㈠ 滾動軸承的失效形式及選擇計算
1.滾動軸承的失效形式
(1)疲勞點蝕:軸承工作時,作用於軸上的力是通過軸承內圈、滾動體、外圈傳到機座上,使滾動體與內、外圈滾道的接觸表面產生接觸應力。由於內、外圈要做相對運動,滾動體沿滾道滾動,所以接觸表面的接觸應力按脈動循環規律變化。當應力循環次數達到一定值後,在滾動體或內、外圈滾道的表層金屬將發生剝落,即形成疲勞點蝕,從而使軸承產生振動和雜訊,旋轉精度下降,影響機器的正常工作。疲勞點蝕是滾動軸承的主要失效形式。
(2)塑性變形:當軸承的轉速很低(n<10r/min)或間歇擺動時,一般不會發生疲勞點蝕,此時軸承往往因受過大的靜載荷或沖擊載荷,使內、外圈滾道與滾動體接觸處的局部應力超過材料的屈服點而產生塑性變形,形成不均勻的凹坑,使軸承失效。
2.軸承的壽命與壽命計算
(1)軸承的壽命:滾動軸承的壽命是指軸承中任何一個滾動體或內、外圈滾道上出現疲勞點蝕前軸承轉過的總轉數,或在一定轉速下總的工作小時數。
一批類型、尺寸相同的軸承,由於材料、加工精度、熱處理與裝配質量不可能完全相同,即使在同樣條件下工作,各個軸承的壽命也是不同的,壽命最長與最短的相差可達幾十倍,因此人們很難預測出單個軸承的具體壽命。為了保證軸承工作的可靠性,在國標中規定以基本額定壽命作為計算依據。
軸承的基本額定壽命是指一批相同的軸承,在同樣條件下工作,其中10%的軸承產生疲勞點蝕時轉過的總轉數,以L10表示。
基本額定壽命為106r時軸承所能承受的載荷稱為基本額定動載荷,以C表示。軸承在基本額定動載荷作用下,工作106r不發生疲勞點蝕的可靠度是90%。對於徑向接觸軸承C是徑向載荷,軸向接觸軸承C是中心軸向載荷,向心角接觸軸承C是載荷的徑向分量。各種類型和不同尺寸軸承的C值查機械設計手冊。
(2)壽命計算:軸承基本額定壽命的計算式為:
液壓動力頭岩心鑽機設計與使用
式中:L10為軸承的基本額定壽命,106r;FP為當量動載荷,見本節之當量動載荷計算;ε為壽命指數,球軸承ε=3,滾子軸承ε≈10/3。
實際計算時,人們習慣於以時間Lh(h)作為軸承的壽命。若軸承轉速為n(r/min),則軸承壽命計算的另一表達式為
液壓動力頭岩心鑽機設計與使用
當軸承的工作溫度高於120℃時,會降低軸承的壽命,影響基本額定動載荷;工作中的沖擊和振動,將使軸承實際工作載荷加大,故在計算時應分別引入溫度系數ft(表2-11)和載荷系數fp(表2-12)對C值和Fp值加以修正。此時軸承的壽命計算式為:
液壓動力頭岩心鑽機設計與使用
表2-11 溫度系數ft
表2-12 載荷系數fp
3.當量動載荷的計算
當量動載荷是一個假想載荷,在這個載荷作用下,軸承的壽命與實際載荷作用下的壽命相同。
對於僅能承受徑向載荷的圓柱滾子軸承,當量動載荷為軸承的徑向載荷Fr,即
液壓動力頭岩心鑽機設計與使用
對於只能承受軸向載荷的推力球軸承,當量動載荷為軸承的軸向載荷Fa,即
液壓動力頭岩心鑽機設計與使用
對於能同時承受徑向和軸向載荷的深溝球軸承、調心軸承和向心角接觸軸承,當量動載荷的計算式為
液壓動力頭岩心鑽機設計與使用
式中:Fr為軸承所受的徑向載荷;Fa為軸承所受的軸向載荷;X為徑向載荷系數,見表2-13;Y為軸向載荷系數,見表2-13。
查表2-13時,對於深溝球軸承和7000C型角接觸球軸承,需先計算Fa/C0,查出e值,再計算Fα/Fr並與e比較後才能確定X、Y值。
表2-13 徑向載荷系數X和軸向載荷系數Y
註:1.C0為軸承的基本額定靜載荷,查機械設計手冊。
2.e為系數X和Y不同值時Fa/Fr適用范圍的界限值。
3.對於Fa/C0的中間值,其e和Y值可由線性內插法求得。
4.向心角接觸軸承軸向載荷的計算
如圖2-9所示,由於向心角接觸軸承有接觸角α,故軸承在受到徑向載荷作用時,承載區內每一個滾動體的法向力FQi可分解成徑向分力FRi和軸向分力FSi。各滾動體軸向分力之和FS(FS=∑iFSi)將使軸承外圈與內圈沿軸向有分離的趨勢,故這類軸承都應成對使用反向安裝。
圖2-9 向心角接觸軸承的內部軸向力
FS是在徑向載荷作用下產生的軸向力,通常稱為內部軸向力,其大小按表2-14所給公式求出,方向(對軸而言)沿軸向由軸承外圈的寬邊指向窄邊。
向心角接觸軸承在成對使用時實際所受的軸向載荷Fa,除與外加軸向載荷FA有關外,還應考慮內部軸向力FS的影響。
表2-14 向心角接觸軸承內部軸向力FS
註:Y值查機械設計手冊。
圖2-10為角接觸球軸承的兩種安裝方式,圖2-10a為兩外圈的窄邊相對,圖2-10b為兩外圈的寬邊相對。FA為外加軸向載荷,FS1、FS2分別為軸承1、2的內部軸向力,兩軸承所受的實際軸向載荷,可根據力平衡條件求出。
圖2-10 角接觸軸承的軸向載荷分析
對於軸承1:因FS2與FA方向相反,故軸承所受軸向載荷應通過比較FS1與FS2-FA的大小來確定。
液壓動力頭岩心鑽機設計與使用
對於軸承2:因FS1與FA方向相同,故軸承所受軸向載荷應通過比較FS2與FS1+FA的大小來確定。
液壓動力頭岩心鑽機設計與使用
如果外加軸向載荷FA方向與圖示方向相反,則應取(-FA)代入公式計算。
5.滾動軸承的靜載荷計算
軸承靜載荷計算的目的是防止軸承產生過大的塑性變形。
軸承在某一載荷作用下,若受載最大的滾動體與內、外圈滾道接觸處的接觸應力達到:球軸承———4200MPa(調心球軸承4600MPa),滾子軸承———4000MPa,這個載荷稱為基本額定靜載荷,以C0表示。實踐表明,軸承在不超過該載荷作用下能正常工作。因此,基本額定靜載荷是軸承靜載荷的計算依據。對於徑向接觸軸承,C0是徑向載荷;對於向心角接觸軸承,C0是載荷的徑向分量;對於軸向接觸軸承C0是中心軸向
載荷。軸承在工作時,如果同時承受徑向載荷與軸向載荷,則應按當量靜載荷進行計算。當量靜載荷是一個假想載荷,軸承在這個載荷作用下,受力最大處的滾動體與內、外圈滾道塑性變形量總和與實際載荷作用下塑性變形量總和相等。對於徑向接觸軸承和向心角接觸軸承,當量靜載荷是徑向載荷;對於軸向接觸軸承,當量靜載荷是軸向載荷。當量靜載荷以FP0表示,它與實際載荷的關系是
液壓動力頭岩心鑽機設計與使用
式中:Fr為軸承所受的徑向載荷;Fa為軸承所受的軸向載荷;X0為靜徑向載荷系數,見表2-15;Y0為靜軸向載荷系數,見表2-15。
表2-15 靜徑向載荷系數X0與靜軸向載荷系數Y0
當計算結果FP0<Fr時,應取FP0=Fr
按靜載荷計算的強度條件是
液壓動力頭岩心鑽機設計與使用
式中:C0為軸承的基本額定靜載荷,查機械設計手冊;S0為安全系數,見表2-16。
表2-16 安全系數S0
㈡ 滾動軸承的失效形式有哪些
1,滾動軸承的磨損失效。
2,滾動軸承的疲憊失效。
3,滾動軸承的腐蝕失效。
4,滾動軸承的塑變失效。
5,滾動軸承的斷裂失效。
6,滾動軸承的膠合效。
㈢ 軸承的失效原因和失效的形態是什麼
軸承的失效原因: 一,軸承往往因安裝不合適而導致整套軸承各零件之間的受力狀態發生變化,軸承在不正常的狀態下運轉並過早失效。根據軸承安裝、使用、維護、保養的技術要求,對運轉中的軸承所承受的載荷、轉速、工作溫度、振動、雜訊和潤滑條件進行監控和檢查,發現異常立即查找原因,進行調整,使其恢復正常。此外,對潤滑脂質量和周圍介質、氣氛進行分析檢驗也很重要。 首先,結構設計合理的同時具備有先進性,才會有較長的軸承壽命。軸承的製造一般要經過鍛造、熱處理、車削、磨削和裝配等多道加工工序。各加工工藝的合理性、先進性、穩定性也會影響到軸承的壽命。其中影響成品軸承質量的熱處理和磨削加工工序,往往與軸承的失效有著更直接的關系。近年來對軸承工作表面變質層的研究表明,磨削工藝與軸承表面質量的關系密切。 軸承材料的冶金質量曾經是影響滾動軸承早期失效的主要因素。隨著冶金技術(例如軸承鋼的真空脫氣等)的進步,原材料質量得到改善。原材料質量因素在軸承失效分析中所佔的比重已經明顯下降,但它仍然是軸承失效的主要影響因素之一。選材是否得當仍然是軸承失效分析必須考慮的因素。 軸承失效分析的主要任務,就是根據大量的背景材料、分析數據和失效形式,找出造成軸承失效的主要因素,以便有針對性地提出改進措施,延長軸承的服役期,避免軸承發生突發性的早期失效。 軸承失效基本形態: 1.粘附和磨粒磨損失效 是各類軸承表面最常見的失效模式之一。軸承零件之間相對滑動摩擦導致其表面金屬不斷損失稱為滑動摩損。持續的磨損將使零件尺寸和形狀變化,軸承配合間隙增大,工作表面形貌變壞,從而喪失旋轉精度,使軸承不能正常工作。滑動磨損形式可分為磨粒磨損、粘附磨損、腐蝕磨損、微動磨損等,其中最常見的為磨粒磨損和粘附磨損。 軸承零件的摩擦面之間由外來硬顆粒或金屬磨削引起摩擦面磨損的現象屬於磨粒磨損。它常在軸承表面造成鑿削式或犁溝式的擦傷。外來硬顆粒常常來自於空氣中的塵埃或潤滑劑中的雜質。粘附磨損主要是由於摩擦表面的輪廓峰使摩擦面受力不均,局部摩擦熱使摩擦表面溫度升高,造成潤滑油膜破裂,嚴重時表面層金屬將會局部溶化,接觸點產生粘著、撕脫、再粘著的循環的過程,嚴重時造成摩擦面的焊合和卡死。 2.接觸疲勞(疲勞磨損)失效 接觸疲勞失效是各類軸承最常見的失效模式之一,是軸承表面受到循環接觸應力的反復作用而產生的失效。軸承零件表面的接觸疲勞剝落是一個疲勞裂紋從萌生、擴展到裂紋的過程。初始的接觸疲勞裂紋首先從接觸表面以下最大正交切應力處產生,然後擴展到表面形成麻點狀剝落或小片狀剝落,前者被稱為點蝕或麻點剝落;後者被稱為淺層剝落。如初始裂紋在硬化層與心部交界區產生,造成硬化層的早期剝落,則稱為硬化層剝落。 參考資料: http://www.ttzcw.com/college/coll_info/tp1/2010102915210020504.html
㈣ 請教軸承失效的標准
軸承是精密的機械基礎件。由於科技進步的迅速發展,客戶對軸承產品質量的要求越來越高。製造廠提供符合標准、滿足主機使用性能的高質量的產品固然重要,但正確使用軸承更為重要。筆者在近幾年從事摩托車專用軸承的技術工作中,經常碰到這樣的問題,即軸承經檢測是合格的,但裝機後軸承出現卡滯或使用時的早期止轉失效。主要表現轉動卡滯感、工作面嚴重剝落,保持架嚴重磨損乃至扭曲與斷裂。經失效結果分析表明,屬於軸承本身質量問題並不多,多數是由於安裝使用不當所造成。為此,筆者認為有必要就軸承常見的失效模式與機理作些膚淺的綜述,以期起到一個拋磚引玉的作用。
一、 軸承的失效機理
1. 接觸疲勞失效
接觸疲勞失效系指軸承工作表面受到交變應力的作用而產生失效。接觸疲勞剝落發生在軸承工作表面,往往也伴隨著疲勞裂紋,首先從接觸表面以下最大交變切應力處產生,然後擴展到表面形成不同的剝落形狀,如點狀為點蝕或麻點剝落,剝落成小片狀的稱淺層剝落。由於剝落面的逐漸擴大,而往往向深層擴展, 形成深層剝落。深層剝落是接觸疲勞失效的疲勞源。
2. 磨損失效
磨損失效系指表面之間的相對滑動摩擦導致其工作表面金屬不斷磨損而產生的失效。持續的磨損將引起軸承零件逐漸損壞,並最終導致軸承尺寸精度喪失及其它相關問題。磨損可能影響到形狀變化,配合間隙增大及工作表面形貌變化,可能影響到潤滑劑或使其污染達到一定程度而造成潤滑功能完全喪失,因而使軸承喪失旋轉精度乃至不能正常運轉。 磨損失效是各類軸承常見的失效模式之一,按磨損形式通常可分為最常見的磨粒磨損和粘著磨損。
磨粒磨損系指軸承工作表面之間擠入外來堅硬粒子或硬質異物或金屬表面的磨屑且接觸表面相對移動而引起的磨損,常在軸承工作表面造成犁溝狀的擦傷。硬質粒子或異物可能來自主機內部或來自主機系統其它相鄰零件由潤滑介質送進軸承內部。 粘著磨損系指由於摩擦表面的顯微凸起或異物使摩擦面受力不均,在潤滑條件嚴重惡化時,因局部摩擦生熱,易造成摩擦面局部變形和摩擦顯微焊合現象,嚴重時表面金屬可能局部熔化,接觸面上作用力將局部摩擦焊接點從基體上撕裂而增大塑性變形。這種粘著——撕裂——粘著的 循環過程構成了粘著磨損,一般而言,輕微的粘著磨損稱為擦傷,嚴重的粘著磨損稱為咬合。
3. 斷裂失效
軸承斷裂失效主要原因是缺陷與過載兩大因素。當外載入荷超過材料強度極限而造成零件斷裂稱為過載斷裂。過載原因主要是主機突發故障或安裝不當。軸承零件的微裂紋、縮孔、氣泡、大塊外來雜物、過熱組織及局部燒傷等缺陷在沖擊過載或劇烈振動時也會在缺陷處引起斷裂,稱為缺陷斷裂。應當指出,
軸承在製造過程中,對原材料的入廠復驗、鍛造和熱處理質量控制、加工過程式控制制中可通過儀器正確分析上述缺陷是否存在,今後仍必須加強控制。但一般來說,通常出現的軸承斷裂失效大多數為過載失效。
4. 游隙變化失效
軸承在工作中,由於外界或內在因素的影響,使原有配合間隙改變,精度降低,乃至造成「咬死」稱為游隙變化失效。外界因素如過盈量過大,安裝不到位,溫升引起的膨脹量、瞬時過載等,內在因素如殘余奧氏體和殘余應力處於不穩定狀態等均是造成游隙變化失效的主要原因。
二、 軸承常見失效模式及對策
1. 溝道單側極限位置剝落
溝道單側極限位置剝落主要表現在溝道與擋邊交界處有嚴重的剝落環帶。產生原因是軸承安裝不到位或運轉過程中突發軸向過載。採取對策是確保軸承安裝到位或將自由側軸承外圈配合改為間隙配合,以期軸承過載時使軸承得到補償。
2. 溝道在圓周方向呈對稱位置剝落
對稱位置剝落表現在內圈為周圍環帶剝落,而外圈呈周向對稱位置剝落(即橢圓的短軸方向),其產生原因主要是因為外殼孔橢圓過大或兩半分離式外殼孔結構,這在摩托車用凸輪軸軸承中表現尤為明顯。當軸承壓入橢圓偏大的外殼孔中或兩半分離式外殼固緊時,使軸承外圈產生橢圓,在短軸方向的游隙明顯減少甚至負游隙。軸承在載荷的作用下,內圈旋轉產生 周向剝落痕跡,外圈只在短軸方向的對稱位置產生剝落痕跡。這是該軸承早期失效的主要原因,經對該軸承失效件檢驗表明,該軸承外徑圓度已從原工藝控制的0.8μm變為27μm。此值遠遠大於徑向游隙值。因此,可以肯定該軸承是在嚴重變形及負游隙下工作的,工作面上易早期形成異常的急劇磨損與剝落。採取的對策是提高外殼孔加工精度或盡可能不採用外殼孔兩半分離結構。
3. 滾道傾斜剝落
在軸承工作面上呈傾斜剝落環帶,說明軸承是在傾斜狀態下工作的,當傾斜角達到或超過臨界狀態時,易早期形成異常的急劇磨損與剝落。產生的原因主要是因為安裝不良,軸有撓度、軸頸與外殼孔精度低等,採取對策為確保軸承安裝質量與提高軸肩、孔肩的軸向跳動精度。
4. 套圈斷裂
套圈斷裂失效一般較少見,往往是突發性過載造成。產生原因較為復雜,如軸承的原材料缺陷(氣泡、縮孔)、鍛造缺陷(過燒)、熱處理缺陷(過熱)、加工缺陷(局部燒傷或表面微裂紋)、主機缺陷(安裝不良、潤滑貧乏、瞬時過載)等,一旦受過載沖擊負荷或劇烈振動均有可能使套圈斷裂。採取對策為避免過載沖擊載荷、選擇適當的過盈量、提高安裝精度、改善使用條件及加強軸承製造過程中的質量控制。
5. 保持架斷裂
保持架斷裂屬於偶發性非正常失效模式。其產生原因主要有以下五個方面:
a.保持架異常載荷。如安裝不到位、傾斜、過盈量過大等易造成游隙減少,加劇摩擦生熱,表面軟化,過早出現異常剝落,隨著剝落的擴展,剝落異物進入保持架兜孔中,導致保持架運轉阻滯並產生附載入荷,加劇了保持架的磨損,如此惡化 的循環作用,便可能造成保持架斷裂。
b. 潤滑不良主要指軸承運轉處於貧油狀態,易形成粘著磨損,使工作表面狀態惡化,粘著磨損產生的撕裂物易進入保持架,使保持架產生異常載荷,有可能造成保持架斷裂。
c. 外來異物的侵入是造成保持架斷裂失效的常見模式。由於外來硬質異物的侵入,加劇了保持架的磨損與產生異常附載入荷,也有可能導致保持架斷裂。
d. 蠕變現象也是造成保持架斷裂的原因之一。所謂蠕變多指套圈的滑動現象,在配合面過盈量不足的情況下,由於滑動而使載荷點向周圍方向移動,產生套圈相對軸或外殼向圓周方向位置偏離的現象。蠕變一旦產生,配合面顯著磨損,磨損粉末有可能進入軸承內部,形成異常磨損——滾道剝落——保持架磨損及附載入荷的過程,以至可能造成保持架斷裂。
e. 保持架材料缺陷(如裂紋、大塊異金屬夾雜物、縮孔、氣泡)及鉚合缺陷(缺釘、墊釘或兩半保持架結合面空隙,嚴重鉚傷)等均可能造成保持架斷裂。採取對策為在製造過程中加以嚴格控制。
三、 結論
綜上所述,從軸承常見失效機理與失效模式可知,盡管滾動軸承是精密而可靠的機構基礎體,但使用不當也會引起早期失效。一般情況下,如果能正確使用軸承,可使用至疲勞壽命為止。軸承的早期失效多起於主機配合部位的製造精度、安裝質量、使用條件、潤滑效果、外部異物侵入、熱影響及主機突發故障等方面的因素。因此,正確合理地使用軸承是一項系統工程,在軸承結構設計、製造和裝機過程中,針對產生早期失效的環節,採取相應的措施,可有效地提高軸承及主機的使用壽命,這是製造廠和客戶應負有的共同責任。
㈤ 滾動軸承失效的4個階段是什麼
第一階段,軸承失效初期
這個階段軸承最先在次表面形成微觀裂紋或晶格的錯位,而軸承表面則看不到裂紋或者微小剝落,在振動信號的低頻段不會形成比較明顯的沖擊信號,用傳統的加速度感測器不能拾取到故障信號,但是次表面的微觀裂紋或者晶格的錯位會產生聲發射信號或者應力波信號。因此,在這個階段軸承的故障特徵主要體現在超聲頻率段,可以通過聲發射感測器或者基於共振的加速度感測器進行拾取,其主要表現為測得的信號峰值或者能量值變大。
第二階段,軸承失效發展期,
在這個階段軸承的微觀劣化開始由次表面向表面擴展,並在軸承的接觸表面產生裂紋或微小剝落等損傷點。當軸承元件表面與這些損傷點接觸時,就會形成一定頻率的沖擊脈沖,根據傅里葉變換可知,短時的沖擊信號在頻域上是一個寬頻信號,所以這個沖擊信號必然會激起軸承零部件的高頻固有頻率發生共振,從而使得其振動加強,通過加速度感測器便能將這部分信號拾取到,再利用包絡解調技術便能觀察到軸承的故障特徵頻率,到了第二階段的末期還能觀察到故障特徵頻率的倍頻。
在這個階段,軸承的故障特徵頻率暫時被淹沒在低頻段較高的噪音當中,因此在故障特徵頻率段觀察不到很清晰的故障特徵頻率。
第三階段,軸承失效快速發展
在這個階段,隨著軸承損傷的加速發展,損傷點對軸承接觸面的沖擊越來越強烈,在共振頻率段解調出來的軸承故障特徵頻率的倍頻越來越多,而且其周期性沖擊的能量大小已經足以直接通過振動信號的功率譜觀察出來,這個時候可以直接在振動信號的功率譜上清晰的看到軸承的故障特徵頻率,並且其倍頻有越來越多的趨勢。
第四階段,軸承失效末期,
在這個階段,滾動軸承已經快達到壽命的終點,損傷點可以通過肉眼觀察到,軸承運動的噪音變得特別大,溫度急速的升高。此時直接功率譜上不僅可以清晰的看到軸承的故障特徵頻率及其倍頻,如果損傷點交替的進入載荷區的話,還能在故障特徵頻率旁邊看到明顯的調制邊頻。在第四階段的末期,頻譜上譜線變得不是很清晰,在功率譜上會形成凸出的「茅草堆」,另外高頻振動的能量在這時還可能不升反降,如果發現高頻的監測量開始下降,不是表面軸承狀態變好,而是說明軸承已經快到壽命的終點。
㈥ 滾動軸承出現故障該如何判斷
判斷軸承故障一般有兩種表現,一是在軸承安裝部位會出現溫度過高,二是在軸承運作時會發出很大的噪音,不過可以到網上搜一下樽祥軸承故障檢測儀,用檢測儀器還是比較准確些。
1.軸承溫度過高:在機械運作時,安裝軸承的部位允許有一定的溫度,當用手撫摸機器外殼時,應以不感覺燙手為正常,反之則表明軸承溫度過高。
軸承溫度過高的原因有:潤滑油質量不符合要求或變質,潤滑油粘度過高;機構裝配過緊(間隙不足);軸承裝配過緊;軸承座圈在軸上或殼內轉動;負荷過大;軸承保持架或滾動體碎裂等。
2.軸承噪音:滾動軸承在工作中允許有輕微的運轉響聲,如果響聲過大或有不正常的噪音或撞擊聲,則表明軸承有故障。滾動軸承產生噪音的原因比較復雜,其一是軸承內、外圈配合表面磨損。由於這種磨損,破壞了軸承與殼體、軸承與軸的配合關系,導致軸線偏離了正確的位置,在軸在高速運動時產生異響。
當軸承疲勞時,其表面金屬剝落,也會使軸承徑向間隙增大產生異響。此外,軸承潤滑不足,形成干摩擦,以及軸承破碎等都會產生異常的聲響。軸承磨損松曠後,保持架松動損壞,也會產生異響軸承的損傷。
滾動軸承拆卸檢查時,可根據軸承的損傷情況判斷軸承的故障及損壞原因:
1.滾道表面金屬剝落:軸承滾動體和內、外圈滾道面上均承受周期性脈動載荷的作用,從而產生周期變化的接觸應力。當應力循環次數達到一定數值後,在滾動體或內、外圈滾道工作面上就產生疲勞剝落。如果軸承的負荷過大,會使這種疲勞加劇。另外,軸承安裝不正、軸彎曲,也會產生滾道剝落現象。軸承滾道的疲勞剝落會降低軸的運轉精度,使機構發生振動和雜訊。
2.軸承燒傷:燒傷的軸承其滾道、滾動體上有回火色。燒傷的原因一般是潤滑不足、潤滑油質量不符合要求或變質,以及軸承裝配過緊等。
3.塑性變形:軸承的滾道與滾子接觸面上出現不均勻的凹坑,說明軸承產生塑性變形。其原因是軸承在很大的靜載荷或沖擊載荷作用下,工作表面的局部應力超過材料的屈服極限,這種情況一般發生在低速旋轉的軸承上。
4.軸承座圈裂紋:軸承座圈產生裂紋的原因可能是軸承配合過緊,軸承外國或內圈松動,軸承的包容件變形,安裝軸承的表面加工不良等。
5.保持架碎裂:其原因是潤滑不足,滾動體破碎,座圈歪斜等。
6.保持架的金屬粘附在滾動體上:可能的原因是滾動體被卡在保持架內或潤滑不足。
7.座圈滾道嚴重磨損:可能是座圈內落入異物,潤滑油不足或潤滑油牌號不合適。
㈦ 滾動軸承的幾種失效形式的分析
滾動軸承主要的失效的形式:
1、磨損失效
2、疲勞失效
3、腐蝕失效
4、斷裂失效
5、壓痕失效
6、膠合失效
滾動軸承磨損是軸使用過程中常見的設備問題,主要是由軸的金屬特性造成的:金屬雖然硬度高,但是退讓性差(變形後無法復原)、抗沖擊性能差、抗疲勞性能差,因此容易造成粘著磨損、磨料磨損、疲勞磨損、微動磨損等。
大部分的軸類磨損不易察覺,只有出現機器高溫、跳動幅度大、異響等情況時,才會引起察覺,但是到人們發覺時,大部分滾動軸都已磨損,從而造成機器停機。
(7)滾動軸承如何判斷是接觸疲勞失效擴展閱讀:
滾動軸承按照結構可分為:
1、深溝球軸承
深溝球軸承結構簡單,使用方便,是生產批量最大,應用范圍最廣的一類軸承。它主要用於承受徑向載荷,也可承受一定的軸向載荷。當軸承的徑向游隙加大時,具有角接觸軸承的功能,可承受較大的軸向載荷。應用於汽車,拖拉機,機床,電機,水泵,農業機械,紡織機械等。
2、滾針軸承
滾針軸承裝有細而長的滾子(滾子長度為直徑的3~10倍,直徑一般不大於5mm),因此徑向結構緊湊,其內徑尺寸和載荷能力與其他類型軸承相同時,外徑最小,特別適用與徑向安裝尺寸受限制的支承結構。根據使用場合不同,可選用無內圈的軸承或滾針和保持架組件。
此時與軸承相配的軸頸表面和外殼孔表面直接作為軸承的內.外滾動表面,為保持載荷能力和運轉性能與有套圈軸承相同,軸或外殼孔滾道表面的硬度.加工精度和表面和表面質量應與軸承套圈的滾道相仿。此種軸承僅能承受徑向載荷。
例如:萬向節軸,液壓泵,薄板軋機,鑿岩機,機床齒輪箱,汽車以及拖拉機機變速箱等 。
3、角接觸軸承
角接觸球軸承極限轉速較高,可以同時承受經向載荷和軸向載荷,也可以承受純軸向載荷,其軸向載荷能力由接觸角決定,並隨接觸角增大而增大。多用於:油泵、空氣壓縮機、各類變速器、燃料噴射泵、印刷機械 。
4、調心球軸承
調心球軸承有兩列鋼球,內圈有兩條滾道,外圈滾道為內球面形,具有自動調心的性能。可以自動補償由於軸的繞曲和殼體變形產生的同軸度誤差,適用於支承座孔不能保證嚴格同軸度的部件中。該種軸承主要承受徑向載荷,在承受徑向載荷的同時
亦可承受少量的軸向載荷,通常不用於承受純軸向載荷,如承受純軸向載荷,只有一列鋼球受力。主要用在聯合收割機等農業機械,鼓風機,造紙機,紡織機械,木工機械,橋式吊車走輪及傳動軸上。
5、調心滾子軸承
調心滾子軸承句有兩列滾子,主要用於承受徑向載荷,同時也能承受任一方向的軸向載荷。該種軸承徑向載荷能力高,特別適用於重載或振動載荷下工作,但不能承受純軸向載荷;調心性能良好,能補償同軸承誤差。
主要用途:造紙機械、減速裝置、鐵路車輛車軸、軋鋼機齒輪箱座、破碎機、各類產業用減速機等等。
6、推力球軸承
推力球軸承是一種分離型軸承,軸圈"座圈可以和保持架"鋼球的組件分離。軸圈是與軸相配合的套圈,坐圈是與軸承座孔相配合的套圈,和軸之間有間隙。 推力球軸承只能承受軸向負荷,單向推力球軸承只能承受一個方向的軸向負荷,雙向推力球軸承可以承受兩個方向的軸向負荷。
推力球承受不能限制軸的徑向位移,極限轉速很低。單向推力球軸承可以限制軸和殼體的一個方向的軸向位移,雙向軸承可以限制兩個方向的軸向位移。主要應用於汽車轉向機構,機床主軸。
7、推力滾子軸承
推力滾子軸承用於承受軸向載荷為主的軸.經向聯合載荷,但經向載荷不得超過軸向載荷的55%。與其它推力滾子軸承相比,此種軸承摩擦因數較低,轉速較高,並具有調心能力。29000型軸承的滾子為非對稱型球面滾子,能減小棍子和滾道在工作中的相對滑動
並且滾子長.直徑大,滾子數量多載荷容量大,通常採用油潤滑,個別低速情況可用脂潤滑。在設計選型時,應優先選用。 主要應用於水力發電機, 起重機吊鉤,等等 。
8、圓柱滾子軸承
圓柱滾子軸承的滾子通常由一個軸承套圈的兩個擋邊引導,保持架.滾子和引導套圈組成一組合件,可與另一個軸承套圈分離,屬於可分離軸承。此種軸承安裝,拆卸比較方便,尤其是當要求內.外圈與軸.殼體都是過盈配合時更顯示優點。
此類軸承一般只用於承受徑向載荷,只有內.外圈均帶擋邊的單列軸承可承受較小的定常軸向載荷或較大的間歇軸向載荷。 主要用於大型電機,機床主軸,車軸軸箱,柴油機曲軸以及汽車,托牢記的變箱等
9、圓錐滾子軸承
圓錐滾子軸承主要適用於承受以徑向載荷為主的徑向與軸向聯合載荷,而大錐角圓錐滾子軸承可以用於承受以軸向載荷為主的徑,軸向聯合載荷。此種軸承為分離型軸承,其內圈(含圓錐滾子和保持架)和外圈可以分別安裝。
在安裝和使用過程中可以調整軸承的經向游隙和軸向游隙,也可以預過盈安裝用於汽車後橋輪轂,大型機床主軸,大功率減速器,車軸軸承箱,輸送裝置的滾輪 。
10、帶座外球面球軸承
帶座外球面球軸承由兩面帶密封的外球面球軸承和鑄造的(或鋼板沖壓的)軸承座組成。外球面球軸承的內部結構與深溝球軸承相同,但此種軸承的內圈寬於外圈.外圈具有截球形外表面,與軸承座的凹球面相配能自動調心。
通常此種軸承的內孔與軸之間有間隙,用頂絲,偏心套或緊定套將軸承內圈固定在軸上,並隨軸一起轉動。帶座軸承結構緊湊,裝卸方便,密封完善,適用於簡單支承,常用於采礦.冶金.農業.化工.紡織.印染.輸送機械等。
參考資料來源:網路-軸承故障診斷
參考資料來源:網路-滾動軸承
㈧ 滾動軸承失效為滾動體疲勞點蝕 齒輪失效為齒面疲勞點蝕 為什麼軸承用壽命校核 齒輪用接觸疲勞強度校核
兩者工作條件不同,計算公式不同。
㈨ 對於長期轉動的滾動軸承,( )是其主要的失效形式
對於長期轉動的滾動軸承,(疲勞剝落 )是其主要的失效形式!
疲勞有許多類型,對於滾動軸承來說主要是指接觸疲勞。滾動軸承套圈各滾動體表面在接觸應力的反復作用下,其滾動表面金屬從金屬基體呈點狀或片狀剝落下來的現象稱為疲勞剝落。點蝕也是由於材料疲勞引起一種疲勞現象,但形狀尺寸很小,點蝕擴展後將形成疲勞剝落。
疲勞剝落的形態特徵一般具有一定的深度和面積,使滾動表面呈凹凸不平的鱗狀,有尖銳的溝角.通常呈顯疲勞擴展特徵的海灘裝紋路.產生部位主要出現在套圈和滾動體的滾動表面.
㈩ 滾動軸承的失效形式有哪些
一、滾動軸承的磨損失效
磨損時滾動軸承最常見的一種失效形式。在滾動軸承運轉中,滾動體和套圈之間均存在滑動,這些滑動會引起零件接觸面的磨損。尤其在軸承中侵入金屬粉末、氧化物以及其他硬質顆粒時,則形成嚴重的磨料磨損,使磨損更為加劇。另外,由於振動和磨料的共同作用,對於處在非旋轉狀態的滾動軸承,會在套圈上形成與鋼球節距相同的凹坑,即為摩擦腐蝕現象。如果軸承與孔座或軸頸配合太松,在運行中引起的相對運動,又會造成軸承座孔或軸頸的磨損。當磨損量較大時,軸承便產生游隙雜訊,使振動增大。
二、滾動軸承的疲憊失效
在滾動軸承中,滾動體或套圈滾動表面由於接觸載荷的反復作用,表層因反復的彈性變形而致冷作硬化,下層的材料應力與表層出現斷層狀分布,導致從表面下形成細小裂紋,隨著以後的持續載荷運轉,裂紋逐步發展到表面,致使材料表面的裂紋相互貫通,直至金屬表層產生片狀或點坑狀剝落。軸承的這種失效形式成為疲勞失效。其主要原因是疲勞應力造成的,有時是由於潤滑不良或強迫安裝所引起。隨著滾動軸承的繼續運轉,損壞逐步增大。因為有脫落的碎片被滾壓在其餘部分滾道上,並給那裡造成局部超載荷而進一步使滾動損壞。軸承運轉時,一旦發生疲勞剝落,其振動和雜訊將急劇增大。
三、滾動軸承的腐蝕失效
軸承零件表面的腐蝕分三種類型。一是化學腐蝕,當水、酸等進入軸承或者使用含酸的潤滑劑,都會產生這種腐蝕。二是電腐蝕,由於軸承表面間有較大電流通過使表面產生點蝕。三是微振腐蝕,為軸承套圈在機座座孔中或軸頸上的微小相對運動而至。結果使套圈表面產生紅色或黑色的銹斑。軸承的腐蝕斑則是以後損壞的起點。
四、滾動軸承的塑變失效
壓痕主要是由於滾動軸承受載荷後,在滾動體和滾道接觸處產生塑性變形。載荷過大時會在滾道表面形成塑性變形凹坑。另外,若裝配不當,也會由於過載或撞擊造成表面局部凹陷。或者由於裝配敲擊,而在滾道上造成壓痕。
五、滾動軸承的斷裂失效
造成軸承零件的破斷或裂紋的重要原因是由於運行時載荷過大、轉速過高、潤滑不良或裝配不善而產生過大的熱應力,也有的是由於磨削或熱處理不當而導致的。
六、滾動軸承的膠合失效
滑動接觸的兩個表面,當一個表面上的金屬粘附到另一個表面上的現象稱為膠合。對於滾動軸承,當滾動體在保持架內被卡住或潤滑不足、速度過高造成摩擦熱過大,使保持架的材料粘附到滾子上而形成膠合。其膠合狀為螺旋形污斑狀。還有的是由於安裝的初間隙過小,熱膨脹引起滾動體與內外圈擠壓,致使在軸承的滾動中產生膠合和剝落。