提高可靠性和寿命成为很大的困难,与此同时伴随着单向偏载以及系统振动、润滑条件不足等阻碍。

目前已装机的风力发电机中,大多数采用主轴轴承支撑结构,其主轴轴承一般分为两点支撑和三点支撑的布置形式。

图1 主轴轴承具有代表性的布置形式

2.1.1 主轴用调心滚子轴承技术方案

采用定位端加浮动端调心滚子轴承轴承的两点支撑形式是最典型的一种布置形式 ,在其中定位端轴承扮演着重要角色,既要满足对径向、轴向载荷的主要承载需求,具有一定的调心性能(通常要求大于0.3°),还要求在低成本的要求下能够稳定运行20年。已有技术方案如下:

1)内部结构优化

目前大尺寸调心滚子轴承已有结构如图2所示,根据中隔圈的结构形式可分为固定中隔圈,浮动中隔圈和无中隔圈设计。相对于浮动中隔圈和无中隔圈的设计,固定中隔圈可以有效增加轴向刚度,降低在轴向力影响下的轴向移动距离,从而有效减少轴向力对齿轮箱的影响。同时固定中隔圈可以有效限制滚动体在移动时的摆动角度。而无中隔圈的设计的优势在于可以更充分地利用内部空间从而设计更大的滚动体和接触角,增加其轴向承载能力。

图2 大型调心滚子轴承结构类型

2)进一步提高滚子轴承额定动载荷系数 b m值

根据ISO 281中定义 b m值为“ 当代常用材料与加工质量的额定动载荷系数 ”【2】,用于计算基本额定动载荷。对于 b m值,由于材料的冶炼方式和轴承制造水平的差异,通常不同厂家会在测试验证或经验的基础上提供出来。对于调心滚子轴承,在ISO 281中定义精炼钢(真空脱气钢)约为1.0-1.15,电渣重熔钢(高级精炼钢)约为1.2-1.5。

对于大尺寸轴承产品,随着材料冶炼方式和生产制造水平的提高,目前更高纯度的轴承钢以及套圈、滚动体的超精工艺的使用,很大程度提高了轴承各个零部件的表面和内部质量,改善了摩擦状态,使得 b m系数的提高成为可能,从而一定程度上增加了轴承整体承载能力和使用寿命。

3)压缩游隙控制区间

轴承游隙对轴承的寿命和可靠性都有较大影响。轴承游隙过大,会导致轴承在运行时承载的滚子总体数量减少,加剧滚子点蚀磨损;游隙过小,会导致轴承易产生摩擦发热,温度升高,油膜破坏,严重时甚至造成轴承卡死。

由于标准游隙组别控制游隙范围较大,尤其是对于风电用大型轴承,往往单个标准游隙组别会达到0.2 mm以上,而轴向游隙则1 mm以上,这对可靠性要求很高的风电应用来说范围太大,容易因为工作游隙不理想导致提前失效,同时游隙的范围大还会对调心滚子轴承的调心性能产生不利影响。

所以在风电主轴应用中,考虑到实际的加工经济性,往往推荐使用标准游隙的一半作为风电用游隙,或是根据实际应用数据选择特殊游隙。

图3 大型风电调心滚子轴承游隙建议表

4)通过对滚动体进行修形

调心滚子修形,通常对数曲线为常用的修形曲线,能有效避免边缘应力的产生,以优化接触应力均匀分布,以降低摩擦因子PV值,降低早期磨损的风险。

图4  滚动体修形与非修形PV值对比

5)非对称式轴承设计 【3】

通过设置两列滚动体的接触角不同来满足单向承载的需求。在与传统对称式结构相比,该设计能在相同外形尺寸下,有效提高轴承轴向承载能力和刚度,从而一定程度上有效避免了另外一列滚动体打滑的风险。对于风电应用来说,往往选择240系列轴承是因为可以设计更大的接触角以增大轴向承载能力,非对称设计可以充分利用风力的单向性,提高对齿轮箱侧的接触角增大可行性,可以使用230系列去替代240系列轴承,如图所示,以此来减小轴承的尺寸。

图5 非对称设计调心滚子轴承

非对称轴承设计对风机厂家在不改变现有主要结构的基础上拥有更高性能的轴承提供了新的方向,从而大大降低了新机型或现有机型升级的成本与难度。

6)球墨铸铁保持架

对于大型风电主轴用调心滚子轴承,机加工黄铜保持架由于其易加工成型、机械性能佳、可回收利用、且有一定自润滑性,被广泛应用。其中铅黄铜因其成本低、机加工性能好被大量使用在保持架上。但是铅黄铜零件在使用过程中存在着铅溶出问题,易造成环境污染,含铅黄铜保持架在不久的未来将面临无法继续使用的境遇,而无铅黄铜则面临着较大成本压力,寻求一种可替代现有黄铜保持架的材料势在必行。

目前舍弗勒已开发出适用于大型调心滚子轴承的球墨铸铁保持架,其拥有更佳的机械性能,以及相当的制造成本。

图6 球墨铸铁保持架

因其具有更大的材料疲劳强度,故在原有黄铜保持架设计基础上增加轴承一定数量的滚动体将成为可能,其在一定程度上可以增加轴承的承载能力和使用寿命。同时,由于以往黄铜保持架设计在风电中较多使用240/241系列轴承,由于其宽度较宽,其保持架往往因需要顺利经过轴承外圈最小直径处后,安装到轴承内部,保持架外径不能过大,否则无法顺利安装;同时无法过小,否则保持架强度较低,容易过早失效。球墨铸铁保持架在一定程度上可以降低外径减少后的强度问题产生的风险。

2.1.2 主轴用圆锥滚子轴承技术方案

对于海上风电更大兆瓦级别的风机来说,选择轴向定位更好以及承载更高的双圆锥滚子轴承也成为行业趋势。除了如调心滚子轴承已有技术方案,包括适当的滚动体修形以降低边缘应力的风险,进一步提高承载能力bm系数外,圆锥滚子轴承将面临更大的挑战,主要在于尺寸大型化后机加工难度大,加工精度难以保证,保持架结构复杂,热处理工艺复杂以及生产效率低。面对挑战,已有技术方案有:

1)保持架结构优化

已有大型圆锥滚子保持架结构如下图所示

图7 不同结构类型的圆锥滚子轴承

机加工钢保持架 ,其特点在于加工精度高,润滑空间大,轴承装配需要辅助加热装置热装,其整体成本较高。

穿销保持架 ,其最大特点在于能充分利用周向空间填充更多的滚动体,最大化承载,其润滑空间有限,尤其是销钉与滚动体内径面的常常润滑不良,易造成异常磨损。其次其加工过程复杂,加之滚动体需要通过氮碳共渗工艺处理,其整体成本同样很高。

分段保持架 ,其拥有易装配,生产难度低,效率高等特点,但目前由于各个分段之间通常不设置连接装置,往往仅能用于双列圆锥滚子轴承上使用。

2)热处理工艺选择

利用无缝感应淬火可以有效预防大尺寸轴承白色裂纹产生,其拥有工件变形小,尺寸稳定性能高,高生产效率等。表面淬火后的套圈其拥有较高的表面硬度和较高的芯部冲击韧性。目前最大的困难在于针对不同尺寸感应淬火头的参数无法准确预测,需要不断测试才能确定,开发周期长。

2.2 海上风电轴承材料

材料是直接影响轴承最终性能好坏的重要因素,由于海上风电的特殊可靠性需求,使用的轴承材料品质要求很高。已知影响轴承钢材质量的主要因素有钢材的含氧量、碳化物、偏析和夹杂物。

其中钢材中的夹杂物和含氧量密切相关,夹杂物随着含氧量的提高而增多,夹杂物的含量基本上决定了轴承钢的接触疲劳寿命。目前国际上以日本的SANYO以及瑞典的OVAKO为代表的钢材厂商对传统钢材含氧量控制已经达到5×10-6以下【4】,在此基础上两家经过超高纯冶炼工艺的改进,分别研发出超高纯轴承钢(EP钢)和各向同性轴承钢(IQ钢),对钢材的含氧量控制甚至达到(2-3)×10-6以下。另外国外针对轴承的长寿命、高精密、耐高温及其他特殊性能的要求,也相继开发了特殊热处理轴承钢(SHX钢)、低密度轴承材料(60NiTi)、耐高温轴承钢CSS—42L及高耐蚀轴承钢Cronir 30等新型轴承材料。

国内钢材厂未来需要缩短与国外差距,需要进一步 提高轴承钢的洁净度,减小钢中夹杂物的含量与尺寸 ;通过工艺优化进一 步提高碳化物的均匀性,降低和消除液析、网状和带状碳化物 ;进一步 提高基体组织的晶粒度,使轴承钢的晶粒尺寸进一步细化 ; 减少低倍组织缺陷 ;进一步 降低轴承钢中的中心疏松、中心缩孔与中心成分偏析,提高低倍组织的均匀性 。

2.3 海上风电轴承表面处理

表面涂覆技术包括:物理气相沉积(PVD)、化学气相沉积(CVD)、射频溅射(RF)、离子喷涂(PSC)、化学镀等,可提高轴承零件的耐磨性、接触疲劳抗力,并降低表面摩擦因数。目前根据几大轴承厂家的技术趋势,其中主要应用在风电主轴轴承上的涂层有以下几种:

2.3.1 黑化涂层

发黑涂层处理后轴承将拥有更好的跑和性能,拥有轻微的防腐蚀以及抗磨损的性能,同时涂层在一定程度上增强了抵抗白色腐蚀裂纹(WEC)的能力。在以往陆上风电实际使用过程当中,往往选择在滚动体表面做黑化涂层处理,但风机从陆上转移到海上后,由于工况更加复杂和恶劣,建议套圈和滚动体均做黑化处理。

2.3.2 DLC涂层

DLC涂层是一种表面超硬的涂层,其具有和金刚石涂层非常相近的性能,即极高的硬度、电阻率、导热系数等【5】,该涂层可减少混合摩擦条件下的摩擦和磨损,使得轴承寿命和耐磨性大幅度提高,避免了滚子轴承因滚动接触面间的滑动引起的黏着磨损(涂抹)。

2.3.3 柱状硬铬涂层

该涂层主要附着在内圈内径面上,它能提供高的耐磨损能力(高硬度),尤其是容易发生微动腐蚀的配合表面。

2.3.4 磷化涂层

该涂层常用在浮动端轴承的外径面上,主要用于改善紧急润滑和磨损保护。例如防止微动腐蚀或摩擦腐蚀,通过钝化或涂油的相应的后处理可暂时提高防腐蚀性能。

2.4 国内海上风电轴承制造现状

国内风电轴承的制造水平与国外仍存在很大差距,尤其是大兆瓦级别的轴承受制于加工设备和工艺水平。随着外资企业高端产品的本地化需求日益迫切,主要轴承厂商也在不断加速本地化进程。如舍弗勒集团在南京已建成4号工厂,专用于大型风电轴承的生产,分别可加工外径800~2000 mm以及2000 mm以上的调心滚子轴承、圆柱滚子轴承以及圆锥滚子轴承,通过引进国外大型生产设备以及工艺技术,已实现多个型号轴承量产。

国内的生产水平的提高助力国内风电市场快速发展,在保证产品质量按照风电最高标准的情况下,实现快速交付和更低的成本,最大程度保证客户的利益。

3 结论

目前海上风电的特殊应用工况对轴承的承载能力、可靠性和使用寿命提出更高的要求。对于大尺寸海上风电用轴承未来可以从轴承设计、材料、表面处理以及工艺等诸多方面进行改善。对于轴承设计,需要进一步提高整体的承载能力,包括更优的结构特征,包括接触优化,对保持架的结构形式和材料选择,尤其对圆锥滚子轴承,需要考虑如何简化机加工过程和热处理方式等;对于材料,如何缩短与国外的差距,包括进一步提高轴承钢的洁净度,减小钢中夹杂物的含量与尺寸,提高碳化物的均匀性等;对于表面处理,开发更优的表面处理技术,包括如何解决边界摩擦以及外界污染物介入后的润滑问题等。

Ⅳ 高端制造业龙头股票有哪些

1、科达制造股票600499
A股流通市值31969960000.00元,近一年涨跌幅368.68%。广东科达液压专注于高端高压柱塞泵和马达的自主研制,拥有核心技术,已成功实现部分进口设备替代,目前为我国高端高压柱塞泵制造企业。
2、新强联股票300850
A股流通市值16505870000.00元,近一年涨跌幅333.18%。招股说明书披露:公司拥有强大的研发能力和先进的生产工艺。经过多年的研发及生产实践,公司共取得专利79项,其中发明专利10项。公司研制开发了2兆瓦永磁直驱式风力发电机三排滚子主轴轴承、盾构机系列主轴承(属国家“863”火炬计划)、防腐式船用回转支承等产品,上述产品获得了中国机械工业联合会的科学技术成果鉴定。公司的风电主轴轴承和盾构机主轴承达到了国际技术标准,打破了该领域轴承产品国外垄断的局面,实现进口替代。
3、华菱线缆股票001208
A股流通市值2447661900.00元,近一年涨跌幅317.73%。公司所生产的高端装备用特种柔性电缆主要用于工业机器人、盾构机产品,该电缆可以经受长时间弯曲运动、大角度扭绞运动,并而能够保障产品的正常工作。
4、鞍重股份股票002667
A股流通市值7179884000.00元,近一年涨跌幅271.00%。公司以募集资金9000万元投资“高效、节能、环保型大型振动筛系列产品建设项目”,新增年产ZKK系列振动筛210台和年产ZX系列振动筛160台的生产能力,达产后预计年新增销售收入19500万元,年新增净利润2851.14万元;以9500万元投资“多单元组合振动筛建设项目”,新增年产多单元组合振动筛445台的生产能力,达产后预计年新增销售收入20025万元,年新增净利润3136.92万元。公司的生产技术、产品性能已经处于国内领先,与国际产品处于同一水平,具备和国外供应商竞争的能力,而国外产品的价格相当于公司产品价格的2-3倍,公司产品体现出良好的价格竞争力。相对于国内厂商同类产品,公司产品价格通常高出15%-30%左右,但相应提供了更高的可靠性及工作效率。振动筛作为洗选设备中重要组成部分,直接影响整套系统的运行效率,一定规模以上的用户均倾向于选用高可靠性、高效率的筛分设备。公司客户遍布全国各个领域,均为各行业龙头,如神华集团、西山煤电、兖州煤业、平煤股份、日工机械、宝钢集团、江西铜业、铁法煤业等。
5、双良节能股票600481
A股流通市值17558090000.00元,近一年涨跌幅246.65%。公司曾参与国家溴冷机行业多项标准制定、是拥有400余项专利技术的国内溴冷机行业龙头之一。公司是溴化锂制冷机中国标准制定者与中国最大的溴化锂制冷机制造商之一,产品可以利用余热与废热,具备节能环保优势;其中85个型号的机组产品荣获中国节能产品认证,相关产品已经进入印度与沙特等东南亚和中东国家,并有少量高端机组成功进入欧洲市场。

Ⅳ 变桨轴承是干什么用的

是用于风力发电用的,就是把叶片固定住的轴承

阅读全文

与大兆瓦主轴承为什么选用相关的资料

热点内容
全自动机械表怎么保养 浏览:440
大学去离子水实验装置图回答问题 浏览:548
声纳用什么超声波 浏览:701
机械压力大于显示压力如何解决 浏览:19
安全限位装置的作用 浏览:32
亚胺用什么阀门 浏览:953
国产五金件排名 浏览:364
装置流水线模拟控制的设计 浏览:283
三代飞度仪表盘怎么调亮度 浏览:477
阀门靠墙怎么换 浏览:655
自动门控制装置原理框图 浏览:187
上海有哪些乒乓器材淘宝实体店 浏览:83
仪表电路板如何焊接 浏览:217
义乌电动工具市场地址 浏览:481
现网网元设备怎么操作 浏览:951
保温管道阀门手柄不能朝向下 浏览:890
消防水炮前有什么阀门 浏览:381
皖内哪里能买到家庭健身器材 浏览:28
给水阀门什么时候才用法兰连接 浏览:128
设计装置测量超声波波长 浏览:477