A. 天文館里有什麼物體
北京天文館包含A、B兩館,共4個科普劇場。A館門廳正中有反映地球自轉的傅科擺,西側展廳陳列天文知識展覽,東側演講廳經常舉行學術交流和普及天文科學知識報告。庭院中有兩座天文台,其中一座裝有口徑13厘米的望遠鏡,可通過它觀看月亮、行星、星雲、星團,白天觀測太陽黑子。另一座是色球望遠鏡天文台,應用色球望遠鏡觀測和拍攝太陽色球層的變化。西側還有天文廣場,陳列室外觀測儀器 。
A館天象廳是中國大陸地區最大的地平式天象廳,內部設備處於世界領先水平。其中,蔡司九型光學天象儀和世界上解析度最高的全天域數字投影系統,不僅能為場內400名觀眾逼真還原地球上肉眼可見的9,000餘顆恆星,高達8K解析度的球幕影像,還能實現虛擬天象演示、三維宇宙空間模擬、數位元組目播放等多項功能 。
作為中國大陸地區最大的地平式天象廳,球幕內部直徑達到了23米,內部採用紅、綠、褐、藍四區排列,確保每一位觀眾都有一個良好的欣賞體驗視角;世界首創的13.1聲道立體環繞聲系統,能夠讓每個觀眾都體驗到獨特的環繞聲音效果 。
B館(新館)於2004年底正式建成開放,內有宇宙劇場、4D劇場、3D劇場3個科普劇場,以及天文展廳、太陽觀測台、大眾天文台、天文教室等各類科普教育設施。其中,半徑為18米的宇宙劇場擁有標准半球全天域銀幕,能同時為200名觀眾呈現立體天幕效果。B館由中國航天建築設計研究院設計,外觀上,呈現周邊扭曲的「空間紋理」(這種現象是愛因斯坦的相對論所闡釋的巨大質量天體迫使小質量天體扭曲變形,並吸引小天體墜入)。而在新館內部,宇宙劇場、動感影院等重點空間被安放在巨大的小提琴形狀的弦體中間,如同弦體震動中產生的基本粒子,其所依據的超弦體理論闡釋了重力與基本粒子之間的關系(該理論認為物質的基本粒子是在直徑極為細小的弦體震動時產生的)。
宇宙劇場是中國大陸地區首家球幕立體宇宙劇場。半徑18米,傾角15度的標准半球內配備產自美國的全鋁質金屬球幕作為全天域銀幕,劇場內播放超高解析度的細膩畫面搭配高浸入式顯示技術,3D效果卓越超群 。
4D劇場位於北京天文館B館2樓,整個影院可以容納200名觀眾同時觀看,觀眾觀賞影片時需戴上特殊的偏振立體眼鏡。根據影片情節的發展,特效設備會產生出噴水、噴風、閃電、捅背、滾珠、耳風和拍腿等特效。
3D劇場位於北京天文館B館地下一層,共設座椅116席,銀幕寬12米、高9米,是個階梯型的小巨幕影院。劇場採用了先進的播放設備,引進4K高清科普節目,畫面效果真實、清晰。
另外,位於建國門外的北京古觀象台也歸北京天文館管理,古觀象台是中國古代的皇家天文台。
B. 太陽系八大行星模型怎樣製作
1.首先准備太陽系八大行星模型的實驗器材。
八大行星是太陽系的八個大行星,按照離太陽的距離從近到遠,它們依次為水星、金星、地球、火星、木星、土星、天王星、海王星。八大行星自轉方向多數也和公轉方向一致。只有金星和天王星兩個例外。金星自轉方向與公轉方向相反。
2006年8月,在捷克首都布拉格的國際會議中心,2500多名來自世界各國的天文學家對行星定義決議草案進行投票表決。最終,國際天文學聯合會(IAU)第26屆大會確認太陽系只有8顆行星,而位居太陽系9大行星末席70多年的冥王星「慘遭降級」,被驅逐出了行星家族。
從此以後,這個遊走在太陽系邊緣的天體將只能與其他一些差不多大的「兄弟姐妹」一起被稱為「矮行星」。
C. 人類為了更好地觀測火星發明了什麼新奇的設備
2020年是火星探測任務發射的窗口期,我國計劃7月份在文昌使用長征5號火箭發射“天問一號”火星探測器。它包括一個環火星軌道的飛行器、一個著陸器和探測車。同時,在大西洋的彼岸,美國宇航局也將發射新的火星探測車,它的名字叫做“恆心號”。不僅如此,美國宇航局還加入了一項大膽的試驗,在火星上使用直升機飛越火星表面。它可以以更低的風險、更有效地觀察和研究火星表面。
眾所周知,火星上是有大氣存在的。但是火星上的大氣非常稀薄,相當於地球上3萬米高空的大氣。要在如此稀薄的大氣中產生升力,火星直升機的葉片旋轉速度要比地球上的直升機快10倍。而且考慮到航天器的載荷能力,這架火星直升機的重量不超過4磅。當然,最重要的是它要能在火星的極端環境中生存,火星夜間溫度能達到零下73攝氏度。
科學家還表示,這種“納米紙板”也可以用於地球上。地球大氣的中間層與火星相似,目前我們還沒有任何東西可以飛到那裡。該區域對於飛機和氣球來說太高,對於衛星來說又太低,所以科學家正在考慮將“納米紙板”飛行器布置在那裡以收集氣候數據。
D. 天文望遠鏡的種類
天文望遠鏡是觀測天體的重要手段,可以毫不誇大地說,沒有望遠鏡的誕生和發展,就沒有現代天文學。隨著望遠鏡在各方面性能的改進和提高,天文學也正經歷著巨大的飛躍,迅速推進著人類對宇宙的認識。
從第一架光學望遠鏡到射電望遠鏡誕生的三百多年中,光學望遠鏡一直是天文觀測最重要的工具,下面就對光學望遠鏡的發展作一個簡單的介紹。
折射式望遠鏡
1608年,荷蘭眼鏡商人李波爾賽偶然發現用兩塊鏡片可以看清遠處的景物,受此啟發,他製造了人類歷史第一架望遠鏡。
1609年,伽利略製作了一架口徑4.2厘米,長約1.2米的望遠鏡。他是用平凸透鏡作為物鏡,凹透鏡作為目鏡,這種光學系統稱為伽利略式望遠鏡。伽利略用這架望遠鏡指向天空,得到了一系列的重要發現,天文學從此進入瞭望遠鏡時代。
1611年,德國天文學家開普勒用兩片雙凸透鏡分別作為物鏡和目鏡,使放大倍數有了明顯的提高,以後人們將這種光學系統稱為開普勒式望遠鏡。現在人們用的折射式望遠鏡還是這兩種形式,天文望遠鏡是採用開普勒式。
需要指出的是,由於當時的望遠鏡採用單個透鏡作為物鏡,存在嚴重的色差,為了獲得好的觀測效果,需要用曲率非常小的透鏡,這勢必會造成鏡身的加長。所以在很長的一段時間內,天文學家一直在夢想製作更長的望遠鏡,許多嘗試均以失敗告終。
1757年,杜隆通過研究玻璃和水的折射和色散,建立了消色差透鏡的理論基礎,並用冕牌玻璃和火石玻璃製造了消色差透鏡。從此,消色差折射望遠鏡完全取代了長鏡身望遠鏡。但是,由於技術方面的限制,很難鑄造較大的火石玻璃,在消色差望遠鏡的初期,最多隻能磨製出10厘米的透鏡。
十九世紀末,隨著製造技術的提高,製造較大口徑的折射望遠鏡成為可能,隨之就出現了一個製造大口徑折射望遠鏡的高潮。世界上現有的8架70厘米以上的折射望遠鏡有7架是在1885年到1897年期間建成的,其中最有代表性的是1897年建成的口徑102厘米的葉凱士望遠鏡和1886年建成的口徑91厘米的里克望遠鏡。
折射望遠鏡的優點是焦距長,底片比例尺大,對鏡筒彎曲不敏感,最適合於做天體測量方面的工作。但是它總是有殘余的色差,同時對紫外、紅外波段的輻射吸收很厲害。而巨大的光學玻璃澆制也十分困難,到1897年葉凱士望遠鏡建成,折射望遠鏡的發展達到了頂點,此後的這一百年中再也沒有更大的折射望遠鏡出現。這主要是因為從技術上無法鑄造出大塊完美無缺的玻璃做透鏡,並且,由於重力使大尺寸透鏡的變形會非常明顯,因而喪失明銳的焦點。
反射式望遠鏡:
第一架反射式望遠鏡誕生於1668年。牛頓經過多次磨製非球面的透鏡均告失敗後,決定採用球面反射鏡作為主鏡。他用2.5厘米直徑的金屬,磨製成一塊凹面反射鏡,並在主鏡的焦點前面放置了一個與主鏡成45o角的反射鏡,使經主鏡反射後的會聚光經反射鏡以90o角反射出鏡筒後到達目鏡。這種系統稱為牛頓式反射望遠鏡。它的球面鏡雖然會產生一定的象差,但用反射鏡代替折射鏡卻是一個巨大的成功。
詹姆斯·格雷戈里在1663年提出一種方案:利用一面主鏡,一面副鏡,它們均為凹面鏡,副鏡置於主鏡的焦點之外,並在主鏡的中央留有小孔,使光線經主鏡和副鏡兩次反射後從小孔中射出,到達目鏡。這種設計的目的是要同時消除球差和色差,這就需要一個拋物面的主鏡和一個橢球面的副鏡,這在理論上是正確的,但當時的製造水平卻無法達到這種要求,所以格雷戈里無法得到對他有用的鏡子。
1672年,法國人卡塞格林提出了反射式望遠鏡的第三種設計方案,結構與格雷戈里望遠鏡相似,不同的是副鏡提前到主鏡焦點之前,並為凸面鏡,這就是現在最常用的卡賽格林式反射望遠鏡。這樣使經副鏡鏡反射的光稍有些發散,降低了放大率,但是它消除了球差,這樣製作望遠鏡還可以使焦距很短。
卡塞格林式望遠鏡的主鏡和副鏡可以有多種不同的形式,光學性能也有所差異。由於卡塞格林式望遠鏡焦距長而鏡身短,放大倍率也大,所得圖象清晰;既有卡塞格林焦點,可用來研究小視場內的天體,又可配置牛頓焦點,用以拍攝大面積的天體。因此,卡塞格林式望遠鏡得到了非常廣泛的應用。
赫歇爾是製作反射式望遠鏡的大師,他早年為音樂師,因為愛好天文,從1773年開始磨製望遠鏡,一生中製作的望遠鏡達數百架。赫歇爾製作的望遠鏡是把物鏡斜放在鏡筒中,它使平行光經反射後匯聚於鏡筒的一側。
在反射式望遠鏡發明後的近200年中,反射材料一直是其發展的障礙:鑄鏡用的青銅易於腐蝕,不得不定期拋光,需要耗費大量財力和時間,而耐腐蝕性好的金屬,比青銅密度高且十分昂貴。1856年德國化學家尤斯圖斯·馮·利比希研究出一種方法,能在玻璃上塗一薄層銀,經輕輕的拋光後,可以高效率地反射光。這樣,就使得製造更好、更大的反射式望遠鏡成為可能。
1918年末,口徑為254厘米的胡克望遠鏡投入使用,這是由海爾主持建造的。天文學家用這架望遠鏡第一次揭示了銀河系的真實大小和我們在其中所處的位置,更為重要的是,哈勃的宇宙膨脹理論就是用胡克望遠鏡觀測的結果。
二十世紀二、三十年代,胡克望遠鏡的成功激發了天文學家建造更大反射式望遠鏡的熱情。1948年,美國建造了口徑為508厘米望遠鏡,為了紀念卓越的望遠鏡製造大師海爾,將它命名為海爾望遠鏡。從設計到製造完成海爾望遠鏡經歷了二十多年,盡管它比胡克望遠鏡看得更遠,分辨能力更強,但它並沒有使人類對宇宙的有更新的認識。正如阿西摩夫所說:"海爾望遠鏡(1948年)就象半個世紀以前的葉凱士望遠鏡(1897年)一樣,似乎預兆著一種特定類型的望遠鏡已經快發展到它的盡頭了"。在1976 年前蘇聯建造了一架600厘米的望遠鏡,但它發揮的作用還不如海爾望遠鏡,這也印證了阿西摩夫所說的話。
反射式望遠鏡有許多優點,比如:沒有色差,能在廣泛的可見光范圍內記錄天體發出的信息,且相對於折射望遠鏡比較容易製作。但由於它也存在固有的不足:如口徑越大,視場越小,物鏡需要定期鍍膜等。
折反射式望遠鏡:
折反射式望遠鏡最早出現於1814年。1931年,德國光學家施密特用一塊別具一格的接近於平行板的非球面薄透鏡作為改正鏡,與球面反射鏡配合,製成了可以消除球差和軸外象差的施密特式折反射望遠鏡,這種望遠鏡光力強、視場大、象差小,適合於拍攝大面積的天區照片,尤其是對暗弱星雲的拍照效果非常突出。施密特望遠鏡已經成了天文觀測的重要工具。
1940年馬克蘇托夫用一個彎月形狀透鏡作為改正透鏡,製造出另一種類型的折反射望遠鏡,它的兩個表面是兩個曲率不同的球面,相差不大,但曲率和厚度都很大。它的所有表面均為球面,比施密特式望遠鏡的改正板容易磨製,鏡筒也比較短,但視場比施密特式望遠鏡小,對玻璃的要求也高一些。
由於折反射式望遠鏡能兼顧折射和反射兩種望遠鏡的優點,非常適合業余的天文觀測和天文攝影,並且得到了廣大天文愛好者的喜愛。
望遠鏡的集光能力隨著口徑的增大而增強,望遠鏡的集光能力越強,就能夠看到更暗更遠的天體,這其實就是能夠看到了更早期的宇宙。天體物理的發展需要更大口徑的望遠鏡。
但是,隨著望遠鏡口徑的增大,一系列的技術問題接踵而來。海爾望遠鏡的鏡頭自重達14.5噸,可動部分的重量為530噸,而6米鏡更是重達800噸。望遠鏡的自重引起的鏡頭變形相當可觀,溫度的不均勻使鏡面產生畸變也影響了成象質量。從製造方面看,傳統方法製造望遠鏡的費用幾乎與口徑的平方或立方成正比,所以製造更大口徑的望遠鏡必須另闢新徑。
自七十年代以來,在望遠鏡的製造方面發展了許多新技術,涉及光學、力學、計算機、自動控制和精密機械等領域。這些技術使望遠鏡的製造突破了鏡面口徑的局限,並且降低造價和簡化望遠鏡結構。特別是主動光學技術的出現和應用,使望遠鏡的設計思想有了一個飛躍。
從八十年代開始,國際上掀起了製造新一代大型望遠鏡的熱潮。其中,歐洲南方天文台的VLT,美、英、加合作的GEMINI,日本的SUBARU的主鏡採用了薄鏡面;美國的Keck I、Keck II和HET望遠鏡的主鏡採用了拼接技術。
優秀的傳統望遠鏡卡塞格林焦點在最好的工作狀態下,可以將80%的幾何光能集中在0〃.6范圍內,而採用新技術製造的新一代大型望遠鏡可保持80%的光能集中在0〃.2~0〃.4,甚至更好。
下面對幾個有代表性的大型望遠鏡分別作一些介紹:
凱克望遠鏡(Keck I,Keck II)
Keck I 和Keck II分別在1991年和1996年建成,這是當前世界上已投入工作的最大口徑的光學望遠鏡,因其經費主要由企業家凱克(Keck W M)捐贈(Keck I 為9400萬美元,Keck II為7460萬美元)而命名。這兩台完全相同的望遠鏡都放置在夏威夷的莫納克亞,將它們放在一起是為了做干涉觀測。
它們的口徑都是10米,由36塊六角鏡面拼接組成,每塊鏡面口徑均為1.8米,而厚度僅為10厘米,通過主動光學支撐系統,使鏡面保持極高的精度。焦面設備有三個:近紅外照相機、高解析度CCD探測器和高色散光譜儀。
"象Keck這樣的大望遠鏡,可以讓我們沿著時間的長河,探尋宇宙的起源,Keck更是可以讓我們看到宇宙最初誕生的時刻"。
歐洲南方天文台甚大望遠鏡(VLT)
歐洲南方天文台自1986年開始研製由4台8米口徑望遠鏡組成一台等效口徑為16米的光學望遠鏡。這4台8米望遠鏡排列在一條直線上,它們均為RC光學系統,焦比是F/2,採用地平裝置,主鏡採用主動光學系統支撐,指向精度為1〃,跟蹤精度為0.05〃,鏡筒重量為100噸,叉臂重量不到120噸。這4台望遠鏡可以組成一個干涉陣,做兩兩干涉觀測,也可以單獨使用每一台望遠鏡。
現在已完成了其中的兩台,預計於2000年可全部完成。
雙子望遠鏡(GEMINI)
雙子望遠鏡是以美國為主的一項國際設備(其中,美國佔50%,英國佔25%,加拿大佔15%,智利佔5%,阿根廷佔2.5%,巴西佔2.5%),由美國大學天文聯盟(AURA)負責實施。它由兩個8米望遠鏡組成,一個放在北半球,一個放在南半球,以進行全天系統觀測。其主鏡採用主動光學控制,副鏡作傾斜鏡快速改正,還將通過自適應光學系統使紅外區接近衍射極限。
該工程於1993年9月開始啟動,第一台在1998年7月在夏威夷開光,第二台於2000年9月在智利賽拉帕瓊台址開光,整個系統預計在2001年驗收後正式投入使用。
昴星團(日本)8米望遠鏡(SUBARU)
這是一台8米口徑的光學/紅外望遠鏡。它有三個特點:一是鏡面薄,通過主動光學和自適應光學獲得較高的成象質量;二是可實現0.1〃的高精度跟蹤;三是採用圓柱形觀測室,自動控制通風和空氣過濾器,使熱湍流的排除達到最佳條件。此望遠鏡採用Serrurier桁架,可使主鏡框與副鏡框在移動中保持平行。
此望遠鏡將安裝在夏威夷的莫納克亞,從1991年開始,預計9年完成。
大天區多目標光纖光譜望遠鏡(LAMOST)
這是我國正在興建中的一架有效通光口徑為4米、焦距為20米、視場達20平方度的中星儀式的反射施密特望遠鏡。它的技術特色是:
1. 把主動光學技術應用在反射施密特系統,在跟蹤天體運動中作實時球差改正,實現大口徑和大視場兼備的功能。
2. 球面主鏡和反射鏡均採用拼接技術。
3. 多目標光纖(可達4000根,一般望遠鏡只有600根)的光譜技術將是一個重要突破。
LAMOST把普測的星系極限星等推到20.5m,比SDSS計劃高2等左右,實現107個星系的光譜普測,把觀測目標的數量提高1個量級。
1932年央斯基(Jansky. K. G)用無線電天線探測到來自銀河系中心(人馬座方向)的射電輻射,這標志著人類打開了在傳統光學波段之外進行觀測的第一個窗口。
第二次世界大戰結束後,射電天文學脫穎而出,射電望遠鏡為射電天文學的發展起了關鍵的作用,比如:六十年代天文學的四大發現,類星體,脈沖星,星際分子和宇宙微波背景輻射,都是用射電望遠鏡觀測得到的。射電望遠鏡的每一次長足的進步都會毫無例外地為射電天文學的發展樹立一個里程碑。
英國曼徹斯特大學於1946年建造了直徑為66.5米的固定式拋物面射電望遠鏡,1955年又建成了當時世界上最大的可轉動拋物面射電望遠鏡;
六十年代,美國在波多黎各阿雷西博鎮建造了直徑達305米的拋物面射電望遠鏡,它是順著山坡固定在地表面上的,不能轉動,這是世界上最大的單孔徑射電望遠鏡。
1962年,Ryle發明了綜合孔徑射電望遠鏡,他也因此獲得了1974年諾貝爾物理學獎。綜合孔徑射電望遠鏡實現了由多個較小天線結構獲得相當於大口徑單天線所能取得的效果。
1967年Broten等人第一次記錄到了VLBI干涉條紋。
七十年代,聯邦德國在波恩附近建造了100米直徑的全向轉動拋物面射電望遠鏡,這是世界上最大的可轉動單天線射電望遠鏡。
八十年代以來,歐洲的VLBI網(EVN),美國的VLBA陣,日本的空間VLBI(VSOP)相繼投入使用,這是新一代射電望遠鏡的代表,它們在靈敏度、解析度和觀測波段上都大大超過了以往的望遠鏡。
中國科學院上海天文台和烏魯木齊天文站的兩架25米射電望遠鏡作為正式成員參加了美國的地球自轉連續觀測計劃(CORE)和歐洲的甚長基線干涉網(EVN),這兩個計劃分別用於地球自轉和高精度天體測量研究(CORE)和天體物理研究(EVN)。這種由各國射電望遠鏡聯合進行長基線干涉觀測的方式,起到了任何一個國家單獨使用大望遠鏡都不能達到的效果。
另外,美國國立四大天文台(NARO)研製的100米單天線望遠鏡(GBT),採用無遮擋(偏饋),主動光學等設計,該天線目前正在安裝中,2000年有可能投入使用。
國際上將聯合發展接收面積為1平方公里的低頻射電望遠鏡陣(SKA),該計劃將使低頻射電觀測的靈敏度約有兩個量級的提高,有關各國正在進行各種預研究。
在增加射電觀測波段覆蓋方面,美國史密松天體物理天文台和中國台灣天文與天體物理研究院正在夏威夷建造國際上第一個亞毫米波干涉陣(SMA),它由8個6米的天線組成,工作頻率從190GHz到85z,部分設備已經安裝。美國的毫米波陣(MMA)和歐洲的大南天陣(LAS)將合並成為一個新的毫米波陣計劃――ALMA。這個計劃將有64個12米天線組成,最長基線達到10公里以上,工作頻率從70到950GHz,放在智利的Atacama附近,如果合並順利,將在2001年開始建造,日本方面也在考慮參加該計劃的可能性。
在提高射電觀測的角解析度方面,新一代的大型設備大多數考慮干涉陣的方案;為了進一步提高空間VLBI觀測的角解析度和靈敏度,第二代空間VLBI計劃――ARISE(25米口徑)已經提出。
相信這些設備的建成並投入使用將會使射電天文成為天文學的重要研究手段,並會為天文學發展帶來難以預料的機會。
我們知道,在地球表面有一層濃厚的大氣,由於地球大氣中各種粒子與天體輻射的相互作用(主要是吸收和反射),使得大部分波段范圍內的天體輻射無法到達地面。人們把能到達地面的波段形象地稱為"大氣窗口",這種"窗口"有三個。
光學窗口:這是最重要的一個窗口,波長在300~700納米之間,包括了可見光波段(400~700納米),光學望遠鏡一直是地面天文觀測的主要工具。
紅外窗口:紅外波段的范圍在0.7~1000微米之間,由於地球大氣中不同分子吸收紅外線波長不一致,造成紅外波段的情況比較復雜。對於天文研究常用的有七個紅外窗口。
射電窗口:射電波段是指波長大於1毫米的電磁波。大氣對射電波段也有少量的吸收,但在40毫米~30米的范圍內大氣幾乎是完全透明的,我們一般把1毫米~30米的范圍稱為射電窗口。
大氣對於其它波段,比如紫外線、X射線、γ射線等均為不透明的,在人造衛星上天後才實現這些波段的天文觀測。
紅外望遠鏡:
最早的紅外觀測可以追溯到十八世紀末。但是,由於地球大氣的吸收和散射造成在地面進行的紅外觀測只局限於幾個近紅外窗口,要獲得更多紅外波段的信息,就必須進行空間紅外觀測。現代的紅外天文觀測興盛於十九世紀六、七十年代,當時是採用高空氣球和飛機運載的紅外望遠鏡或探測器進行觀測。
1983年1月23日由美英荷聯合發射了第一顆紅外天文衛星IRAS。其主體是一個口徑為57厘米的望遠鏡,主要從事巡天工作。IRAS的成功極大地推動了紅外天文在各個層次的發展。直到現在,IRAS的觀測源仍然是天文學家研究的熱點目標。
1995年11月17日由歐洲、美國和日本合作的紅外空間天文台(ISO)發射升空並進入預定軌道。ISO的主體是一個口徑為60厘米的R-C式望遠鏡,它的功能和性能均比IRAS有許多提高,它攜帶了四台觀測儀器,分別實現成象、偏振、分光、光柵分光、F-P干涉分光、測光等功能。與IRAS相比,ISO從近紅外到遠紅外,更寬的波段范圍;有更高的空間解析度;更高的靈敏度(約為IRAS的100倍);以及更多的功能。
ISO的實際工作壽命為30個月,對目標進行定點觀測(IRAS的觀測是巡天觀測),這能有的放矢地解決天文學家提出的問題。預計在今後的幾年中,以ISO數據為基礎的研究將會成為天文學的熱點之一。
從太陽繫到宇宙大尺度紅外望遠鏡與光學望遠鏡有許多相同或相似之處,因此可以對地面的光學望遠鏡進行一些改裝,使它能同時也可從事紅外觀測。這樣就可以用這些望遠鏡在月夜或白天進行紅外觀測,更大地發揮觀測設備的效率。
紫外望遠鏡:
紫外波段是介於X射線和可見光之間的頻率范圍,觀測波段為3100~100埃。紫外觀測要放在150公里的高度才能進行,以避開臭氧層和大氣的吸收。第一次紫外觀測是用氣球將望遠鏡載上高空,以後用了火箭,太空梭和衛星等空間技術才使紫外觀測有了真正的發展。
紫外波段的觀測在天體物理上有重要的意義。紫外波段是介於X射線和可見光之間的頻率范圍,在歷史上紫外和可見光的劃分界限在3900埃,當時的劃分標準是肉眼能否看到。現代紫外天文學的觀測波段為3100~100埃,和X射線相接,這是因為臭氧層對電磁波的吸收界限在這里。
1968年美國發射了OAO-2,之後歐洲也發射了TD-1A,它們的任務是對天空的紫外輻射作一般性的普查觀測。被命名為哥白尼號的OAO-3於1972年發射升空,它攜帶了一架0.8米的紫外望遠鏡,正常運行了9年,觀測了天體的950~3500埃的紫外譜。
1978年發射了國際紫外探測者(IUE),雖然其望遠鏡的口徑比哥白尼號小,但檢測靈敏度有了極大的提高。IUE的觀測數據成為重要的天體物理研究資源。
1990年12月2~11日,哥倫比亞號太空梭搭載Astro-1天文台作了空間實驗室第一次紫外光譜上的天文觀測;1995年3月2日開始,Astro-2天文台完成了為期16天的紫外天文觀測。
1992年美國宇航局發射了一顆觀測衛星――極遠紫外探索衛星(EUVE),是在極遠紫外波段作巡天觀測。
1999年6月24日FUSE衛星發射升空,這是NASA的"起源計劃"項目之一,其任務是要回答天文學有關宇宙演化的基本問題。
紫外天文學是全波段天文學的重要組成部分,自哥白尼號升空至今的30年中,已經發展了紫外波段的EUV(極端紫外)、FUV(遠紫外)、UV(紫外)等多種探測衛星,覆蓋了全部紫外波段。
X射線望遠鏡:
X射線輻射的波段范圍是0.01-10納米,其中波長較短(能量較高)的稱為硬X射線,波長較長的稱為軟X射線。天體的X射線是根本無法到達地面的,因此只有在六十年代人造地球衛星上天後,天文學家才獲得了重要的觀測成果,X射線天文學才發展起來。早期主要是對太陽的X射線進行觀測。
1962年6月,美國麻省理工學院的研究小組第一次發現來自天蠍座方向的強大X射線源,這使非太陽X射線天文學進入了較快的發展階段。七十年代,高能天文台1號、2號兩顆衛星發射成功,首次進行了X射線波段的巡天觀測,使X射線的觀測研究向前邁進了一大步,形成對X射線觀測的熱潮。進入八十年代以來,各國相繼發射衛星,對X射線波段進行研究:
1987年4月,由前蘇聯的火箭將德國、英國、前蘇聯、及荷蘭等國家研製的X射線探測器送入太空;
1987年日本的X射線探測衛星GINGA發射升空;
1989年前蘇聯發射了一顆高能天體物理實驗衛星――GRANAT,它載有前蘇聯、法國、保加利亞和丹麥等國研製的7台探測儀器,主要工作為成象、光譜和對爆發現象的觀測與監測;
1990年6月,倫琴X射線天文衛星(簡稱ROSAT)進入地球軌道,為研究工作取得大批重要的觀測資料,到現在它已基本完成預定的觀測任務;
1990年12月"哥倫比亞"號太空梭將美國的"寬頻X射線望遠鏡"帶入太空進行了為期9天的觀測;
1993年2月,日本的"飛鳥"X射線探測衛星由火箭送入軌道;
1996年美國發射了"X射線光度探測衛星"(XTE),
1999年7月23日美國成功發射了高等X射線天體物理設備(CHANDRA)中的一顆衛星,另一顆將在2000年發射;
1999年12月13日歐洲共同體宇航局發射了一顆名為XMM的衛星。
2000年日本也將發射一顆X射線的觀測設備。
以上這些項目和計劃表明,未來幾年將會是一個X射線觀測和研究的高潮。
γ射線望遠鏡:
γ射線比硬X射線的波長更短,能量更高,由於地球大氣的吸收,γ射線天文觀測只能通過高空氣球和人造衛星搭載的儀器進行。
1991年,美國的康普頓(γ射線)空間天文台(Compton GRO或CGRO)由太空梭送入地球軌道。它的主要任務是進行γ波段的首次巡天觀測,同時也對較強的宇宙γ射線源進行高靈敏度、高解析度的成象、能譜測量和光變測量,取得了許多有重大科學價值的結果。
CGRO配備了4台儀器,它們在規模和性能上都比以往的探測設備有量級上的提高,這些設備的研製成功為高能天體物理學的研究帶來了深刻的變化,也標志著γ射線天文學開始逐漸進入成熟階段。CGRO攜帶的四台儀器分別是:爆發和暫時源實驗(BATSE),可變向閃爍光譜儀實驗(OSSE),1Mev~30Mev范圍內工作的成象望遠鏡(COMPTEL),1Mev~30Mev范圍內工作的成象望遠鏡(COMPTEL)。
受到康普頓空間天文台成功的鼓舞,歐洲和美國的科研機構合作制訂了一個新的γ射線望遠鏡計劃-INTEGRAL,准備在2001年送入太空,它的上天將為康普頓空間天文台之後的γ射線天文學的進一步發展奠定基礎。
我們知道,地球大氣對電磁波有嚴重的吸收,我們在地面上只能進行射電、可見光和部分紅外波段的觀測。隨著空間技術的發展,在大氣外進行觀測已成為可能,所以就有了可以在大氣層外觀測的空間望遠鏡(Space telescope)。空間觀測設備與地面觀測設備相比,有極大的優勢:以光學望遠鏡為例,望遠鏡可以接收到寬得多的波段,短波甚至可以延伸到100納米。沒有大氣抖動後,分辨本領可以得到很大的提高,空間沒有重力,儀器就不會因自重而變形。前面介紹的紫外望遠鏡、X射線望遠鏡、γ射線望遠鏡以及部分紅外望遠鏡的觀測都都是在地球大氣層外進行的,也屬於空間望遠鏡。
哈勃空間望遠鏡(HST):
這是由美國宇航局主持建造的四座巨型空間天文台中的第一座,也是所有天文觀測項目中規模最大、投資最多、最受到公眾注目的一項。它籌建於1978年,設計歷時7年,1989年完成,並於1990年4月25日由太空梭運載升空,耗資30億美元。但是由於人為原因造成的主鏡光學系統的球差,不得不在1993年12月2日進行了規模浩大的修復工作。成功的修復使HST性能達到甚至超過了原先設計的目標,觀測結果表明,它的解析度比地面的大型望遠鏡高出幾十倍。
HST最初升空時攜帶了5台科學儀器:廣角/行星照相機,暗弱天體照相機,暗弱天體光譜儀,高解析度光譜儀和高速光度計。
1997年的維修中,為HST安裝了第二代儀器:有空間望遠鏡成象光譜儀、近紅外照相機和多目標攝譜儀,把HST的觀測范圍擴展到了近紅外並提高了紫外光譜上的效率。
1999年12月的維修為HST更換了陀螺儀和新的計算機,並安裝了第三代儀器――高級普查攝像儀,這將提高HST在紫外-光學-近紅外的靈敏度和成圖的性能。
HST對國際天文學界的發展有非常重要的影響。
二十一世紀初的空間天文望遠鏡:
"下一代大型空間望遠鏡"(NGST)和"空間干涉測量飛行任務"(SIM)是NASA"起源計劃"的關鍵項目,用於探索在宇宙最早期形成的第一批星系和星團。其中,NGST是大孔徑被動製冷望遠鏡,口徑在4~8米之間,是HST和SIRTF(紅外空間望遠鏡)的後續項目。它強大的觀測能力特別體現在光學、近紅外和中紅外的大視場、衍射限成圖方面。將運行於近地軌道的SIM採用邁克爾干涉方案,提供毫角秒級精度的恆星的精密絕對定位測量,同時由於具有綜合成圖能力,能產生高解析度的圖象,所以可以用於實現搜索其它行星等科學目的。
"天體物理的全天球天體測量干涉儀"(GAIA)將會在對銀河系的總體幾何結構及其運動學做全面和徹底的普查,在此基礎上開辟廣闊的天體物理研究領域。GAIA採用Fizeau干涉方案,視場為1°。GAIA和SIM的任務在很大程度上是互補的。
E. 古時的天文觀測儀器有哪些
古代的天文觀測儀器還有很多的,例如,度量太陽影子長度的儀器圭表。他這個可以記錄太陽影子的變換,來用來確定季節的變化。還可以用來定方向等等。
古人的智慧是無限的,用自己的智慧,創造了很多的有利於生產的儀器。
F. 中國古代的科學儀器有哪些
【生命科學】電泳儀/電泳槽 細胞樣品收集器 自動部分收集器/自動樣品采樣儀 PCR擴增儀/PCR熱循環儀 紫外檢測儀/紫外分析儀 液氮生物容器(液氮罐) 冷凍乾燥機(凍干機) 乾式恆溫器/恆溫混勻儀 血紅蛋白儀 核酸蛋白儀/酶標儀/生化分析儀 雪花製冰機 組織晶元制備儀/細胞程式控制降溫儀 動物人工呼吸機/溶劑過濾器 層析柱 微波化學反應器 移液器/移液槍/分液器 微孔板恆溫孵育器 氮氣吹掃儀
【光學儀器】可見分光光度計 紫外可見分光光度計 熒光分光光度計 紅外分光光度計 原子吸收分光光度計 光澤度儀(計) 旋光儀/圓盤旋光儀 火焰光度計 白度測定儀(白度計) 測色儀/色差儀/羅維朋比色計 應力儀 熔點測定儀/熔點儀 照度計/日照計/測光儀 紫外輻照計 光度計/光強計/亮度計 光電霧度計/透光率霧度測定儀 阿貝折射儀/棱鏡折射儀
【箱類器材】真空乾燥箱 鼓風乾燥箱 電熱恆溫乾燥箱 遠紅外乾燥箱(烘箱) 膠片乾燥箱 精密節能乾燥箱 黴菌培養箱 振盪培養箱 隔水式培養箱 電熱恆溫培養箱 光照培養箱 生化培養箱 人工氣候箱(培養箱) 恆溫恆濕箱 高低溫試驗箱(濕熱試驗箱) 鹽霧試驗箱 二氧化碳培養箱(CO2) 植物培養箱/植物生長箱 老化試驗箱 真空手套箱(惰性氣體操作箱) 電熱恆溫水箱 高溫燒結箱 定碳爐 低溫冷阱/半導體冷阱
【溫控儀表】電熱板/加熱板/控溫板 電熱套/加熱套/控溫套 箱式電阻爐(馬弗爐) 管式電阻爐/管式高溫爐 坩堝電阻爐/坩堝電爐 單管定碳爐/雙管定碳爐 封閉電爐/萬用電爐 恆溫水(油)浴/恆溫水槽 恆溫水浴鍋 低溫恆溫槽/低溫恆溫浴 控溫儀/溫控儀/溫度控制儀 電砂浴/電沙浴
【無損檢測】轉速表/頻閃儀 測振儀(振動監測儀/變送器) 機械故障檢測儀/機械故障聽診器 地下管道/管線探測檢漏儀 麥式真空計/壓力真空計/熱偶計/電阻計/復合計 泄漏檢測儀 電火花檢漏儀/電火花針孔檢測儀 現場動平衡儀 洗片機/觀片燈 超聲探傷儀 磁粉探傷儀 X射線探傷機 其它無損檢測設備 焊縫外觀檢測工具箱 表面粗糙度測量儀 紅外測溫儀 看譜鏡(驗鋼鏡) 黑白密度計 油質分析儀
【量具量儀】數顯卡尺 游標卡尺 帶表卡尺 千分表/百分表 千分尺 高度尺/深度尺 數顯萬能角度尺 扭矩測量儀/扭力測試儀 卡表/卡規 數顯標尺 管形測力計/管形拉力計/管形推力計 推拉測力計/拉壓測力計/拉力計
【除濕凈化】除濕機/抽濕機/吸濕機 超聲波清洗器 空氣凈化器 自動蒸餾水器/電熱蒸餾水器 滅菌器/蒸汽消毒器 臭氧消毒機 超凈工作台 消毒殺菌凈手器 電動氣溶膠噴霧器 純水機/超純水機 防潮櫃/防潮箱/氮氣櫃 不銹鋼存屍冷藏櫃
【常規設備】電動攪拌機 磁力攪拌器 研磨機/球磨機/沙磨機/平磨機 勻漿機/分散機/均質機/搗碎機 萬能粉碎機/中葯粉碎機/破碎機 錐形磨/膠體磨 恆溫搖床/脫色搖床/搖瓶櫃 振盪器/恆溫振盪器 旋渦混合器/梯度混合器 空氣壓縮機/無油空壓機 粉末壓片機(油壓機)/模具 切割機/鑲嵌機 拋光機/預磨機/磨拋機 定時器/定時計 旋轉蒸發器 層析實驗冷櫃 玻璃反應釜/真空恆溫反應器
【石化儀器】石油產品閃點和燃點試驗器 石油產品恩氏粘度計 石油產品密度試驗器 銅片/銀片/潤滑脂/液相腐蝕試驗器 石油產品蒸餾(餾程)試驗器 石油產品酸值/酸度試驗器 石油產品灰分測定儀/色度測定儀 石油產品水分試驗器 石油產品硫含量試驗器 機械雜質/殘留物/殘炭/沉澱物測定儀 石油產品運動粘度測定器 傾點/濁點/冰點/凝點/冷濾點試驗器 抗泡沫特性/抗乳化性能試驗器 潤滑脂滴點試驗器 飽和蒸汽壓試驗器/實際膠質試驗器 原油中蠟含量測定儀 氧化安定性測定儀 潤滑油蒸發損失測定儀 液體石油采樣器/取樣器 絕緣油耐壓測定儀 絕緣油體積電阻率測定儀 潤滑油空氣釋放值測定儀 萘結晶點試驗器/苯胺點試驗器
【葯檢儀器】切片機 澄明度檢測儀 片劑多用測定儀(硬度.脆碎度.崩解度.溶出度) 葯物光照試驗儀 制丸機 細菌內毒素檢查儀 葯物透皮擴散試驗儀 葯物溶出度儀 片劑脆碎度測定儀 微機熱原測溫儀 崩解時限測定儀(崩解儀) 包衣機/小型包衣機
【塗料儀器】塗料比重杯 漆膜附著力試驗儀/劃格試驗儀 建築塗料耐洗刷儀/磨耗儀 粒子細度試驗儀(刮板細度計) 三輥機/平磨機 塗膜器/成膜器 乾燥性能試驗儀 柔韌性測試儀(杯突試驗儀/彎曲試驗儀/彈性試驗器) 樣品雜質分析儀 漆膜沖擊試驗機 目視比色箱/鐵鑽比色計
G. 我要一些關於科學的實驗器材。。
天平--測質量
量筒——測液體體積
停表--測時間
溫度計--測溫度
電壓表--測電壓
電流表--測電流
刻度尺--測長度
彈簧秤--測力
密度計--測密度
壓強計--測壓強
氣壓計--測氣壓
顯微鏡--觀察微小物體
天文望遠鏡--觀察遙遠的星空
酒精燈--加熱
試管--少量物質反應的容器
H. 天文望遠鏡的各部位名稱,和用途。
天文望遠鏡目錄[隱藏]
概況
折射式望遠鏡
折反射式望遠鏡
現代大型光學望遠鏡
射電望遠鏡
空間望遠鏡
其它波段的望遠鏡
望遠鏡的表示方法
[編輯本段]概況
Astronomical Telescope
天文望遠鏡是觀測天體的重要手段,可以毫不誇大地說,沒有望遠鏡的誕生和發展,就沒有現代天文學。隨著望遠鏡在各方面性能的改進和提高,天文學也正經歷著巨大的飛躍,迅速推進著人類對宇宙的認識。
[編輯本段]折射式望遠鏡
1609年,伽利略製作了一架口徑4.2厘米,長約1.2米的望遠鏡。他是用平凸透鏡作為物鏡,凹透鏡作為目鏡,這種光學系統稱為伽利略式望遠鏡。伽利略用這架望遠鏡指向天空,得到了一系列的重要發現,天文學從此進入瞭望遠鏡時代。
1611年,德國天文學家開普勒用兩片雙凸透鏡分別作為物鏡和目鏡,使放大倍數有了明顯的提高,以後人們將這種光學系統稱為開普勒式望遠鏡。現在人們用的折射式望遠鏡還是這兩種形式,天文望遠鏡是採用開普勒式。
需要指出的是,由於當時的望遠鏡採用單個透鏡作為物鏡,存在嚴重的色差,為了獲得好的觀測效果,需要用曲率非常小的透鏡,這勢必會造成鏡身的加長。所以在很長的一段時間內,天文學家一直在夢想製作更長的望遠鏡,許多嘗試均以失敗告終。
1757年,杜隆通過研究玻璃和水的折射和色散,建立了消色差透鏡的理論基礎,並用冕牌玻璃和火石玻璃製造了消色差透鏡。從此,消色差折射望遠鏡完全取代了長鏡身望遠鏡。但是,由於技術方面的限制,很難鑄造較大的火石玻璃,在消色差望遠鏡的初期,最多隻能磨製出10厘米的透鏡。
十九世紀末,隨著製造技術的提高,製造較大口徑的折射望遠鏡成為可能,隨之就出現了一個製造大口徑折射望遠鏡的高潮。世界上現有的8架70厘米以上的折射望遠鏡有7架是在1885年到1897年期間建成的,其中最有代表性的是1897年建成的口徑102厘米的葉凱士望遠鏡和1886年建成的口徑91厘米的里克望遠鏡。
折射望遠鏡的優點是焦距長,底片比例尺大,對鏡筒彎曲不敏感,最適合於做天體測量方面的工作。但是它總是有殘余的色差,同時對紫外、紅外波段的輻射吸收很厲害。而巨大的光學玻璃澆制也十分困難,到1897年葉凱士望遠鏡建成,折射望遠鏡的發展達到了頂點,此後的這一百年中再也沒有更大的折射望遠鏡出現。這主要是因為從技術上無法鑄造出大塊完美無缺的玻璃做透鏡,並且,由於重力使大尺寸透鏡的變形會非常明顯,因而喪失明銳的焦點。
[編輯本段]折反射式望遠鏡
折反射式望遠鏡最早出現於1814年。1931年,德國光學家施密特用一塊別具一格的接近於平行板的非球面薄透鏡作為改正鏡,與球面反射鏡配合,製成了可以消除球差和軸外象差的施密特式折反射望遠鏡,這種望遠鏡光力強、視場大、象差小,適合於拍攝大面積的天區照片,尤其是對暗弱星雲的拍照效果非常突出。施密特望遠鏡已經成了天文觀測的重要工具。
1940年馬克蘇托夫用一個彎月形狀透鏡作為改正透鏡,製造出另一種類型的折反射望遠鏡,它的兩個表面是兩個曲率不同的球面,相差不大,但曲率和厚度都很大。它的所有表面均為球面,比施密特式望遠鏡的改正板容易磨製,鏡筒也比較短,但視場比施密特式望遠鏡小,對玻璃的要求也高一些。
由於折反射式望遠鏡能兼顧折射和反射兩種望遠鏡的優點,非常適合業余的天文觀測和天文攝影,並且得到了廣大天文愛好者的喜愛。
[編輯本段]現代大型光學望遠鏡
望遠鏡的集光能力隨著口徑的增大而增強,望遠鏡的集光能力越強,就能夠看到更暗更遠的天體,這其實就是能夠看到了更早期的宇宙。天體物理的發展需要更大口徑的望遠鏡。
但是,隨著望遠鏡口徑的增大,一系列的技術問題接踵而來。海爾望遠鏡的鏡頭自重達14.5噸,可動部分的重量為530噸,而6米鏡更是重達800噸。望遠鏡的自重引起的鏡頭變形相當可觀,溫度的不均勻使鏡面產生畸變也影響了成象質量。從製造方面看,傳統方法製造望遠鏡的費用幾乎與口徑的平方或立方成正比,所以製造更大口徑的望遠鏡必須另闢新徑。
自七十年代以來,在望遠鏡的製造方面發展了許多新技術,涉及光學、力學、計算機、自動控制和精密機械等領域。這些技術使望遠鏡的製造突破了鏡面口徑的局限,並且降低造價和簡化望遠鏡結構。特別是主動光學技術的出現和應用,使望遠鏡的設計思想有了一個飛躍。
從八十年代開始,國際上掀起了製造新一代大型望遠鏡的熱潮。其中,歐洲南方天文台的VLT,美、英、加合作的GEMINI,日本的SUBARU的主鏡採用了薄鏡面;美國的KeckI、KeckII和HET望遠鏡的主鏡採用了拼接技術。
優秀的傳統望遠鏡卡塞格林焦點在最好的工作狀態下,可以將80%的幾何光能集中在0〃.6范圍內,而採用新技術製造的新一代大型望遠鏡可保持80%的光能集中在0〃.2~0〃.4,甚至更好。
下面對幾個有代表性的大型望遠鏡分別作一些介紹:
凱克望遠鏡(KeckI,KeckII)
KeckI和KeckII分別在1991年和1996年建成,這是當前世界上已投入工作的最大口徑的光學望遠鏡,因其經費主要由企業家凱克(KeckWM)捐贈(KeckI為9400萬美元,KeckII為7460萬美元)而命名。這兩台完全相同的望遠鏡都放置在夏威夷的莫納克亞,將它們放在一起是為了做干涉觀測。
它們的口徑都是10米,由36塊六角鏡面拼接組成,每塊鏡面口徑均為1.8米,而厚度僅為10厘米,通過主動光學支撐系統,使鏡面保持極高的精度。焦面設備有三個:近紅外照相機、高解析度CCD探測器和高色散光譜儀。
"象Keck這樣的大望遠鏡,可以讓我們沿著時間的長河,探尋宇宙的起源,Keck更是可以讓我們看到宇宙最初誕生 的時刻"。
歐洲南方天文台甚大望遠鏡(VLT)
歐洲南方天文台自1986年開始研製由4台8米口徑望遠鏡組成一台等效口徑為16米的光學望遠鏡。這4台8米望遠鏡排列在一條直線上,它們均為RC光學系統,焦比是F/2,採用地平裝置,主鏡採用主動光學系統支撐,指向精度為1〃,跟蹤精度為0.05〃,鏡筒重量為100噸,叉臂重量不到120噸。這4台望遠鏡可以組成一個干涉陣,做兩兩干涉觀測,也可以單獨使用每一台望遠鏡。
現在已完成了其中的兩台,預計於2000年可全部完成。
雙子望遠鏡(GEMINI)
雙子望遠鏡是以美國為主的一項國際設備(其中,美國佔50%,英國佔25%,加拿大佔15%,智利佔5%,阿根廷佔2.5%,巴西佔2.5%),由美國大學天文聯盟(AURA)負責實施。它由兩個8米望遠鏡組成,一個放在北半球,一個放在南半球,以進行全天系統觀測。其主鏡採用主動光學控制,副鏡作傾斜鏡快速改正,還將通過自適 應光學系統使紅外區接近衍射極限。
該工程於1993年9月開始啟動,第一台在1998年7月在夏威夷開光,第二台於2000年9月在智利賽拉帕瓊台址開光,整個系統預計在2001年驗收後正式投入使用。
昴星團(日本)8米望遠鏡(SUBARU)
這是一台8米口徑的光學/紅外望遠鏡。它有三個特點:一是鏡面薄,通過主動光學和自適應光學獲得較高的成象質量;二是可實現0.1〃的高精度跟蹤;三是採用圓柱形觀測室,自動控制通風和空氣過濾器,使熱湍流的排除達到最佳條件。此望遠鏡採用Serrurier桁架,可使主鏡框與副鏡框在移動中保持平行。
大天區多目標光纖光譜望遠鏡(LAMOST)
這是中國正在興建中的一架有效通光口徑為4米、焦距為20米、視場達20平方度的中星儀式的反射施密特望遠鏡。它的技術特色是:
1.把主動光學技術應用在反射施密特系統,在跟蹤天體運動中作實時球差改正,實現大口徑和大視場兼備的功能。
2.球面主鏡和反射鏡均採用拼接技術。
3.多目標光纖(可達4000根,一般望遠鏡只有600根)的光譜技術將是一個重要突破。
LAMOST把普測的星系極限星等推到20.5m,比SDSS計劃高2等左右,實現107個星系的光譜普測,把觀測目標的數量提高1個量級。
[編輯本段]射電望遠鏡
1932年央斯基(Jansky.K.G)用無線電天線探測到來自銀河系中心(人馬座方向)的射電輻射,這標志著人類打開了在傳統光學波段之外進行觀測的第一個窗口。
第二次世界大戰結束後,射電天文學脫穎而出,射電望遠鏡為射電天文學的發展起了關鍵的作用,比如:六十年代天文學的四大發現,類星體,脈沖星,星際分子和宇宙微波背景輻射,都是用射電望遠鏡觀測得到的。射電望遠鏡的每一次長足的進步都會毫無例外地為射電天文學的發展樹立一個里程碑。
英國曼徹斯特大學於1946年建造了直徑為66.5米的固定式拋物面射電望遠鏡,1955年又建成了當時世界上最大的可轉動拋物面射電望遠鏡;六十年代,美國在波多黎各阿雷西博鎮建造了直徑達305米的拋物面射電望遠鏡,它是順著山坡固定在地表面上的,不能轉動,這是世界上最大的單孔徑射電望遠鏡。
1962年,Ryle發明了綜合孔徑射電望遠鏡,他也因此獲得了1974年諾貝爾物理學獎。綜合孔徑射電望遠鏡實現了由多個較小天線結構獲得相當於大口徑單天線所能取得的效果。
1967年Broten等人第一次記錄到了VLBI干涉條紋。
七十年代,聯邦德國在玻恩附近建造了100米直徑的全向轉動拋物面射電望遠鏡,這是世界上最大的可轉動單天線射電望遠鏡。
八十年代以來,歐洲的VLBI網(EVN),美國的VLBA陣,日本的空間VLBI(VSOP)相繼投入使用,這是新一代射電望遠鏡的代表,它們在靈敏度、解析度和觀測波段上都大大超過了以往的望遠鏡。
中國科學院上海天文台和烏魯木齊天文站的兩架25米射電望遠鏡作為正式成員參加了美國的地球自轉連續觀測計劃(CORE)和歐洲的甚長基線干涉網(EVN),這兩個計劃分別用於地球自轉和高精度天體測量研究(CORE)和天體物理研究(EVN)。這種由各國射電望遠鏡聯合進行長基線干涉觀測的方式,起到了任何一個國家單獨使用大望遠鏡都不能達到的效果。
另外,美國國立四大天文台(NARO)研製的100米單天線望遠鏡(GBT),採用無遮擋(偏饋),主動光學等設計,該天線目前正在安裝中,2000年有可能投入使用。
國際上將聯合發展接收面積為1平方公里的低頻射電望遠鏡陣(SKA),該計劃將使低頻射電觀測的靈敏度約有兩個量級的提高,有關各國正在進行各種預研究。
在增加射電觀測波段覆蓋方面,美國史密松天體物理天文台和中國台灣天文與天體物理研究院正在夏威夷建造國際上第一個亞毫米波干涉陣(SMA),它由8個6米的天線組成,工作頻率從190GHz到85z,部分設備已經安裝。美國的毫米波陣(MMA)和歐洲的大南天陣(LAS)將合並成為一個新的毫米波陣計劃――ALMA。這個計劃將有64個12米天線組成,最長基線達到10公里以上,工作頻率從70到950GHz,放在智利的Atacama附近,如果合並順利,將在2001年開始建造,日本方面也在考慮參加該計劃的可能性。
在提高射電觀測的角解析度方面,新一代的大型設備大多數考慮干涉陣的方案;為了進一步提高空間VLBI觀測的角解析度和靈敏度,第二代空間VLBI計劃――ARISE(25米口徑)已經提出。
相信這些設備的建成並投入使用將會使射電天文成為天文學的重要研究手段,並會為天文學發展帶來難以預料的機會。
[編輯本段]空間望遠鏡
我們知道,地球大氣對電磁波有嚴重的吸收,我們在地面上只能進行射電、可見光和部分紅外波段的觀測。隨著空間技術的發展,在大氣外進行觀測已成為可能,所以就有了可以在大氣層外觀測的空間望遠鏡(Spacetelescope)。空間觀測設備與地面觀測設備相比,有極大的優勢:以光學望遠鏡為例,望遠鏡可以接收到寬得多的波段,短波甚至可以延伸到100納米。沒有大氣抖動後,分辨本領可以得到很大的提高,空間沒有重力,儀器就不會因自重而變形。前面介紹的紫外望遠鏡、X射線望遠鏡、γ射線望遠鏡以及部分紅外望遠鏡的觀測都都是在地球大氣層外進行的,也屬於空間望遠鏡。
哈勃空間望遠鏡[2](HST)
這是由美國宇航局主持建造的四座巨型空間天文台中的第一座,也是所有天文觀測項目中規模最大、投資最多、最受到公眾注目的一項。它籌建於1978年,設計歷時7年,1989年完成,並於1990年4月25日由太空梭運載升空,耗資30億美元。但是由於人為原因造成的主鏡光學系統的球差,不得不在1993年12月2日進行了規模浩大的修復工作。成功的修復使HST性能達到甚至超過了原先設計的目標,觀測結果表明,它的解析度比地面的大型望遠鏡高出幾十倍。
1997年的維修中,為HST安裝了第二代儀器:有空間望遠鏡成象光譜儀、近紅外照相機和多目標攝譜儀,把HST的觀測范圍擴展到了近紅外並提高了紫外光譜上的效率。
1999年12月的維修為HST更換了陀螺儀和新的計算機,並安裝了第三代儀器――高級普查攝像儀,這將提高HST在紫外-光學-近紅外的靈敏度和成圖的性能。
HST對國際天文學界的發展有非常重要的影響。
二十一世紀初的空間天文望遠鏡
"下一代大型空間望遠鏡"(NGST)和"空間干涉測量飛行任務"(SIM)是NASA"起源計劃"的關鍵項目,用於探索在宇宙最早期形成的第一批星系和星團。其中,NGST是大孔徑被動製冷望遠鏡,口徑在4~8米之間,是HST和SIRTF(紅外空間望遠鏡)的後續項目。它強大的觀測能力特別體現在光學、近紅外和中紅外的大視場、衍射限成圖方面。將運行於近地軌道的SIM採用邁克爾干涉方案,提供毫角秒級精度的恆星的精密絕對定位測量,同時由於具有綜合成圖能力,能產生高解析度的圖象,所以可以用於實現搜索其它行星等科學目的。
"天體物理的全天球天體測量干涉儀"(GAIA)將會在對銀河系的總體幾何結構及其運動學做全面和徹底的普查,在此基礎上開辟廣闊的天體物理研究領域。GAIA採用Fizeau干涉方案,視場為1°。GAIA和SIM的任務在很大程度上是互補的。
月基天文台
由於無人的空間天文觀測只能依靠事先設計的觀測模式自動進行,非常被動,如果在月球表面上建立月基天文台,就能化被動為主動,大大提高觀測精度。"阿波羅16號"登月時宇航員在月面上拍攝的大麥哲倫星雲照片表明,月面是理想的天文觀測場所。建立月基天文台具有以下優點:
1.月球上為高度真空狀態,比空間天文觀測設備所處還要低百萬倍。
2.月球為天文望遠鏡提供了一個穩定、堅固和巨大的觀測平台,在月球上觀測只需極簡單的跟蹤系統。
3.月震活動只相當於地震活動的10-8,這一點對於在月面上建立幾十至數百公里的長基線射電、光學和紅外干涉系統是很有利的。
4.月球表面上的重力只有地球表面重力的1/6,這會給天文台的建造帶來方便。另外,在地球上所有影響天文觀測的因素,比如大氣折射、散射和吸收,無線電干擾等,在月球上均不存在。
美國、歐洲和日本都計劃在未來的幾年內再次登月並在月球上建立永久居住區,可以預料,人類在月球上建立永久性基地後,建立月基天文台是必然的。
對於天文和天體物理的科研領域來講,空間觀測項目無論從人員規模上還是經費上都是相當可觀的,如世界上最大的地面光學望遠鏡象Keck的建設費用(7000~9000萬美元)只相當於一顆普通的空間探測衛星的研製和發射費用。並且,空間天文觀測的難度高,儀器的接收面積小,運行壽命短,難於維修,所以它並不能取代地面天文觀測。在二十一世紀,空間觀測與地面觀測將是天文觀測相輔相成的兩翼。
[編輯本段]其它波段的望遠鏡
我們知道,在地球表面有一層濃厚的大氣,由於地球大氣中各種粒子與天體輻射的相互作用(主要是吸收和反射),使得大部分波段范圍內的天體輻射無法到達地面。人們把能到達地面的波段形象地稱為"大氣窗口",這種"窗口"有三個。
光學窗口:這是最重要的一個窗口,波長在300~700納米之間,包括了可見光波段(400~700納米),光學望遠鏡一直是地面天文觀測的主要工具。
紅外窗口:紅外波段的范圍在0.7~1000微米之間,由於地球大氣中不同分子吸收紅外線波長不一致,造成紅外波段的情況比較復雜。對於天文研究常用的有七個紅外窗口。
射電窗口:射電波段是指波長大於1毫米的電磁波。大氣對射電波段也有少量的吸收,但在40毫米~30米的范圍內大氣幾乎是完全透明的,我們一般把1毫米~30米的范圍稱為射電窗口。
大氣對於其它波段,比如紫外線、X射線、γ射線等均為不透明的,在人造衛星上天後才實現這些波段的天文觀測。
紅外望遠鏡
最早的紅外觀測可以追溯到十八世紀末。但是,由於地球大氣的吸收和散射造成在地面進行的紅外觀測只局限於幾個近紅外窗口,要獲得更多紅外波段的信息,就必須進行空間紅外觀測。現代的紅外天文觀測興盛於十九世紀六、七十年代,當時是採用高空氣球和飛機運載的紅外望遠鏡或探測器進行觀測。
1983年1月23日由美英荷聯合發射了第一顆紅外天文衛星IRAS。其主體是一個口徑為57厘米的望遠鏡,主要從事巡天工作。IRAS的成功極大地推動了紅外天文在各個層次的發展。直到現在,IRAS的觀測源仍然是天文學家研究的熱點目標。
1995年11月17日由歐洲、美國和日本合作的紅外空間天文台(ISO)發射升空並進入預定軌道。ISO的主體是一個口徑為60厘米的R-C式望遠鏡,它的功能和性能均比IRAS有許多提高,它攜帶了四台觀測儀器,分別實現成象、偏振、分光、光柵分光、F-P干涉分光、測光等功能。與IRAS相比,ISO從近紅外到遠紅外,更寬的波段范圍;有更高的空間解析度;更高的靈敏度(約為IRAS的100倍);以及更多的功能。
ISO的實際工作壽命為30個月,對目標進行定點觀測(IRAS的觀測是巡天觀測),這能有的放矢地解決天文學家提出的問題。預計在今後的幾年中,以ISO數據為基礎的研究將會成為天文學的熱點之一。
從太陽繫到宇宙大尺度紅外望遠鏡與光學望遠鏡有許多相同或相似之處,因此可以對地面的光學望遠鏡進行一些改裝,使它能同時也可從事紅外觀測。這樣就可以用這些望遠鏡在月夜或白天進行紅外觀測,更大地發揮觀測設備的效率。
紫外望遠鏡
紫外波段是介於X射線和可見光之間的頻率范圍,觀測波段為3100~100埃。紫外觀測要放在150公里的高度才能進行,以避開臭氧層和大氣的吸收。第一次紫外觀測是用氣球將望遠鏡載上高空,以後用了火箭,太空梭和衛星等空間技術才使紫外觀測有了真正的發展。
紫外波段的觀測在天體物理上有重要的意義。紫外波段是介於X射線和可見光之間的頻率范圍,在歷史上紫外和可見光的劃分界限在3900埃,當時的劃分標準是肉眼能否看到。現代紫外天文學的觀測波段為3100~100埃,和X射線相接,這是因為臭氧層對電磁波的吸收界限在這里。
1968年美國發射了OAO-2,之後歐洲也發射了TD-1A,它們的任務是對天空的紫外輻射作一般性的普查觀測。被命名為哥白尼號的OAO-3於1972年發射升空,它攜帶了一架0.8米的紫外望遠鏡,正常運行了9年,觀測了天體的950~3500埃的紫外譜。
1978年發射了國際紫外探測者(IUE),雖然其望遠鏡的口徑比哥白尼號小,但檢測靈敏度有了極大的提高。IUE的觀測數據成為重要的天體物理研究資源。
1990年12月2~11日,哥倫比亞號太空梭搭載Astro-1天文台作了空間實驗室第一次紫外光譜上的天文觀測;1995年3月2日開始,Astro-2天文台完成了為期16天的紫外天文觀測。
1992年美國宇航局發射了一顆觀測衛星――極遠紫外探索衛星(EUVE),是在極遠紫外波段作巡天觀測。
1999年6月24日FUSE衛星發射升空,這是NASA的"起源計劃"項目之一,其任務是要回答天文學有關宇宙演化的基本問題。
紫外天文學是全波段天文學的重要組成部分,自哥白尼號升空至今的30年中,已經發展了紫外波段的EUV(極端紫外)、FUV(遠紫外)、UV(紫外)等多種探測衛星,覆蓋了全部紫外波段。
X射線望遠鏡
X射線輻射的波段范圍是0.01-10納米,其中波長較短(能量較高)的稱為硬X射線,波長較長的稱為軟X射線。天體的X射線是根本無法到達地面的,因此只有在六十年代人造地球衛星上天後,天文學家才獲得了重要的觀測成果,X射線天文學才發展起來。早期主要是對太陽的X射線進行觀測。
1962年6月,美國麻省理工學院的研究小組第一次發現來自天蠍座方向的強大X射線源,這使非太陽X射線天文學進入了較快的發展階段。七十年代,高能天文台1號、2號兩顆衛星發射成功,首次進行了X射線波段的巡天觀測,使X射線的觀測研究向前邁進了一大步,形成對X射線觀測的熱潮。進入八十年代以來,各國相繼發射衛星,對X射線波段進行研究:
1987年4月,由前蘇聯的火箭將德國、英國、前蘇聯、及荷蘭等國家研製的X射線探測器送入太空;
1987年日本的X射線探測衛星GINGA發射升空;
1989年前蘇聯發射了一顆高能天體物理實驗衛星――GRANAT,它載有前蘇聯、法國、保加利亞和丹麥等國研製的7台探測儀器,主要工作為成象、光譜和對爆發現象的觀測與監測;
1990年6月,倫琴X射線天文衛星(簡稱ROSAT)進入地球軌道,為研究工作取得大批重要的觀測資料,到現在它已基本完成預定的觀測任務;
1990年12月"哥倫比亞"號太空梭將美國的"寬頻X射線望遠鏡"帶入太空進行了為期9天的觀測;
1993年2月,日本的"飛鳥"X射線探測衛星由火箭送入軌道;
1996年美國發射了"X射線光度探測衛星"(XTE),
1999年7月23日美國成功發射了高等X射線天體物理設備(CHANDRA)中的一顆衛星,另一顆將在2000年發射;
1999年12月13日歐洲共同體宇航局發射了一顆名為XMM的衛星。
2000年日本也將發射一顆X射線的觀測設備。
以上這些項目和計劃表明,未來幾年將會是一個X射線觀測和研究的高潮。
γ射線望遠鏡
γ射線比硬X射線的波長更短,能量更高,由於地球大氣的吸收,γ射線天文觀測只能通過高空氣球和人造衛星搭載的儀器進行。
1991年,美國的康普頓(γ射線)空間天文台(ComptonGRO或CGRO)由太空梭送入地球軌道。它的主要任務是進行γ波段的首次巡天觀測,同時也對較強的宇宙γ射線源進行高靈敏度、高解析度的成象、能譜測量和光變測量,取得了許多有重大科學價值的結果。
CGRO配備了4台儀器,它們在規模和性能上都比以往的探測設備有量級上的提高,這些設備的研製成功為高能天體物理學的研究帶來了深刻的變化,也標志著γ射線天文學開始逐漸進入成熟階段。CGRO攜帶的四台儀器分別是:爆發和暫時源實驗(BATSE),可變向閃爍光譜儀實驗(OSSE),1Mev~30Mev范圍內工作的成象望遠鏡(COMPTEL),1Mev~30Mev范圍內工作的成象望遠鏡(COMPTEL)。
受到康普頓空間天文台成功的鼓舞,歐洲和美國的科研機構合作制訂了一個新的γ射線望遠鏡計劃-INTEGRAL,准備在2001年送入太空,它的上天將為康普頓空間天文台之後的γ射線天文學的進一步發展奠定基礎。
I. 天文望遠鏡輔助器材可以有哪些
有一些模擬天文的,網上應該都有,不過有可能要收費。如果對這方面沒有極大的興趣愛好,而是單單的一時有興趣的話,你可以看一看有關的科幻電影玩玩游戲,就可以了。玩天文望遠鏡也挺燒錢的。
J. 利用什麼儀器,可以測定太陽高度
太陽高度測定用太陽高度測量儀
實驗器材:金屬制的量角器、測量架、垂直線錘、底座等組成,全部零件固定的底座上。
測定方法:
1、將儀器停放在測量地點,調節底座上的水平螺絲,使重錘線與刻度盤上的豎直上完全重合,儀器保持水平。調好後,將重錘線置於量角器的背後。
2、讓太陽光線穿過測量架的十字線空隙,投影到對面的十字線指示片上,使投影與指示片上的十字完全重合。
3、觀察測量架箭頭所指的刻度盤上的度數,即是太陽高度角。
4、如遇多雲天氣,投影不清楚,可換聚光透鏡將太陽光聚焦在十字線指示片上,以便觀察比對。
5、 用這種方法可以觀察一天中不同時刻的太陽高度表,也可以觀察記錄一年中的太陽高度變化。