⑴ 軸承測振三個方向是軸向.水平.垂直,一般哪個規定為X.Y.Z
軸向X,水平Y,垂直Z,目前士翌無線測振儀可以在儀器里,將這三個方向分別表示出來,以後可隨時查詢。即設備樹的概念,直接放到測振儀的界面里,方便使用者分類保存測量數據。
⑵ FAG深溝球軸承的無損探傷方法有那幾種
總共是三種:磁粉探傷,渦流探傷,超聲探傷。
目前在國內應用最多的還是磁粉探傷,這種技術相對較簡單而且成本較低,
但是只能檢測表面裂紋,由於檢測效率較低,對於大批量生產的話無法做到全檢。
國外先進國家多數已經採用渦流探傷和超聲探傷了,可以檢測表面以下裂紋,
而且檢測效率非常高,能做到全檢。
純手工 望樓主採納
⑶ 軸承軸向和徑向是什麼意思,通俗點的。謝謝了
簡單點,軸就是它的中心軸,徑就是它的直徑。那麼軸向就是中心軸的方向,徑向就是直徑方向了。
軸向通常是針對圓柱體類物體而言,就是圓柱體旋轉中心軸的方向,即與中心軸共同的方向。
徑向垂直於軸向,即圓柱體端面圓的半徑或直徑方向,徑向與軸向空間垂直。
(3)軸承探傷屬於什麼方向擴展閱讀
影響轉子軸向力的因素很多,運行中引起軸向推力增加的原因如下:
1.壓縮機出口壓力超壓,排氣壓力增加會使軸向推力增加。
2.輪蓋密封,級間密封損壞,內泄漏的加大也會造成軸向力加大,密封損壞得越嚴重,軸向推力增加得越多。
3.平衡裝置密封損壞或者平衡氣源管堵塞,都會造成轉子軸向力的增加。
4.總之,如果軸向力增加得過大,超過推力軸承的承載能力,推力軸承的瓦塊就會損壞。更嚴重會造成轉子的軸向大幅度竄動,轉子和氣缸發生碰撞,造成嚴重的設備事故。
⑷ 什麼是軸承的軸向定位
為了防止軸承在承受軸向負荷時產生軸向移動,軸承在軸上和外南寧孔內都應用軸向定位裝置。軸承在軸上和外殼孔內定位方式的選擇,取決於作用在軸上負荷的大小和方向,軸承的轉速,軸承的類型,軸承在軸上的位置等。軸向負荷越大,軸承轉速越高,軸向定位應越可靠。
對於不同類型的軸承,軸向定位的方式也應不同。如對角接觸球軸承和圓錐滾子軸承可選用軸肩和外殼孔的檔肩單向支撐,而不必採用專門的定位裝置,套圈在軸向的移動可由軸承本身支撐。作為固定支承的徑向軸承,其內外圈在軸向都要固定在左支承。作為需要補償軸的熱伸長的游動支承中,如安裝不可分離型軸承時,只需要固定其中一個套圈,游動的套圈不固定。在游動支承中安裝分離型軸承,如短圓柱滾子軸承、滾針軸承,則兩個套圈都需要固定。
⑸ 軸承檢測定位的方法是什麼
軸承故障往往是由於多種因素,所有的設計和製造工藝因素的影響和軸承故障,分析是不容易確定。在正常情況下,您可以考慮和分析因素和內部因素。
用於調整的主要因素是安裝,使用和維護,保養維修,等符合技術要求。安裝條件是使用軸承的因素之一是往往造成不正確的安裝包各部分之間的狀態變化的承重力的首要因素,在異常狀態的操作和早期失效。根據軸承的安裝,使用,保養,維護的技術要求操作的軸承接觸負荷,轉速,溫度,振動,雜訊和潤滑狀態監測和檢查,發現異常立即查找原因,調整回正常。此外,油脂和周圍介質的質量,氣氛也非常重要的分析測試。
軸承的倒角不決定軸承的質量,但卻反映了軸承的加工方法。倒角為黑色,說明經過淬火等熱處理,這樣軸承的硬度,而有些人認為倒角為黑色不好看是沒加工完全,這是誤區。
一體保持架比兩體好,雖然新工藝都使用一體保持架,但它僅僅是節省了材料,而對回轉等性能比兩體的差。軸承的倒角不決定軸承的質量,而有些人認為倒角為黑色不好看是沒加工完全,這是誤區。
軸承定位方法:
1、鎖緊螺母定位法:
採用過盈配合的軸承內圈安裝時,通常使內圈一側靠著軸上的擋肩,另一側則一般用一個鎖緊螺母(KMT或KMTA系列)固定。帶錐形孔的軸承直接安裝在錐形軸頸上,通常用鎖緊螺母固定在軸上。
2、隔套定位法:
在軸承圈之間或軸承圈與鄰近零件之間的採用隔套或隔圈,代替整體軸肩或軸承座肩是很便利的。在這些情況下,尺寸和形狀公差也適用於相關零件。
3、階梯軸套定位:
另一種軸承軸向定位的方法是採用階梯軸套。這些軸套特別適合精密軸承配置,與帶螺紋的鎖緊螺母相比,其跳動更小且提供更高的精度。階梯軸套通常用於超高速度主軸,對於這種主軸,傳統的鎖緊裝置無法向其提供足夠的精度。
4、固定端蓋定位法:
採用過盈配合的軸承外圈安裝時,通常使外圈的一側靠著軸承座上的擋肩,另一側則用一個固定端蓋固定。固定端蓋和其固定螺釘在一些情況下對軸承形狀和性能產生負面影響。如果軸承座和螺釘孔間的壁厚太小,或者螺釘緊固太緊,外圈滾道可能會變形。最輕的ISO尺寸系列19系列比10系列或更重系列更容易受到此類損傷的影響。
⑹ 探傷是怎麼做的,對人體有什麼危害
常用的探傷方法有:X光射線探傷、超聲波探傷、磁粉探傷、滲透探傷、渦流探傷、γ射線探傷、螢光探傷、著色探傷等方法。 物理探傷就是不產生化學變化的情況下進行無損探傷。 [編輯本段]其他 一、什麼是無損探傷? 答:無損探傷是在不損壞工件或原材料工作狀態的前提下,對被檢驗部件的表面和內部質量進行檢查的一種測試手段。 二、常用的探傷方法有哪些? 答:常用的無損探傷方法有:X光射線探傷、超聲波探傷、磁粉探傷、滲透探傷、渦流探傷、γ射線探傷、螢光探傷、著色探傷等方法。 三、試述磁粉探傷的原理? 答:它的基本原理是:當工件磁化時,若工件表面有缺陷存在,由於缺陷處的磁阻增大而產生漏磁,形成局部磁場,磁粉便在此處顯示缺陷的形狀和位置,從而判斷缺陷的存在。 四、試述磁粉探傷的種類? 1、按工件磁化方向的不同,可分為周向磁化法、縱向磁化法、復合磁化法和旋轉磁化法。 2、按採用磁化電流的不同可分為:直流磁化法、半波直流磁化法、和交流磁化法。 3、按探傷所採用磁粉的配製不同,可分為乾粉法和濕粉法。 五、磁粉探傷的缺陷有哪些? 答:磁粉探傷設備簡單、操作容易、檢驗迅速、具有較高的探傷靈敏度,可用來發現鐵磁材料鎳、鈷及其合金、碳素鋼及某些合金鋼的表面或近表面的缺陷;它適於薄壁件或焊縫表面裂紋的檢驗,也能顯露出一定深度和大小的未焊透缺陷;但難於發現氣孔、夾碴及隱藏在焊縫深處的缺陷。 六、缺陷磁痕可分為幾類? 答:1、各種工藝性質缺陷的磁痕; 2、材料夾渣帶來的發紋磁痕; 3、夾渣、氣孔帶來的點狀磁痕。 七、試述產生漏磁的原因? 答:由於鐵磁性材料的磁率遠大於非鐵磁材料的導磁率,根據工件被磁化後的磁通密度B=μH來分析,在工件的單位面積上穿過B根磁線,而在缺陷區域的單位面積 上不能容許B根磁力線通過,就迫使一部分磁力線擠到缺陷下面的材料里,其它磁力線不得不被迫逸出工件表面以外出形成漏磁,磁粉將被這樣所引起的漏磁所吸引。 八、試述產生漏磁的影響因素? 答:1、缺陷的磁導率:缺陷的磁導率越小、則漏磁越強。 2、磁化磁場強度(磁化力)大小:磁化力越大、漏磁越強。 3、被檢工件的形狀和尺寸、缺陷的形狀大小、埋藏深度等:當其他條件相同時,埋藏在表面下深度相同的氣孔產生的漏磁要比橫向裂紋所產生的漏磁要小。 九、某些零件在磁粉探傷後為什麼要退磁? 答:某些轉動部件的剩磁將會吸引鐵屑而使部件在轉動中產生摩擦損壞,如軸類軸承等。某些零件的剩磁將會使附近的儀表指示失常。因此某些零件在磁粉探傷後為什麼要退磁處理。 十、超聲波探傷的基本原理是什麼? 答:超聲波探傷是利用超聲能透入金屬材料的深處,並由一截面進入另一截面時,在界面邊緣發生反射的特點來檢查零件缺陷的一種方法,當超聲波束自零件表面由探頭通至金屬內部,遇到缺陷與零件底面時就分別發生反射波來,在螢光屏上形成脈沖波形,根據這些脈沖波形來判斷缺陷位置和大小。 十一、超聲波探傷與X射線探傷相比較有何優的缺點? 答:超聲波探傷比X射線探傷具有較高的探傷靈敏度、周期短、成本低、靈活方便、效率高,對人體無害等優點;缺點是對工作表面要求平滑、要求富有經驗的檢驗人員才能辨別缺陷種類、對缺陷沒有直觀性;超聲波探 傷適合於厚度較大的零件檢驗。 十二、超聲波探傷的主要特性有哪些? 答:1、超聲波在介質中傳播時,在不同質界面上具有反射的特性,如遇到缺陷,缺陷的尺寸等於或大於超聲波波長時,則超聲波在缺陷上反射回來,探傷儀可將反射波顯示出來;如缺陷的尺寸甚至小於波長時,聲波將繞過射線而不能反射; 2、波聲的方向性好,頻率越高,方向性越好,以很窄的波束向介質中輻射,易於確定缺陷的位置。 3、超聲波的傳播能量大,如頻率為1MHZ(100赫茲)的超生波所傳播的能量,相當於振幅相同而頻率為1000HZ(赫茲)的聲波的100萬倍。 十三、超生波探傷板厚14毫米時,距離波幅曲線上三條主要曲線的關系怎樣? 答:測長線 Ф1 х 6 -12dB 定量線 Ф1 х 6 -6dB 判度線 Ф1 х 6 -2dB 十四、何為射線的「軟」與「硬」? 答:X射線穿透物質的能力大小和射線本身的波長有關,波長越短(管電壓越高),其穿透能力越大,稱之為「硬」;反之則稱為「軟」。 十五、用超生波探傷時,底波消失可能是什麼原因造成的? 答:1、近表表大缺陷;2、吸收性缺陷;3、傾斜大缺陷;4、氧化皮與鋼板結合不好。 工業上很多情況需要探傷,探傷屬於「特種作業」主要以壓力容器為主。從事探傷和在探傷環境周圍工作的人,對探傷的危害必須有充分的認識,以確保自己和他人不受傷害。 探傷稱之為「無損檢測」,它具有多種檢測方式。 其中的X、γ的射線檢測,如進行時沒有做好必要的安全防護,長期操作會對生物體造成嚴重的傷害以及為害生命。其主要以癌症與永久性無生育的形式表現出來,如乳腺癌、肝癌、腦癌、骨癌等。
⑺ 軸承檢驗一般都檢驗哪些項目
軸承的檢測分為兩大檢測項目:尺寸公差與粗糙度,幾何公差。
幾何公差主要檢查,平行度、垂直度、徑向跳動、圓柱度、圓度、同軸度。
尺寸公差按照圖紙要求檢查。