㈠ 鑄件收縮有什麼缺陷性
鑄造性能,主要指的是合金的鑄造性能,而合金的鑄造性能主要是指合金的流動性能和收縮性能等。鑄件的結構,如果不能滿足合金鑄造性能的要求,則可能產生澆不足、冷隔、縮松、氣孔、裂紋和變形等缺陷。
鑄造合金從液態凝同和冷卻至室溫過程中,其體積和尺寸減少的現象稱為收縮性。包括液態收縮、凝固收縮、固態收縮三個階段。液態收縮是金屬液由於溫度的降低而發生的體積縮減。凝固收縮是金屬液凝固(液態轉變為同態)階段的體積縮減。液態收縮和凝固收縮表現為合金體積的縮減,通常稱為「體收縮」。固態收縮是金屬在固態下由於溫度的降低而發生的體積縮減,固態收縮雖然也導致體積的縮減,但通常用鑄件的尺寸縮減量來表示,故稱為「線收縮」。
鑄件收縮不僅影響尺寸,還會使鑄件產生縮孔、疏鬆、內應力、變形和開裂等缺陷,故鑄造用材料的收縮率越小越好。收縮直接影響鑄件的質量。液態收縮和凝固收縮若得不到補足,會使鑄件產生縮孔和縮松缺陷,固態收縮若受到阻礙會產生鑄造內應力,導致鑄件變形開裂。
1、縮孔和縮松
縮孔是由於金屬的液態收縮和凝固收縮部分得不到補足時,在鑄件的最後凝固處出現的較大的集中孔洞。縮松是分散在鑄件內的細小的縮孔。縮孔和縮松都能使鑄件的力學性能下降,縮松還能使鑄件在氣密性試驗和水壓試驗時出現滲漏現象。生產中可通過在鑄件的厚壁處設置冒口的工藝措施,使縮孔轉移至最後凝固的冒口處,從而獲得完整的鑄件。冒口是多餘部分,切除後便獲得完整、緻密的鑄件;也可以通過合理地設計鑄件結構,避免鑄件局部金屬積聚,來預防縮孔的產生。
2、變形與開裂
鑄件在凝固後繼續冷卻過程中,若固態收縮受到阻礙就會產生鑄造內應力,當內應力達到一定數值時,鑄件便產生變形甚至開裂。鑄造內應力主要包括收縮時的機械應力和熱應力兩種,機械應力是由鑄型、型芯等外力的阻礙收縮引起的內應力;熱應力是鑄件在冷卻和凝固過程中,由於不同部位的不均衡收縮引起的內應力。
㈡ 鑄造應力按產生原因的不同分為哪兩種
1、鑄造應力的產生
通常說的鑄造應力,有時是泛指,即不論產生應力的原因如何,凡鑄件冷卻過程中尺寸變化受阻,產生的應力都稱作鑄造應力。但通常指的鑄造應力多指殘余應力。鑄件有殘余應力時,經機械加工後可能產生新的變形,使零件精度降低或尺寸超差;若鑄件承受的工作應力與殘余應力方向相同而疊加,就可能超過材料強度極限而破壞;有殘余應力的鑄件在長期存放後,會產生變形;若在腐蝕介質中存放或工作時,還會產生應力腐蝕而開裂。因此,應盡量減少鑄件冷卻過程中產生的殘余應力並設法消除之。
鑄件凝固結束後,鑄件都要隨著溫度的下降發生固態收縮或相變,在固態相變的同時,有相變體(線)膨脹或收縮,由於厚壁鑄件外層比內層冷卻的快,壁厚不同的鑄件厚壁冷的慢,薄壁冷的快。從而導致外層與內層,厚壁與薄壁固態線收縮率(mm/s)不一致,使厚壁的外層和內層、厚壁與薄壁就相互制約收縮,發生拉伸或壓縮變形。在固態冷卻前期,薄壁降溫比厚壁快,產生的收縮量較大,從而使薄壁部位受到拉伸變形,產生拉應力,而在厚壁部位形成壓縮變形,產生壓應力;在冷卻後期,厚壁的降溫又比薄壁快,產生的收縮量較薄壁部位大,所以又在厚壁部位形成拉伸變形,產生拉應力,而在薄壁部位形成壓縮變形,產生壓應力。如果在冷卻前期和冷卻後期形成的應力能相互抵消,則鑄件最終不產生應力,而只在冷卻過程中表現出來的應力稱為臨時應力。如果兩種應力不能相互抵消,則有一部分應力會殘留在鑄件上,這種應力稱為殘余應力。
除此之外,鑄件的固態線收縮還受到外部因素的阻礙(如砂芯、冒口、澆注系統等),如果外部因素退讓性不足,溫度下降時不能實現應有的收縮值,鑄件將產生拉應力。在冷卻過程中,固態收縮由於上述各種因素的影響,使鑄件的收縮受阻,發生變形而產生應力,這種應力為鑄造應力。
鑄造應力包括:熱應力、相變應力、收縮應力三種。
2、鑄造殘余應力
鑄件清理完後,仍然存在宏觀的殘余應力。殘余應力也稱「內應力」。鑄件殘余應力不是一種鑄造缺陷,但對鑄件產生裂紋和變形起著重要的作用。鑄件的殘余應力(拉應力)大於材料的抗拉強度時,就會使鑄件產生裂紋;當鑄件存在殘余應力時,會使鑄件變「脆」;殘余應力還會使鑄件產生應力腐蝕開裂。鑄件殘余應力有宏觀和微觀之分,按形成原因可分為熱應力型殘余應力、相變型殘余應力、收縮應力型殘余應力。生產實踐表明鑄件殘余應力主要為熱應力型,即為殘余熱應力。
㈢ 鑄造應力有哪幾種 怎樣區別鑄件裂紋的性質 從鑄件結構和鑄造技術兩方面考慮
鑄造應力
找全國鑄件訂單、采購鑄件、鑄造廠接單、咨詢鑄造技術問題,就來
鑄件訂單網
鑄造應力按產生的原因不同,主要可分為熱應力、收縮應力兩種。
(1)熱應力
鑄件在凝固和冷卻過程中,不同部位由於不均衡的收縮而引起的應力,稱熱應力。熱應力使冷卻較慢的厚壁處受拉伸,冷卻較快的薄壁處或表面受壓縮,鑄件的壁厚差別愈大合金的線收縮率或彈性模量愈大,熱應力愈大。定向凝固時,由於鑄件各部分冷卻速度不一致,產生的熱應力較大,鑄件易出現變形和裂紋。
(2)收縮應力
鑄件在固態收縮時,因受鑄型、型芯、澆冒口等外力的阻礙而產生的應力稱收縮應力。、一般鑄件冷卻到彈性狀態後,收縮受阻都會產生收縮應力。收縮應力常表現為拉應力。形成原因一經消除(如鑄件落砂或去除澆口後)收縮應力也隨之消之,因此收縮應力是一種臨時應力。但在落砂前,如果鑄件的收縮應力和熱應力共同作用其瞬間應力大於鑄件的抗拉強度時,鑄件會產生裂紋。
㈣ 鑄造應力是如何產生的有何危害如何防止
1)熱應力自鑄件凝固末期即鑄件合金已搭結成枝晶網路骨架開始及隨後的冷卻過程中,鑄件橫截面和厚,薄不同之處由於存在著溫度差而產生的鑄造應力,稱之為熱應力。鑄件橫截面內外,厚薄不同之處冷卻速度有差異,致使有溫度差而導致固態收縮速率不致辭而相互制約,從而產生了熱應力。 2)相變應力鑄件冷卻時,如有固相相變,由於相變前後固相的比容不同,就有相變的體(線)膨脹或體(線)收縮。 固相相變過程完成,相變膨脹或收縮也就隨之結束。鑄件冷卻時,橫截面的內外層和厚薄不同之有溫度差,使得它們的固相相變不同時發生,導致它們的相變膨脹(或收縮)或先或後受阻而產生的應力,謂之相變應力。 3)收縮應力(機械阻礙應力):鑄件在鑄型中冷卻時,其固態線收縮受到外部因素(如砂芯等)的阻礙而產生的鑄造應力,謂之收縮應力或機械阻礙應力。
危害就是引起鑄件的變形。防治措施主要是熱處理。
㈤ 鑄造合金影響收縮性的原因問題有哪些
鑄造合金從液態凝同和冷卻至室溫過程中,其體積和尺寸減少的現象稱為收縮性。包括液態收縮、凝固收縮、固態收縮三個階段。液態收縮是金屬液由於溫度的降低而發生的體積縮減。凝固收縮是金屬液凝固(液態轉變為同態)階段的體積縮減。液態收縮和凝固收縮表現為合金體積的縮減,通常稱為「體收縮」。固態收縮是金屬在固態下由於溫度的降低而發生的體積縮減,固態收縮雖然也導致體積的縮減,但通常用鑄件的尺寸縮減量來表示,故稱為「線收縮」。
鑄件收縮不僅影響尺寸,還會使鑄件產生縮孔、疏鬆、內應力、變形和開裂等缺陷,故鑄造用材料的收縮率越小越好。收縮直接影響鑄件的質量。液態收縮和凝固收縮若得不到補足,會使鑄件產生縮孔和縮松缺陷,固態收縮若受到阻礙會產生鑄造內應力,導致鑄件變形開裂。
1、縮孔和縮松
縮孔是由於金屬的液態收縮和凝固收縮部分得不到補足時,在鑄件的最後凝固處出現的較大的集中孔洞。縮松是分散在鑄件內的細小的縮孔。縮孔和縮松都能使鑄件的力學性能下降,縮松還能使鑄件在氣密性試驗和水壓試驗時出現滲漏現象。生產中可通過在鑄件的厚壁處設置冒口的工藝措施,使縮孔轉移至最後凝固的冒口處,從而獲得完整的鑄件。冒口是多餘部分,切除後便獲得完整、緻密的鑄件;也可以通過合理地設計鑄件結構,避免鑄件局部金屬積聚,來預防縮孔的產生。
2、變形與開裂
鑄件在凝固後繼續冷卻過程中,若固態收縮受到阻礙就會產生鑄造內應力,當內應力達到一定數值時,鑄件便產生變形甚至開裂。鑄造內應力主要包括收縮時的機械應力和熱應力兩種,機械應力是由鑄型、型芯等外力的阻礙收縮引起的內應力;熱應力是鑄件在冷卻和凝固過程中,由於不同部位的不均衡收縮引起的內應力。
生產中為減小鑄造內應力,經常從改進鑄件結構和優化鑄造工藝入手,如鑄件的壁厚應均勻,或合理地設置冷鐵等工藝措施,使鑄件各部位冷卻均勻,同時凝固,從而減小熱應力;鑄件的結構盡量簡單、對稱,這樣可減小金屬的收縮受阻,從而減小機械應力。
影響收縮率的因素分內部和外部條件。
(1)合金的種類和成分
合金的種類和成分不同,其收縮率不同,鐵碳合金中灰鑄鐵的收縮率小,鑄鋼的收縮率大。下圖為常用鑄造合金的線收縮率。
(2)工藝條件
金屬的澆注溫度對收縮率有影響,澆注溫度越高,液態收縮越大。鑄件結構和鑄型材料對收縮也有影響,型腔形狀越復雜、鑄型材料的退讓性越差,對收縮的阻礙越大。當鑄件結構設計不合理,鑄型材料的退讓性不良時,鑄件會因收縮受阻而產生鑄造應力,容易產生裂紋。
㈥ 鑄造內應力,變形和裂紋是怎樣形成的
簡單來說,鑄造應力是由於鑄件凝固過程中,各部分冷卻速度不同造成的。
因為鑄造凝固過過程中會出現體積收縮(也有例外,如球鐵還會有石墨化膨漲過程)。但同一個鑄件很難做到同時凝固,先凝固的部分就會對後凝固的部分形成阻礙,而後凝固的部分又會對先凝固的部分形成擠壓,於是應力就產生了。
受力就會變形,這是必然的。至於變形的大小,就要看鑄件的結構和強度了。
如果應力足夠大,而鑄型或件本身又阻礙這種變形的實現,鑄件就會出現裂紋。
鑄件在凝固初期,即紅熱狀態下產生裂紋,稱為熱裂,含硫高會增加熱裂傾向;後期產生裂紋稱冷裂,磷元素則會增加冷裂傾向。
認識比較粗淺,歡迎繼續交流。
㈦ 在鋼的鑄造中所說的應力指的什麼
通常說的鑄造應力,有時是泛指,即不論產生應力的原因如何,凡鑄件冷卻過程中尺寸變化受阻,產生的應力都稱作鑄造應力。但通常指的鑄造應力多指殘余應力。鑄件有殘余應力時,經機械加工後可能產生新的變形,使零件精度降低或尺寸超差;若鑄件承受的工作應力與殘余應力方向相同而疊加,就可能超過材料強度極限而破壞;有殘余應力的鑄件在長期存放後,會產生變形;若在腐蝕介質中存放或工作時,還會產生應力腐蝕而開裂。因此,應盡量減少鑄件冷卻過程中產生的殘余應力並設法消除之。
㈧ 何為鑄造應力鑄件的變形和裂紋與鑄造應力有什麼關系
鑄造應力包括熱應力,機械應力,相變應力。熱應力是由於厚薄不一,冷卻速度不同,從而相互產生的拉扯力。機械應力是鑄件凝固過程中收縮,砂芯,砂型等阻礙它的收縮,從而產生的力。相變應力,打個比方,凝固過程中,奧氏體向馬氏體轉變,這兩相體積不同,相互擠壓拉扯,從而產生的力。
鑄件的變形和裂紋,均是鑄件所受到的應力超過了材料的強度,輕則變形,重則裂紋。當然變形和裂紋有多種情況,規格到底還是有力的作用,才會發生。
㈨ 鑄造熱力產生的原因
鑄件在凝固和以後的冷卻過程中體積的變化不能自由的進行,於是在產生變形的同時還產生應力,這種應力稱為鑄造應力。
1.熱應力自鑄件凝固末期即鑄件合金已搭結成枝晶網路骨架開始及隨後的冷卻過程中,鑄件橫截面和厚,薄不同之處由於存在著溫度差而產生的鑄造應力,稱之為熱應力。鑄件橫截面內外,厚薄不同之處冷卻速度有差異,致使有溫度差而導致固態收縮速率不致辭而相互制約,從而產生了熱應力。
2.相變應力鑄件冷卻時,如有固相相變,由於相變前後固相的比容不同,就有相變的體(線)膨脹或體(線)收縮。 固相相變過程完成,相變膨脹或收縮也就隨之結束。鑄件冷卻時,橫截面的內外層和厚薄不同之有溫度差,使得它們的固相相變不同時發生,導致它們的相變膨脹(或收縮)或先或後受阻而產生的應力,謂之相變應力。
3.收縮應力(機械阻礙應力):鑄件在鑄型中冷卻時,其固態線收縮受到外部因素(如砂芯等)的阻礙而產生的鑄造應力,謂之收縮應力或機械阻礙應力。
㈩ 鑄造應力形成原因及分類
1)熱應力自鑄件凝固末期即鑄件合金已搭結成枝晶網路骨架開始及隨後的冷卻過程中,鑄件橫截面和厚,薄不同之處由於存在著溫度差而產生的鑄造應力,稱之為熱應力。鑄件橫截面內外,厚薄不同之處冷卻速度有差異,致使有溫度差而導致固態收縮速率不致辭而相互制約,從而產生了熱應力。
2)相變應力鑄件冷卻時,如有固相相變,由於相變前後固相的比容不同,就有相變的體(線)膨脹或體(線)收縮。
固相相變過程完成,相變膨脹或收縮也就隨之結束。鑄件冷卻時,橫截面的內外層和厚薄不同之有溫度差,使得它們的固相相變不同時發生,導致它們的相變膨脹(或收縮)或先或後受阻而產生的應力,謂之相變應力。
3)收縮應力(機械阻礙應力):鑄件在鑄型中冷卻時,其固態線收縮受到外部因素(如砂芯等)的阻礙而產生的鑄造應力,謂之收縮應力或機械阻礙應力。
參考資料:http://www.zz361.com/information_content.php?id=10011891