㈠ 生活中有什麼是半導體材料
好多指示燈就是發光二級管
常見的太陽能電池板的半導體材料是硅
很多自動門裝置的光電探測器也是半導體材料做的
激光器,LED等都是半導體材料做的
機器人中很多零件的材料就是半導體
㈡ 半導體是一種什麼樣的才料作用是什麼有什麼優缺點
半導體的材料:常溫下導電性能介於導體(conctor)與絕緣體(insulator)之間的材料。半導體按化學成分可分為元素半導體和化合物半導體兩大類。鍺和硅是最常用的元素半導體;化合物半導體包括第Ⅲ和第Ⅴ族化合物(砷化鎵、磷化鎵等)、第Ⅱ和第Ⅵ族化合物( 硫化鎘、硫化鋅等)、氧化物(錳、鉻、鐵、銅的氧化物),以及由Ⅲ-Ⅴ族化合物和Ⅱ-Ⅵ族化合物組成的固溶體(鎵鋁砷、鎵砷磷等)。除上述晶態半導體外,還有非晶態的玻璃半導體、有機半導體等。
半導體的作用:
(1)集成電路 它是半導體技術發展中最活躍的一個領域,已發展到大規模集成的階段。在幾平方毫米的矽片上能製作幾萬只晶體管,可在一片矽片上製成一台微信息處理器,或完成其它較復雜的電路功能。集成電路的發展方向是實現更高的集成度和微功耗,並使信息處理速度達到微微秒級。
(2)微波器件 半導體微波器件包括接收、控制和發射器件等。毫米波段以下的接收器件已廣泛使用。在厘米波段,發射器件的功率已達到數瓦,人們正在通過研製新器件、發展新技術來獲得更大的輸出功率。
(3)光電子器件 半導體發光、攝象器件和激光器件的發展使光電子器件成為一個重要的領域。它們的應用范圍主要是:光通信、數碼顯示、圖象接收、光集成等。
半導體的特點:
(1)電阻率的變化受雜質含量的影響極大。例如,硅中只含有億分之一的硼,電阻率就會下降到原來的千分之一。如果所含雜質的類型不同,導電類型也不同。由此可見,半導體的導電性與所含的微量雜質有著非常密切的關系。
(2)電阻率受外界條件(如熱、光等)的影響很大。溫度升高或受光照射時均可使電阻率迅速下降。一些特殊的半導體在電場或磁場的作用下,電阻率也會發生改變。
拓展:半導體的未來發展
以GaN(氮化鎵)為代表的第三代半導體材料及器件的開發是新興半導體產業的核心和基礎,其研究開發呈現出日新月異的發展勢態。GaN基光電器件中,藍色發光二極體LED率先實現商品化生產 成功開發藍光LED和LD之後,科研方向轉移到GaN紫外光探測器上 GaN材料在微波功率方面也有相當大的應用市場。氮化鎵半導體開關被譽為半導體晶元設計上一個新的里程碑。美國佛羅里達大學的科學家已經開發出一種可用於製造新型電子開關的重要器件,這種電子開關可以提供平穩、無間斷電源。
㈢ 半導體探測器的基礎知識有哪些
8.產生一個電子—空穴對需要的能量/γ量子損耗能量≈0.3~0.35的原因γ量子入射到本徵區,它並不是只與弗米表面起作用,還與滿帶下面能量更低的帶起作用,交給滿帶能量,是隨機性的。這樣激發出來的電子,其能量有高、有低。這樣一來,能量高的就可以跳到導帶,還有的跳到更高導帶上去。這時它是不穩定的,放出能量回到低能導帶上;處在低能價帶上的空穴也是不穩定的,它也要逐漸回到價帶的最表層(空穴移動是通過上一層滿帶的電子來補償的),同時空穴也將放出能量。電子與空穴放出的能量大部分交給晶格,能量低的產生光學振動,能量高一點的作聲學振動,所以點陣總是處於一種振動狀態,γ量子損耗的能量不是完全都用於產生電子—空穴對,而是一大部分用於產生各種點陣的振動。產生一個電子—空穴對需要的能量/γ量子損耗能量≈0.3~0.35。產生一個電子—空穴對損耗的能量比禁帶寬度大好幾倍。
㈣ 光子型探測器的性能
半導體光子型探測器的性能在很大程度上取決於制備探測器所用的半導體材料。本徵半導體材料比摻雜半導體材料更加有用。本徵半導體材料既能用來製作光導型探測器,又能製做光伏型探測器;而摻雜半導體只能做成光導型探測器。截止波長較長的半導體光子型探測器,大多數必須在較低溫度下工作,如77K,38K或4.2K。同一探測器在室溫下的探測率明顯低於低溫下的探測率。為了保持半導體光子型探測器的正常工作,常把探測器置於低溫容器(杜瓦瓶)中,或用微型致冷器使探測器達到較低的工作溫度。
㈤ 為什麼很多間接帶隙半導體也可以被用來作光探測器
半導體具有光生伏特效應,因此無論直接帶隙或間接帶隙半導體均可接收光子能量並使價帶電子躍遷至導帶並產生光電流,即作為光探測器,只是靈敏度和探測波長有差異。
直接帶隙或間接帶隙只有在發光時有明顯區別,直接帶隙半導體導帶電子落入價帶無需改變動量,即無需聲子參與,容易將電子的能量轉化為光子,間接帶隙半導體導電電子必須改變動量才可進入價帶,由於需要聲子參與,電子能量不易轉化為光子。
㈥ 半導體是什麼,做什麼用的
自然界的物質按導電能力可分為導體、絕緣體和半導體三類。半導體材料是指室溫下導電性介於導電材料和絕緣材料之間的一類功能材料。靠電子和空穴兩種載流子實現導電,室溫時電阻率一般在10-5~107歐·米之間。通常電阻率隨溫度升高而增大;若摻入活性雜質或用光、射線輻照,可使其電阻率有幾個數量級的變化。1906年製成了碳化硅檢波器。
1947年發明晶體管以後,半導體材料作為一個獨立的材料領域得到了很大的發展,並成為電子工業和高技術領域中不可缺少的材料。特性和參數半導體材料的導電性對某些微量雜質極敏感。純度很高的半導體材料稱為本徵半導體,常溫下其電阻率很高,是電的不良導體。在高純半導體材料中摻入適當雜質後,由於雜質原子提供導電載流子,使材料的電阻率大為降低。這種摻雜半導體常稱為雜質半導體。雜質半導體靠導帶電子導電的稱N型半導體,靠價帶空穴導電的稱P型半導體。
不同類型半導體間接觸(構成PN結)或半導體與金屬接觸時,因電子(或空穴)濃度差而產生擴散,在接觸處形成位壘,因而這類接觸具有單向導電性。利用PN結的單向導電性,可以製成具有不同功能的半導體器件,如二極體、三極體、晶閘管等。
此外,半導體材料的導電性對外界條件(如熱、光、電、磁等因素)的變化非常敏感,據此可以製造各種敏感元件,用於信息轉換。半導體材料的特性參數有禁帶寬度、電阻率、載流子遷移率、非平衡載流子壽命和位錯密度。禁帶寬度由半導體的電子態、原子組態決定,反映組成這種材料的原子中價電子從束縛狀態激發到自由狀態所需的能量。電阻率、載流子遷移率反映材料的導電能力。非平衡載流子壽命反映半導體材料在外界作用(如光或電場)下內部載流子由非平衡狀態向平衡狀態過渡的弛豫特性。位錯是晶體中最常見的一類缺陷。位錯密度用來衡量半導體單晶材料晶格完整性的程度,對於非晶態半導體材料,則沒有這一參數。半導體材料的特性參數不僅能反映半導體材料與其他非半導體材料之間的差別,更重要的是能反映各種半導體材料之間甚至同一種材料在不同情況下,其特性的量值差別。
半導體材料的種類
常用的半導體材料分為元素半導體和化合物半導體。元素半導體是由單一元素製成的半導體材料。主要有硅、鍺、硒等,以硅、鍺應用最廣。化合物半導體分為二元系、三元系、多元系和有機化合物半導體。二元系化合物半導體有Ⅲ-Ⅴ族(如砷化鎵、磷化鎵、磷化銦等)、Ⅱ-Ⅵ族(如硫化鎘、硒化鎘、碲化鋅、硫化鋅等)、Ⅳ-Ⅵ族(如硫化鉛、硒化鉛等)、Ⅳ-Ⅳ族(如碳化硅)化合物。三元系和多元系化合物半導體主要為三元和多元固溶體,如鎵鋁砷固溶體、鎵鍺砷磷固溶體等。有機化合物半導體有萘、蒽、聚丙烯腈等,還處於研究階段。
此外,還有非晶態和液態半導體材料,這類半導體與晶態半導體的最大區別是不具有嚴格周期性排列的晶體結構。制備不同的半導體器件對半導體材料有不同的形態要求,包括單晶的切片、磨片、拋光片、薄膜等。半導體材料的不同形態要求對應不同的加工工藝。常用的半導體材料制備工藝有提純、單晶的制備和薄膜外延生長。
所有的半導體材料都需要對原料進行提純,要求的純度在6個「9」以上,最高達11個「9」以上。提純的方法分兩大類,一類是不改變材料的化學組成進行提純,稱為物理提純;另一類是把元素先變成化合物進行提純,再將提純後的化合物還原成元素,稱為化學提純。物理提純的方法有真空蒸發、區域精製、拉晶提純等,使用最多的是區域精製。化學提純的主要方法有電解、絡合、萃娶精餾等,使用最多的是精餾。
由於每一種方法都有一定的局限性,因此常使用幾種提純方法相結合的工藝流程以獲得合格的材料。絕大多數半導體器件是在單晶片或以單晶片為襯底的外延片上作出的。成批量的半導體單晶都是用熔體生長法製成的。直拉法應用最廣,80%的硅單晶、大部分鍺單晶和銻化銦單晶是用此法生產的,其中硅單晶的最大直徑已達300毫米。在熔體中通入磁場的直拉法稱為磁控拉晶法,用此法已生產出高均勻性硅單晶。在坩堝熔體表面加入液體覆蓋劑稱液封直拉法,用此法拉制砷化鎵、磷化鎵、磷化銦等分解壓較大的單晶。懸浮區熔法的熔體不與容器接觸,用此法生長高純硅單晶。
水平區熔法用以生產鍺單晶。水平定向結晶法主要用於制備砷化鎵單晶,而垂直定向結晶法用於制備碲化鎘、砷化鎵。用各種方法生產的體單晶再經過晶體定向、滾磨、作參考面、切片、磨片、倒角、拋光、腐蝕、清洗、檢測、封裝等全部或部分工序以提供相應的晶片。在單晶襯底上生長單晶薄膜稱為外延。外延的方法有氣相、液相、固相、分子束外延等。
工業生產使用的主要是化學氣相外延,其次是液相外延。金屬有機化合物氣相外延和分子束外延則用於制備量子阱及超晶格等微結構。非晶、微晶、多晶薄膜多在玻璃、陶瓷、金屬等襯底上用不同類型的化學氣相沉積、磁控濺射等方法製成。
半導體和絕緣體之間的差異主要來自兩者的能帶(band)寬度不同。絕緣體的能帶比半導體寬,意即絕緣體價帶中的載子必須獲得比在半導體中更高的能量才能跳過能帶,進入傳導帶中。室溫下的半導體導電性有如絕緣體,只有極少數的載子具有足夠的能量進入傳導帶。因此,對於一個在相同電場下的純質半導體(intrinsicsemiconctor)和絕緣體會有類似的電特性,不過半導體的能帶寬度小於絕緣體也意味著半導體的導電性更容易受到控制而改變。
純質半導體的電氣特性可以藉由植入雜質的過程而永久改變,這個過程通常稱為「摻雜」(doping)。依照摻雜所使用的雜質不同,摻雜後的半導體原子周圍可能會多出一個電子或一個電洞,而讓半導體材料的導電特性變得與原本不同。如果摻雜進入半導體的雜質濃度夠高,半導體也可能會表現出如同金屬導體般的電性。在摻雜了不同極性雜質的半導體接面處會有一個內建電場(built-inelectricfield),內建電場和許多半導體元件的操作原理息息相關。
除了藉由摻雜的過程永久改變電性外,半導體亦可因為施加於其上的電場改變而動態地變化。半導體材料也因為這樣的特性,很適合用來作為電路元件,例如晶體管。晶體管屬於主動式的(有源)半導體元件(activesemiconctordevices),當主動元件和被動式的(無源)半導體元件(passivesemiconctordevices)如電阻器(resistor)或是電容器(capacitor)組合起來時,可以用來設計各式各樣的集成電路產品,例如微處理器。
當電子從傳導帶掉回價帶時,減少的能量可能會以光的形式釋放出來。這種過程是製造發光二極體(light-emittingdiode,LED)以及半導體激光(semiconctorlaser)的基礎,在商業應用上都有舉足輕重的地位。而相反地,半導體也可以吸收光子,透過光電效應而激發出在價帶的電子,產生電訊號。這即是光探測器(photodetector)的來源,在光纖通訊(fiber-opticcommunications)或是太陽能電池(solarcell)的領域是最重要的元件。
半導體有可能是單一元素組成,例如硅。也可以是兩種或是多種元素的化合物(compound),常見的化合物半導體有砷化鎵(galliumarsenide,GaAs)或是磷化鋁銦鎵(,AlGaInP)等。合金(alloy)也是半導體材料的來源之一,如鍺硅(silicongermanium,SiGe)或是砷化鎵鋁(aluminiumgalliumarsenide,AlGaAs)等。
㈦ 半導體是什麼東西
半導體是指導電能力介於金屬和絕緣體之間的固體材料。按內部電子結構區分,半導體與絕緣體相似,它們所含的價電子數恰好能填滿價帶,並由禁帶和上面的導帶隔開。半導體與絕緣體的區別是禁帶較窄,在2~3電子伏以下。
典型的半導體是以共價鍵結合為主的,比如晶體硅和鍺。半導體靠導帶中的電子或價帶中的空穴導電。它的導電性一般通過摻入雜質原子取代原來的原子來控制。摻入的原子如果比原來的原子多一個價電子,則產生電子導電;如果摻入的雜質原子比原來的原子少一個價電子,則產生空穴導電。
半導體的應用十分廣泛,主要是製成有特殊功能的元器件,如晶體管、集成電路、整流器、激光器以及各種光電探測器件、微波器件等。
半導體材料主要用來製做晶體管、集成電路、固態激光器的探測器等器件。1906年發明真空三極體,奠定了本世紀上半葉無線電電子學發展的基礎,但採用真空管的裝備體積笨重、能耗大、故障率高。1948年發明了半導體晶體管,使電子設備走向小型化、輕量化、省能化,晶體管的功耗僅為電子管的百萬分之一。1958年出現了集成電路。集成電路的發展帶來了電子計算機的微小型化,從而使人類社會掀開了信息時代新的一頁。目前製造集成電路的主要材料是硅單晶。硅的主要特性是機械強度高、結晶性好、自然界中儲量豐富、成本低,並且可以拉制出大尺寸的硅單晶。可以說,硅材料是大規模集成電路的基石。
硅固然是取之不盡、用之不竭的原材料,但化合物半導體材料,如砷化鎵很可能成為繼硅之後第二種最重要的半導體材料。因為與硅相比,砷化鎵具有更高的禁帶寬度,因而砷化鎵囂器件可以用於更高的工作溫度,又由於它具有更高的電子遷移率,所以可用於要求更高頻率和更高開關速度的場合,這也就使它成為製造高速計算機的關鍵材料。砷化鎵材料更重要的一個特性是它的光電效應,可以使它成為激光光源,這是實現光纖通訊的關鍵。因而預計砷化鎵材料在世紀之交的90年代將有一個大發展。
在高真空條件下,採用分子速外延(MBE)、化學氣相沉積(CVD)、液相外延(LPE)金屬有機化學氣相沉積(MOCVD)、化學束外延(CBE)等方法,在晶體襯底上一層疊一層地生長出不同材料的薄膜來,每層只有幾個原子層,這樣生長出來的材料叫超晶格材料。超晶格的出現將為半導體材料、器件的發展開辟更新的天地。
㈧ 半導體是什麼,詳細介紹一下。
半導體是電阻率介於金屬和絕緣體之間並有負的電阻溫度系數的物質。
半導體室溫時電阻率約在10-5~107歐·米之間,溫度升高時電阻率指數則減小。
半導體材料很多,按化學成分可分為元素半導體和化合物半導體兩大類。
鍺和硅是最常用的元素半導體;化合物半導體包括Ⅲ-Ⅴ 族化合物(砷化鎵、磷化鎵等)、Ⅱ-Ⅵ族化合物( 硫化鎘、硫化鋅等)、氧化物(錳、鉻、鐵、銅的氧化物),以及由Ⅲ-Ⅴ族化合物和Ⅱ-Ⅵ族化合物組成的固溶體(鎵鋁砷、鎵砷磷等)。除上述晶態半導體外,還有非晶態的玻璃半導體、有機半導體等。
半導體分為本徵半導體和雜質半導體。雜質半導體就是我們製作晶體管用的。閣下學將要學電子的吧,。
㈨ 生活中有什麼是半導體材料 多舉例一些 什麼是二極體 為什麼機器人是半導體的
好多指示燈就是發光二級管
常見的太陽能電池板的半導體材料是硅
很多自動門裝置的光電探測器也是半導體材料做的
激光器,LED等都是半導體材料做的
機器人中很多零件的材料就是半導體
㈩ 光電探測器的主要應用
光電導探測器
photoconctive detector
利用半導體材料的光電導效應製成的一種光探測器件。所謂光電導效應,是指由輻射引起被照射材料電導率改變的一種物理現象。光電導探測器在軍事和國民經濟的各個領域有廣泛用途。在可見光或近紅外波段主要用於射線測量和探測、工業自動控制、光度計量等;在紅外波段主要用於導彈制導、紅外熱成像、紅外遙感等方面。光電導體的另一應用是用它做攝像管靶面。為了避免光生載流子擴散引起圖像模糊,連續薄膜靶面都用高阻多晶材料,如PbS-PbO、Sb2S3等。其他材料可採取鑲嵌靶面的方法,整個靶面由約10萬個單獨探測器組成。
1873年,英國W.史密斯發現硒的光電導效應,但是這種效應長期處於探索研究階段,未獲實際應用。第二次世界大戰以後,隨著半導體的發展,各種新的光電導材料不斷出現。在可見光波段方面,到50年代中期,性能良好的硫化鎘、硒化鎘光敏電阻和紅外波段的硫化鉛光電探測器都已投入使用。60年代初,中遠紅外波段靈敏的Ge、Si摻雜光電導探測器研製成功,典型的例子是工作在3~5微米和8~14微米波段的Ge:Au(鍺摻金)和Ge:Hg光電導探測器。60年代末以後,HgCdTe、PbSnTe等可變禁帶寬度的三元系材料的研究取得進展。
工作原理和特性 光電導效應是內光電效應的一種。當照射的光子能量hv等於或大於半導體的禁帶寬度Eg時,光子能夠將價帶中的電子激發到導帶,從而產生導電的電子、空穴對,這就是本徵光電導效應。這里h是普朗克常數,v是光子頻率,Eg是材料的禁帶寬度(單位為電子伏)。因此,本徵光電導體的響應長波限λc為
λc=hc/Eg=1.24/Eg (μm)
式中 c為光速。本徵光電導材料的長波限受禁帶寬度的限制。在60年代初以前還沒有研製出適用的窄禁帶寬度的半導體材料,因而人們利用非本徵光電導效應。Ge、Si等材料的禁帶中存在各種深度的雜質能級,照射的光子能量只要等於或大於雜質能級的離化能,就能夠產生光生自由電子或自由空穴。非本徵光電導體的響應長波限λ由下式求得
λc=1.24/Ei
式中Ei代表雜質能級的離化能。到60年代中後期,Hg1-xCdxTe、PbxSn1-xTe、PbxSn1-xSe等三元系半導體材料研製成功,並進入實用階段。它們的禁帶寬度隨組分x值而改變,例如x=0.2的HG0.8Cd0.2Te材料,可以製成響應波長為 8~14微米大氣窗口的紅外探測器。它與工作在同樣波段的Ge:Hg探測器相比有如下優點:①工作溫度高(高於77K),使用方便,而Ge:Hg工作溫度為38K。②本徵吸收系數大,樣品尺寸小。③易於製造多元器件。表1和表2分別列出部分半導體材料的Eg、Ei和λc值。
通常,凡禁帶寬度或雜質離化能合適的半導體材料都具有光電效應。但是製造實用性器件還要考慮性能、工藝、價格等因素。常用的光電導探測器材料在射線和可見光波段有:CdS、CdSe、CdTe、Si、Ge等;在近紅外波段有:PbS、PbSe、InSb、Hg0.75Cd0.25Te等;在長於8微米波段有:Hg1-xCdxTe、PbxSn1-x、Te、Si摻雜、Ge摻雜等;CdS、CdSe、PbS等材料可以由多晶薄膜形式製成光電導探測器。
可見光波段的光電導探測器 CdS、CdSe、CdTe 的響應波段都在可見光或近紅外區域,通常稱為光敏電阻。它們具有很寬的禁帶寬度(遠大於1電子伏),可以在室溫下工作,因此器件結構比較簡單,一般採用半密封式的膠木外殼,前面加一透光窗口,後面引出兩根管腳作為電極。高溫、高濕環境應用的光電導探測器可採用金屬全密封型結構,玻璃窗口與可伐金屬外殼熔封。
器件靈敏度用一定偏壓下每流明輻照所產生的光電流的大小來表示。例如一種CdS光敏電阻,當偏壓為70伏時,暗電流為10-6~10-8安,光照靈敏度為3~10安/流明。CdSe光敏電阻的靈敏度一般比 CdS高。光敏電阻另一個重要參數是時間常數 τ,它表示器件對光照反應速度的大小。光照突然去除以後,光電流下降到最大值的 1/e(約為37%)所需的時間為時間常數 τ。也有按光電流下降到最大值的10%計算τ的;各種光敏電阻的時間常數差別很大。CdS的時間常數比較大(毫秒量級)。
紅外波段的光電導探測器 PbS、Hg1-xCdxTe 的常用響應波段在 1~3微米、3~5微米、8~14微米三個大氣透過窗口。由於它們的禁帶寬度很窄,因此在室溫下,熱激發足以使導帶中有大量的自由載流子,這就大大降低了對輻射的靈敏度。響應波長越長的光,電導體這種情況越顯著,其中1~3微米波段的探測器可以在室溫工作(靈敏度略有下降)。3~5微米波段的探測器分三種情況:①在室溫下工作,但靈敏度大大下降,探測度一般只有1~7×108厘米·瓦-1·赫;②熱電致冷溫度下工作(約-60℃),探測度約為109厘米·瓦-1·赫;③77K或更低溫度下工作,探測度可達1010厘米·瓦-1·赫以上。8~14微米波段的探測器必須在低溫下工作,因此光電導體要保持在真空杜瓦瓶中,冷卻方式有灌注液氮和用微型製冷器兩種。
紅外探測器的時間常數比光敏電阻小得多,PbS探測器的時間常數一般為50~500微秒,HgCdTe探測器的時間常數在10-6~10-8秒量級。紅外探測器有時要探測非常微弱的輻射信號,例如10-14 瓦;輸出的電信號也非常小,因此要有專門的前置放大器。