① 一級蝸輪蝸桿課程設計
機械設計課程設計說明書
前言
課程設計是考察學生全面在掌握基本理論知識的重要環節。根據學院的教學環節,在2006年6月12日-2006年6月30日為期三周的機械設計課程設計。本次是設計一個蝸輪蝸桿減速器,減速器是用於電動機和工作機之間的獨立的閉式傳動裝置。本減速器屬單級蝸桿減速器(電機——聯軸器——減速器——聯軸器——帶式運輸機),本人是在周知進老師指導下獨立完成的。該課程設計內容包括:任務設計書,參數選擇,傳動裝置總體設計,電動機的選擇,運動參數計算,蝸輪蝸桿傳動設計,蝸桿、蝸輪的基本尺寸設計,蝸輪軸的尺寸設計與校核,減速器箱體的結構設計,減速器其他零件的選擇,減速器的潤滑等和A0圖紙一張、A3圖紙三張。設計參數的確定和方案的選擇通過查詢有關資料所得。
該減速器的設計基本上符合生產設計要求,限於作者初學水平,錯誤及不妥之處望老師批評指正。
設計者:殷其中
2006年6月30日
參數選擇:
總傳動比:I=35 Z1=1 Z2=35
捲筒直徑:D=350mm
運輸帶有效拉力:F=6000N
運輸帶速度:V=0.5m/s
工作環境:三相交流電源
有粉塵
常溫連續工作
一、 傳動裝置總體設計:
根據要求設計單級蝸桿減速器,傳動路線為:電機——連軸器——減速器——連軸器——帶式運輸機。(如圖2.1所示) 根據生產設計要求可知,該蝸桿的圓周速度V≤4——5m/s,所以該蝸桿減速器採用蝸桿下置式見(如圖2.2所示),採用此布置結構,由於蝸桿在蝸輪的下邊,嚙合處的冷卻和潤滑均較好。蝸輪及蝸輪軸利用平鍵作軸向固定。蝸桿及蝸輪軸均採用圓錐滾子軸承,承受徑向載荷和軸向載荷的復合作用,為防止軸外伸段箱內潤滑油漏失以及外界灰塵,異物侵入箱內,在軸承蓋中裝有密封元件。 圖2.1
該減速器的結構包括電動機、蝸輪蝸桿傳動裝置、蝸輪軸、箱體、滾動軸承、檢查孔與定位銷等附件、以及其他標准件等。
二、 電動機的選擇:
由於該生產單位採用三相交流電源,可考慮採用Y系列三相非同步電動機。三相非同步電動機的結構簡單,工作可靠,價格低廉,維護方便,啟動性能好等優點。一般電動機的額定電壓為380V
根據生產設計要求,該減速器捲筒直徑D=350mm。運輸帶的有效拉力F=6000N,帶速V=0.5m/s,載荷平穩,常溫下連續工作,工作環境多塵,電源為三相交流電,電壓為380V。
1、 按工作要求及工作條件選用三相非同步電動機,封閉扇冷式結構,電壓為380V,Y系列
2、 傳動滾筒所需功率
3、 傳動裝置效率:(根據參考文獻《機械設計課程設計》 劉俊龍 何在洲 主編 機械工業出版社 第133-134頁表12-8得各級效率如下)其中:
蝸桿傳動效率η1=0.70
攪油效率η2=0.95
滾動軸承效率(一對)η3=0.98
聯軸器效率ηc=0.99
傳動滾筒效率ηcy=0.96
所以:
η=η1•η2•η33•ηc2•ηcy =0.7×0.99×0.983×0.992×0.96 =0.633
電動機所需功率: Pr= Pw/η =3.0/0.633=4.7KW
傳動滾筒工作轉速: nw=60×1000×v / ×350
=27.9r/min
根據容量和轉速,根據參考文獻《機械零件設計課程設計》 毛振揚 陳秀寧 施高義 編 浙江大學出版社 第339-340頁表附表15-1可查得所需的電動機Y系列三相非同步電動機技術數據,查出有四種適用的電動機型號,因此有四種傳動比方案,如表3-1:
表3-1
方案 電動機型號 額定功率
Ped kw 電動機轉速 r/min 額定轉矩
同步轉速 滿載轉速
1 Y132S1-2 5.5 3000 2900 2.0
2 Y132S-4 5.5 1500 1440 2.2
3 Y132M2-6 5.5 1000 960 2.0
4 Y160M-8 5.5 750 720 2.0
綜合考慮電動機和傳動裝置的尺寸、重量、價格和減速器的傳動比,可見第3方案比較適合。因此選定電動機機型號為Y132M2-6其主要性能如下表3-2:
表3-2
中心高H 外形尺寸
L×(AC/2+AD)×HD 底角安裝尺寸
A×B 地腳螺栓孔直徑K 軸身尺寸
D×E 裝鍵部位尺寸
F×G×D
132 515×(270/2+210)×315 216×178 12 38×80 10×33×38
四、運動參數計算:
4.1蝸桿軸的輸入功率、轉速與轉矩
P0 = Pr=4.7kw
n0=960r/min
T0=9.55 P0 / n0=4.7×103=46.7N .m
4.2蝸輪軸的輸入功率、轉速與轉矩
P1 = P0•η01 = 4.7×0.99×0.99×0.7×0.992 =3.19 kw
nⅠ= = = 27.4 r/min
T1= 9550 = 9550× = 1111.84N•m
4.3傳動滾筒軸的輸入功率、轉速與轉矩
P2 = P1•ηc•ηcy=3.19×0.99×0.99=3.13kw
n2= = = 27.4 r/min
T2= 9550 = 9550× = 1089.24N•m
運動和動力參數計算結果整理於下表4-1:
表4-1
類型 功率P(kw) 轉速n(r/min) 轉矩T(N•m) 傳動比i 效率η
蝸桿軸 4.7 960 46.75 1 0.679
蝸輪軸 3.19 27.4 1111.84 35
傳動滾筒軸 3.13 27.4 1089.24
五、蝸輪蝸桿的傳動設計:
蝸桿的材料採用45鋼,表面硬度>45HRC,蝸輪材料採用ZCuA110Fe3,砂型鑄造。
以下設計參數與公式除特殊說明外均以參考由《機械設計 第四版》 邱宣懷主編 高等教育出版社出版 1996年 第13章蝸桿傳動為主要依據。
具體如表3—1:
表5—1蝸輪蝸桿的傳動設計表
項 目 計算內容 計算結果
中心距的計算
蝸桿副的相對滑動速度
參考文獻5第37頁(23式) 4m/s<Vs<7m/s
當量摩擦
系數 4m/s<Vs<7m/s
由表13.6取最大值
選[ ]值
在圖13.11的i=35的線上,查得[ ]=0.45
[ ]=0.45
蝸輪轉矩
使用系數 按要求查表12.9
轉速系數
彈性系數 根據蝸輪副材料查表13.2
壽命系數
接觸系數 按圖13.12I線查出
接觸疲勞極限 查表13.2
接觸疲勞最小安全系數 自定
中心距
傳動基本尺寸
蝸桿頭數
Z1=1
蝸輪齒數模數
m=10
蝸桿分度圓 直徑
或
蝸輪分度圓
直徑
mm
蝸桿導程角
表13.5
變位系數 x=(225-220)/10=0.5 x=0.5
蝸桿齒頂圓 直徑 表13.5
mm
蝸桿齒根圓 直徑 表13.5
mm
蝸桿齒寬
mm
蝸輪齒根圓直徑
mm
蝸輪齒頂圓直徑(吼圓直徑)
mm
蝸輪外徑
mm
蝸輪咽喉母圓半徑
蝸輪齒寬 B =82.5
B=82mm
mm
蝸桿圓周速度
=4.52 m/s
相對滑動速度
m/s
當量摩擦系數 由表13.6查得
輪齒彎曲疲勞強度驗算
許用接觸應力
最大接觸應力
合格
齒根彎曲疲勞強度 由表13.2查出
彎曲疲勞最小安全系數 自取
許用彎曲疲勞應力
輪齒最大彎曲應力
合格
蝸桿軸擾度驗算
蝸桿軸慣性矩
允許蝸桿擾度
蝸桿軸擾度
合格
溫度計算
傳動嚙合效率
攪油效率 自定
軸承效率 自定
總效率
散熱面積估算
箱體工作溫度
此處取 =15w/(m²c)
合格
潤滑油粘度和潤滑方式
潤滑油粘度 根據 m/s由表13.7選取
潤滑方法 由表13.7採用浸油潤滑
六、蝸桿、蝸輪的基本尺寸設計
6.1蝸桿基本尺寸設計
根據電動機的功率P=5.5kw,滿載轉速為960r/min,電動機軸徑 ,軸伸長E=80mm
軸上鍵槽為10x5。
1、 初步估計蝸桿軸外伸段的直徑
d=(0.8——10) =30.4——38mm
2、 計算轉矩
Tc=KT=K×9550× =1.5×9550×5.5/960=82.1N.M
由Tc、d根據《機械零件設計課程設計》 毛振揚 陳秀寧 施高義 編 浙江大學出版社第334頁表14-13可查得選用HL3號彈性柱銷聯軸器(38×83)。
3、 確定蝸桿軸外伸端直徑為38mm。
4、 根據HL3號彈性柱銷聯軸器的結構尺寸確定蝸桿軸外伸端直徑為38mm的長度為80mm。
5、 由參考文獻《機械零件設計課程設計》 毛振揚 陳秀寧 施高義 編 浙江大學出版社的第305頁表10-1可查得普通平鍵GB1096—90A型鍵10×70,蝸桿軸上的鍵槽寬 mm,槽深為 mm,聯軸器上槽深 ,鍵槽長L=70mm。
6、 初步估計d=64mm。
7、 由參考文獻《機械零件設計課程設計》 毛振揚 陳秀寧 施高義 編 浙江大學出版社第189頁圖7-19,以及蝸桿上軸承、擋油盤,軸承蓋,密封圈等組合設計,蝸桿的尺寸如零件圖1(蝸桿零件圖)
6.2蝸輪基本尺寸表(由參考文獻《機械零件設計課程設計》 毛振揚 陳秀寧 施高義 編 浙江大學出版社第96頁表4-32及第190頁圖7-20及表5—1蝸輪蝸桿的傳動設計表可計算得)
表6—1蝸輪結構及基本尺寸
蝸輪採用裝配式結構,用六角頭螺栓聯接( 100mm),輪芯選用灰鑄鐵 HT200 ,輪緣選用鑄錫青銅ZcuSn10P1+* 單位:mm
a=b C x B
160 128 12 36 20 15 2 82
e n
10 3 35 380 90º 214 390 306
七、蝸輪軸的尺寸設計與校核
蝸輪軸的材料為45鋼並調質,且蝸輪軸上裝有滾動軸承,蝸輪,軸套,密封圈、鍵,軸的大致結構如圖7.1:
圖7.1 蝸輪軸的基本尺寸結構圖
7.1 軸的直徑與長度的確定
1.初步估算軸的最小直徑(外伸段的直徑)
經計算D6>51.7>100mm
又因軸上有鍵槽所以D6增大3%,則D6=67mm
計算轉矩
Tc=KT=K×9550× =1.5×9550×3.19/27.4=1667.76N.M<2000 N.M
所以蝸輪軸與傳動滾筒之間選用HL5彈性柱銷聯軸器65×142,
因此 =65m m
2.由參考文獻《機械零件設計課程設計》 毛振揚 陳秀寧 施高義 編 浙江大學出版社的第305頁表10-1可查得普通平鍵GB1096—90A型鍵20×110,普通平鍵GB1096—90A型鍵20×70,聯軸器上鍵槽深度 ,蝸輪軸鍵槽深度 ,寬度為 由參考文獻《機械設計基礎》(下冊) 張瑩 主編 機械工業出版社 1997年的第316頁—321頁計算得:如下表:
圖中表注 計算內容 計算結果
L1 (由參考文獻《機械設計課程設計》 劉俊龍 何在洲 主編 機械工業出版社第182頁表15-1查得滾動軸承6216的基本結構) L1=25
L2 自定 L2=20
L3 根據蝸輪 L3=128
L4 自定 L4=25
L5 (由參考文獻《機械設計課程設計》 劉俊龍 何在洲 主編 機械工業出版社第182頁表15-1查得滾動軸承6216的基本結構) L5=25
L6 自定 L6=40
L7 選用HL5彈性柱銷聯軸器65×142 L7=80
D1 (由參考文獻《機械設計課程設計》 劉俊龍 何在洲 主編 機械工業出版社第182頁表15-1查得滾動軸承6216的基本結構) D1=80
D2 便於軸承的拆卸 D2=84
D3 根據蝸輪 D3=100
D4 便於軸承的拆卸 D4=84
D5 自定 D5=72
D6 D6>51.7>100mm
又因軸上有鍵槽所以D6增大3%,則D6=67mm D6=67
7.2軸的校核
7.2.1軸的受力分析圖
圖7.1
X-Y平面受力分析
圖7.2
X-Z平面受力圖:
圖7.3
水平面彎矩
1102123.7
521607
97 97 119
圖7.4
垂直面彎矩 714000
圖7.5
436150.8
合成彎矩
1184736.3
714000
681175.5
圖7.6
當量彎矩T與aT
T=1111840Nmm
aT=655985.6Nmm
圖7.7
7.2.2軸的校核計算如表5.1
軸材料為45鋼, , ,
表7.1
計算項目 計算內容 計算結果
轉矩
Nmm
圓周力 =20707.6N
=24707.6N
徑向力
=2745.3N
軸向力 =24707.6×tan 20º
Fr =8992.8N
計算支承反力
=1136.2N
=19345.5N
垂直面反力
=4496.4N
水平面X-Y受力圖 圖7.2
垂直面X-Z受力 圖7.3
畫軸的彎矩圖
水平面X-Y彎矩圖 圖7.4
垂直面X-Z彎矩圖 圖7.5
合成彎矩 圖7.6
軸受轉矩T T= =1111840Nmm
T=1111840Nmm
許用應力值 表16.3,查得
應力校正系數a a=
a=0.59
當量彎矩圖
當量彎矩 蝸輪段軸中間截面
=947628.6Nmm
軸承段軸中間截面處
=969381.2Nmm
947628.6Nmm
=969381.2Nmm
當量彎矩圖 圖7.7
軸徑校核
驗算結果在設計范圍之內,設計合格
軸的結果設計採用階梯狀,階梯之間有圓弧過度,減少應力集中,具體尺寸和要求見零件圖2(蝸輪中間軸)。
7.3裝蝸輪處軸的鍵槽設計及鍵的選擇
當軸上裝有平鍵時,鍵的長度應略小於零件軸的接觸長度,一般平鍵長度比輪轂長度短5—10mm,由參考文獻1表2.4—30圓整,可知該處選擇鍵2.5×110,高h=14mm,軸上鍵槽深度為 ,輪轂上鍵槽深度為 ,軸上鍵槽寬度為 輪轂上鍵槽深度為
八、減速器箱體的結構設計
參照參考文獻〈〈機械設計課程設計》(修訂版) 鄂中凱,王金等主編 東北工學院出版社 1992年第19頁表1.5-1可計算得,箱體的結構尺寸如表8.1:
表8.1箱體的結構尺寸
減速器箱體採用HT200鑄造,必須進行去應力處理。
設計內容 計 算 公 式 計算結果
箱座壁厚度δ =0.04×225+3=12mm
a為蝸輪蝸桿中心距 取δ=12mm
箱蓋壁厚度δ1 =0.85×12=10mm
取δ1=10mm
機座凸緣厚度b b=1.5δ=1.5×12=18mm b=18mm
機蓋凸緣厚度b1 b1=1.5δ1=1.5×10=15mm b1=18mm
機蓋凸緣厚度P P=2.5δ=2.5×12=30mm P=30mm
地腳螺釘直徑dØ dØ==20mm dØ=20mm
地腳螺釘直徑d`Ø d`Ø==20mm d`Ø==20mm
地腳沉頭座直徑D0 D0==48mm D0==48mm
地腳螺釘數目n 取n=4個 取n=4
底腳凸緣尺寸(扳手空間) L1=32mm L1=32mm
L2=30mm L2=30mm
軸承旁連接螺栓直徑d1 d1= 16mm d1=16mm
軸承旁連接螺栓通孔直徑d`1 d`1=17.5 d`1=17.5
軸承旁連接螺栓沉頭座直徑D0 D0=32mm D0=32mm
剖分面凸緣尺寸(扳手空間) C1=24mm C1=24mm
C2=20mm C2=20mm
上下箱連接螺栓直徑d2 d2 =12mm d2=12mm
上下箱連接螺栓通孔直徑d`2 d`2=13.5mm d`2=13.5mm
上下箱連接螺栓沉頭座直徑 D0=26mm D0=26mm
箱緣尺寸(扳手空間) C1=20mm C1=20mm
C2=16mm C2=16mm
軸承蓋螺釘直徑和數目n,d3 n=4, d3=10mm n=4
d3=10mm
檢查孔蓋螺釘直徑d4 d4=0.4d=8mm d4=8mm
圓錐定位銷直徑d5 d5= 0.8 d2=9mm d5=9mm
減速器中心高H H=340mm H=340mm
軸承旁凸台半徑R R=C2=16mm R1=16mm
軸承旁凸台高度h 由低速級軸承座外徑確定,以便於扳手操作為准。 取50mm
軸承端蓋外徑D2 D2=軸承孔直徑+(5~5.5) d3 取D2=180mm
箱體外壁至軸承座端面距離K K= C1+ C2+(8~10)=44mm K=54mm
軸承旁連接螺栓的距離S 以Md1螺栓和Md3螺釘互不幹涉為准盡量靠近一般取S=D2 S=180
蝸輪軸承座長度(箱體內壁至軸承座外端面的距離) L1=K+δ=56mm L1=56mm
蝸輪外圓與箱體內壁之間的距離 =15mm
取 =15mm
蝸輪端面與箱體內壁之間的距離 =12mm
取 =12mm
機蓋、機座肋厚m1,m m1=0.85δ1=8.5mm, m=0.85δ=10mm m1=8.5mm, m=10mm
以下尺寸以參考文獻《機械設計、機械設計基礎課程設計》 王昆等主編 高等教育出版社 1995年表6-1為依據
蝸桿頂圓與箱座內壁的距離 =40mm
軸承端面至箱體內壁的距離 =4mm
箱底的厚度 20mm
軸承蓋凸緣厚度 e=1.2 d3=12mm 箱蓋高度 220mm 箱蓋長度
(不包括凸台) 440mm
蝸桿中心線與箱底的距離 115mm 箱座的長度
(不包括凸台) 444mm 裝蝸桿軸部分的長度 460mm
箱體寬度
(不包括凸台) 180mm 箱底座寬度 304mm 蝸桿軸承座孔外伸長度 8mm
蝸桿軸承座長度 81mm 蝸桿軸承座內端面與箱體內壁距離 61mm
九、減速器其他零件的選擇
經箱體、蝸桿與蝸輪、蝸輪軸以及標准鍵、軸承、密封圈、擋油盤、聯軸器、定位銷的組合設計,經校核確定以下零件:
表9-1鍵 單位:mm
安裝位置 類型 b(h9) h(h11) L9(h14)
蝸桿軸、聯軸器以及電動機聯接處 GB1096-90
鍵10×70 10 8 70
蝸輪與蝸輪軸聯接處 GB1096-90
鍵25×110 25 14 110
蝸輪軸、聯軸器及傳動滾筒聯接處 GB1096-90
鍵20×110 20 12 110
表9-2圓錐滾動軸承 單位:mm
安裝位置 軸承型號 外 形 尺 寸
d D T B C
蝸 桿 GB297-84
7312(30312) 60 130 33.5 31 26
蝸輪軸 GB/T297-94
30216 80 140 28.25 26 22
表9-3密封圈(GB9877.1-88) 單位:mm
安裝位置 類型 軸徑d 基本外徑D 基本寬度
蝸桿 B55×80×8 55 80 8
蝸輪軸 B75×100×10 75 100 10
表9-4彈簧墊圈(GB93-87)
安裝位置 類型 內徑d 寬度(厚度) 材料為65Mn,表面氧化的標准彈簧墊圈
軸承旁連接螺栓 GB93-87-16 16 4
上下箱聯接螺栓 GB93-87-12 12 3
表9-5擋油盤
參考文獻《機械設計課程設計》(修訂版) 鄂中凱,王金等主編 東北工學院出版社 1992年第132頁表2.8-7
安裝位置 外徑 厚度 邊緣厚度 材料
蝸桿 129mm 12mm 9mm Q235
定位銷為GB117-86 銷8×38 材料為45鋼
十、減速器附件的選擇
以下數據均以參考文獻《機械零件設計課程設計》 毛振揚 陳秀寧 施高義 編 浙江大學出版社的P106-P118
表10-1視孔蓋(Q235) 單位mm
A A1 A。 B1 B B0 d4 h
150 190 170 150 100 125 M 8 1.5
表10-2吊耳 單位mm
箱蓋吊耳 d R e b
42 42 42 20
箱座吊耳 B H h
b
36 19.2 9..6 9 24
表10-3起重螺栓 單位mm
d D L S d1
C d2 h
M16 35 62 27 16 32 8 4 2 2 22 6
表10-4通氣器 單位mm
D d1 d2 d3 d 4 D a b s
M18×1.5 M33×1.5 8 3 16 40 12 7 22
C h h1 D1 R k e f
16 40 8 25.4 40 6 2 2
表10-5軸承蓋(HT150) 單位mm
安 裝
位 置 d3 D d 0 D0 D2 e e1 m D4 D5 D6 b1 d1
蝸桿 10 130 11 155 180 12 13 35.5 120 125 127 8 80
蝸輪軸 10 140 11 165 190 12 13 20 130 135 137 10 100
表10-6油標尺 單位mm
d1 d2 d3 h a b c D D1
M16 4 16 6 35 12 8 5 26 22
表10-7油塞(工業用革) 單位mm
d D e L l a s d1 H
M1×1.5 26 19.6 23 12 3 17 17 2
十一、減速器的潤滑
減速器內部的傳動零件和軸承都需要有良好的潤滑,這樣不僅可以減小摩擦損失,提高傳動效率,還可以防止銹蝕、降低雜訊。
本減速器採用蝸桿下置式,所以蝸桿採用浸油潤滑,蝸桿浸油深度h大於等於1個螺牙高,但不高於蝸桿軸軸承最低滾動中心。
蝸輪軸承採用刮板潤滑。
蝸桿軸承採用脂潤滑,為防止箱內的潤滑油進入軸承而使潤滑脂稀釋而流走,常在軸承內側加擋油盤。
1、《機械設計課程設計》(修訂版) 鄂中凱,王金等主編 東北工學院出版社 1992年
2、《機械設計 第四版》 邱宣懷主編 高等教育出版社出版 1996年
3、《機械設計、機械設計基礎課程設計》 王昆等主編 高等教育出版社 1995年
4、《機械設計課程設計圖冊》(第三版) 龔桂義主編 高等教育出版社 1987年
5、《機械設計課程設計指導書》(第二版) 龔桂義主編 高等教育出版社 1989年
6、簡明機械設計手冊(第二版) 唐金松主編 上海科學技術出版社 2000年
《機械設計課程設計》 劉俊龍 何在洲 主編 機械工業出版社 1993年
《機械零件設計課程設計》 毛振揚 陳秀寧 施高義 編 浙江大學出版社1989
《機械設計 第四版》 邱宣懷主編 高等教育出版社出版 1996年
要的就Q我406592117
② 6209.6206兩個軸承之間的距離是多少
6209和6206是深溝球軸承的型號,二者的內徑(ID)和外徑(OD)分別為:
- 6209:內徑45mm,外徑85mm
- 6206:內徑30mm,外徑62mm
兩個軸承之間的距離,很大程度燃毀上取決於軸承和軸承座的設計和尺寸。如果是使用標准尺寸的軸承座,則可以採用以下簡單計算方法求得軸承之間的棗段滑距離:
- 對於同一軸線上的兩個軸承,其中心距離可近似等於二者外徑之和的一半。
- 因此,對於6209和6206軸承而言,它們之間的距離大致為(85mm + 62mm) / 2 = 73.5mm左右。
需要注意的是,這里的計算只是一個近似值,並且也只適用於某些特定的情況。在實際應用中,具體的軸承距離需要根據設備設計的實際情凳臘況進行具體計算和設計。
③ 軸承安裝中心距是什麼
軸承中心距,應該是軸心線之間的距離;軸承距,應該是跨距,同一軸上兩個軸承之間的距離(以軸承寬度中心位置計算)。
④ 軸承在安裝時的配合間隙大約是多少
0.01mm--0.023mm。
安裝時軸和外殼孔的軸線必須保持同心,否則將由於應力集中引起軸承過早損壞。為了消除這一不良現象,可在座圈外徑和外殼孔之間留0.5~1mm的徑向間隙。
軸中心線與外殼支承面應保證垂直,不允許軸發生傾斜和撓曲,否則也會由於載荷分布不均勻引起軸承過早損壞。為消除軸承軸線的傾斜,可在座圈的支承表面上墊以彈性材料,如耐油橡皮、皮革等,或採用帶球面座的推力球軸承。
(4)蝸桿上兩軸承距離是多少擴展閱讀:
注意事項:
1、軸承表面塗有防銹油,必須用清潔的汽油或煤油仔細清洗,再塗上干凈優質或高速高溫的潤滑油脂方可安裝使用。清潔度對滾動軸承壽命和振動雜訊的影響是非常大的。
2、安裝時勿直接錘擊軸承端面和非受力面,應以壓塊、套筒或其它安裝工具(工裝)使軸承均勻受力,切勿通過滾動體傳動力安裝。
3、如果安裝表面塗上潤滑油,將使安裝更順利。如配合過盈較大,應把軸承放入礦物油內加熱至80~90℃後盡快安裝,嚴格控制油溫不超過100℃,以防止回火效應硬度降低和影響尺寸恢復。在拆卸遇到困難時,建議使用拆卸工具向外拉的同時向內圈上小心的澆灑熱油,熱量會使滾動軸承內圈膨脹,從而使其較易脫落。
⑤ 軸承間隙標準是多少
根據軸承用途而定。
游隙值根據大小分三組,一組是基本組(或者叫普通組)、小游隙組(C2)、大游隙組(C3、C4)。日本的NSK、NTN等品牌還有專門的CM組(電機專用游隙)。
正常的工作條件下,宜優先選擇基本組;
大游隙組適用於內、外圈配合過盈量較大、或者內外圈溫度差大、深溝球軸承需要承受較大軸向負荷或者需要改善調心性能、或者需要提高軸承極限轉速和降低軸承摩擦力矩等場合。
小游隙組適用於較向高的旋轉精度、需要嚴格控制外殼孔的軸向位移、以及需要減小振動和噪音的場合。
(5)蝸桿上兩軸承距離是多少擴展閱讀:
裝配軸承注意事項:
1、軸承在未安裝於軸或軸承箱時,將其內圈或外圈的一方固定,然後使軸承游隙未被固定的一方做徑向或軸向移動時的移動量。根據移動方向,可分為徑向游隙和軸向游隙。
2、承受徑向載荷的軸承,其徑向游隙G為:沿徑向任意角度方向,在無外載荷作用時外圈相對於內圈從一個徑向偏心極限位置,移向相反極限位置的距離的算術平均值。
3、在兩個方向上承受軸向載荷的軸承,其軸向內部游隙G為:無外載荷作用時,一個套圈相對另一套圈,從一個軸向極限位置移向相反的極限位置的軸向距離的平均值。
⑥ 什麼叫軸承中心距離
兩個軸承的中心間的距離,叫中心距離距。
也就是一個軸承左端面到另一個軸承右端面的距離。也就是軸承寬度(B)加軸承之間的距離。