『壹』 軸承斷裂的原因有那些及其處理斷裂的有效辦法又是什麼
原因一原材料夾雜、疏鬆、脆性元素偏析或碳化物液析、網狀、帶狀、不倖免勻偏聚等缺陷在加工工中不被消除或改善時,都會造成應力集中,削弱套圈基本強度,成為裂紋源。
處理方法:預防措施是堅持主渠道供貨,盡量采購質量穩定可靠的鋼材,加強對購進鋼材的入庫檢查,從源頭把好關。
原因二磨削工序有裂紋出現
處理方法:加強磨削工序監控,成品軸承套圈不允許有磨削燒傷和磨削裂紋存在,特別是內圈改錐度的配合面上不得有燒傷。套圈若酸洗後應進行全檢,剔出燒傷產品,嚴重燒傷的不能返修或返修不合格的應予報廢,不允許有磨削燒傷的套圈進入裝配工序。
原因三 熱處理不當
處理方法:為解決中大型品種軸承套圈軟點等缺陷,應測定淬火油的成分和性能,不合要求的要預以更換,以快速淬火油替代,以增強淬為介質淬透能力,改善淬火冷卻條件。 嚴格回火工藝。針對斷裂現象發生較多的品種,在其套圈粗磨後進行二次回火,這樣既可進一步穩定套圈的組織和尺寸,又可減沁磨削應力,改善磨削變質層性能。
『貳』 軸承生產工藝流程
滾動軸承主要零件的加工過程一、各種進口軸承主要零件的加工過程:
1.套圈的加工過程: 軸承內圈和外圈的加工依原材料或毛坯形式的不同而有所不同,其中車加工前的工序可分為下述三種,整個加工過程為: 棒料或管料(有的棒 料需經鍛造和退火、正火)----車加工----熱處理----磨加工----精研或拋光----零件終檢----防銹----入庫----(待合套裝配〉
2.鋼球的加工過程, 鋼球的加工同樣依原材料的狀態不同而有所不同,其中挫削或光球前的工序,可分為下述三種,熱處理前的工序,又可分為下述二種,整個加工 過程為: 棒料或線材冷沖(有的棒料冷沖後還需沖環帶和退火)----挫削、粗磨、軟磨或光球----熱處理----硬磨----精磨----精研或研磨----終檢分組----防銹、包裝----入庫〈待合套裝配〉。
3.滾子的加工過程 滾子的加工依原材料的不同而有所不同,其中熱處理前的工序可分為下述兩種,整個加工過程為: 棒料車加工或線材冷鐓後串環帶及軟磨----熱處理----串軟點----粗磨外徑----粗磨端面----終磨端面----細磨外徑----終磨外徑----終檢分組----防銹、包裝----入庫(待合套裝配〉。
4.保持架的加工過程 保持架的加工過程依設計結構及原材料的不同,可分為下述兩類:
(1)板料→剪切→沖裁→沖壓成形→整形及精加工→酸洗或噴丸或串光→終檢→防銹、包裝→入庫(待合套裝配)
(2)實體保持架的加工過程: 實體保持架的加工,依原材料或毛壞的不同而有所不同,其中車加工前可分為下述四種毛坯型式,整個加工過程為: 棒料、管料、鍛件、鑄件----車內徑、外徑、端面、倒角----鑽孔(或拉孔、鏜孔)----酸洗----終檢----防銹、包裝----入庫〈待合套裝配〉。 二、滾動SKF軸承的裝配過程:
滾動INA軸承零件如內圈、外圈、滾動體和保持架等,經檢驗合格後,進入裝配車間進行裝配,其過程如下:
零件退磁、清洗→內、外滾〈溝〉道尺寸分組選別→合套→檢查游隙→鉚合保持架→終檢→退磁、清洗→防銹、包裝→入成品庫(裝箱、發運〉。 原文出自: http://www.nskfag.org/news/201101_35978.html
『叄』 軸承失效的主要原因有哪些
根據軸承工作表面磨削變質層的形成機理,影響磨削變質層的主要因素是磨削熱和磨削力的作用。下面我們就來分析一下關於FAG軸承失效的原因。
1.
在軸承的磨削加工中,砂輪和工件接觸區內,消耗大量的能,產生大量的磨削熱,造成磨削區的局部瞬時高溫。運用線狀運動熱源傳熱理論公式推導、計算或應用紅外線法和熱電偶法實測實驗條件下的瞬時溫度,可發現在0.1~0.001ms內磨削區的瞬時溫度可高達1000~1500℃。這樣的瞬時高溫,足以使工作表面一定深度的表面層產生高溫氧化,非晶態組織、高溫回火
(1)表面氧化層
瞬時高溫作用下的鋼表面與空氣中的氧作用,升成極薄(20~30nm)的鐵氧化物薄層。值得注意的是氧化層厚度與表面磨削變質層總厚度測試結果是呈對應關系的。這說明其氧化層厚度與磨削工藝直接相關,是磨削質量的重要標志。
(2)非晶態組織層
磨削區的瞬時高溫使工件表面達到熔融狀態時,熔融的金屬分子流又被均勻地塗敷於工作表面,並被基體金屬以極快的速度冷卻,形成了極薄的一層非晶態組織層。它具有高的硬度和韌性,但它只有10nm左右,很容易在精密磨削加工中被去除。
(3)高溫回火層
磨削區的瞬時高溫可以使表面一定深度(10~100nm)內被加熱到高於工件回火加熱的溫度。在沒有達到奧氏體化溫度的情況下,隨著被加熱溫度的提高,其表面逐層將產生與加熱溫度相對應的再回火或高溫回火的組織轉變,硬度也隨之下降。加熱溫度愈高
(4)二層淬火層
當磨削區的瞬時高溫將工件表面層加熱到奧氏體化溫度(Ac1)以上時,則該層奧氏體化的組織在隨後的冷卻過程中,又被重新淬火成馬氏體組織。凡是有二次淬火燒傷的工件,其二次淬火層之下必定是硬度極低的高溫回火層。
(5)磨削裂紋
二次淬火燒傷將使工件表面層應力變化。二次淬火區處於受壓狀態,其下面的高溫回火區材料存在著最大的拉應力,這里是最有可能發生裂紋核心的地方。裂紋最容易沿原始的奧氏體晶界傳播。嚴重的燒傷會導致整個磨削表面出現裂紋(多呈龜裂)造成工件報廢。
2.
在磨削過程中,工件表面層將受到砂輪的切削力、壓縮力和摩擦力的作用。尤其是後兩者的作用,使工件表面層形成方向性很強的塑性變形層和加工硬化層。這些變質層必然影響表面層殘余應力的變化。
(1)冷塑性變形層
在磨削過程中,每一刻磨粒就相當於一個切削刃。不過在很多情況下,切削刃的前角為負值,磨粒除切削作用之外,就是使工件表面承受擠壓作用(耕犁作用),使工件表面留下明顯的塑性變形層。這種變形層的變形程度將隨著砂輪磨鈍的程度和磨削進給量的增大而增大。
(2)熱塑性變形(或高溫性變形)層
磨削熱在工作表面形成的瞬時溫度,使一定深度的工件表面層彈性極限急劇下降,甚至達到彈性消失的程度。此時工作表面層在磨削力,特別是壓縮力和摩擦力的作用下,引起的自由伸展,受到基體金屬的限制,表面被壓縮(更犁),在表面層造成了塑性變形。高溫塑性變形在磨削工藝不變的情況下,隨工件表面溫度的升高而增大。
(3)加工硬化層
有時用顯微硬度法和金相法可以發現,由於加工變形引起的表面層硬度升高。
除磨削加工之外,鑄造和熱處理加熱所造成的表面脫碳層,再以後的加工中若沒有被完全去除,殘留於工件表面也將造成表面軟化變質,促成軸承的早期失效。
『肆』 如何檢查與判斷IKO進口圓柱滾子軸承壽命
如有以下損傷,IKO圓柱滾子軸承不得重新使用,必須更換。
a、軸承零部件的斷裂和缺陷。b、滾道面物滾動面的剝離。
IKO圓柱滾子軸承的製造一般要經過鍛造、熱處理、車削、磨削和裝配等多道加工工序。各加工工藝的合理性、先進性、穩定性也會影響到軸承的壽命。其中影響成品圓錐滾子軸承質量的熱處理和磨削加工工序,往往與軸承的失效有著更直接的關系。近年來對軸承工作表面變質層的研究表明,磨削工藝與軸承表面質量的關系密切。
『伍』 軸承製造工藝過程
目前我國的深溝密封球軸承與國外先進公司的產品內部結構參數幾乎相同,然而我國此類產品的振動與雜訊水平卻與國外產品相差甚遠,主要原因是在製造機床和工況因素的影響。
從軸承機床行業角度來考慮,工況因素可以對主機提出合理要求來解決,而如何降低由製造因素引起的振動和雜訊是軸承行業必須解決的問題。
國內外大量試驗表明:保持架、套圈、鋼球的加工質量對軸承振動具有不同程度的影響,其中鋼球的加工質量對軸承振動影響最明顯,其次是套圈的機床加工質量,最主要影響因素是鋼球和套圈的圓度、波紋度、表面粗糙度、表面磕碰傷等。
我國鋼球產品最突出的問題是振動值離散大,表面缺陷嚴重(單點、群點、凹坑等),盡管表面粗糙度、尺寸、形狀、誤差都不低於圈外水平,但合套後軸承振動值高,甚至產生異音,主要問題是波紋度沒有控制(無標准、無合適測試分析儀器),同時說明機床的抗振性差,砂輪、研磨盤、冷卻液、工藝參數均存在問題;另一方面要提高管理水平,避免磕碰傷、劃傷、燒傷等隨時機性質量問題。
對於套圈,影響軸承振動最為嚴重的也是溝道波紋度和表面粗糙度。例如,中小型深溝球軸承內外溝道圓度大於2μm時,將對軸承振動產生明顯影響,內外溝道波紋度大於0.7μm時,軸承振動值隨波紋度增加而增加,溝道嚴重磕傷可使振動上升4db以上,甚至出現異音。
無論是鋼球還是套圈,波紋度產生於磨削加工,超精研雖然可以改善波紋度並降低粗糙度,但最根本的措施是要降低磨削超精過程中的波紋度,避免隨機性磕碰傷,主要有兩方面措施:
一是降低滾動表面磨削超精時的振動,獲得良好的表面加工形狀精度和表面紋路質量為降低振動,磨超機床必須具有良好的抗振性,床身等重要結構件具有吸振性,超精機床的油石振盪系統具有良好的抗振動性能;其次是提高磨削速度,國外磨削6202外滾道普遍採用6萬電主軸,磨削速度60m/s以上,國內一般低得多,主要受主軸及主軸承性能的限制。在高速磨削時,磨削力小,磨削變質層薄,不容易燒傷,又可以提高加工精度和效率,對低雜訊球軸承影響很大;主軸動靜剛度及其速度特性對低雜訊球軸承磨削振動影響很大,剛度越高,磨削速度對磨削力的變化越不敏感,磨削系統振動越小;提高主軸軸承支剛性,採用隨機動平衡技術,提高磨削主軸的抗振性。國外磨頭振動速度(如gamfior)約為國內一般主軸的十分之一。
『陸』 軸承零件表面裂紋的基本情況及分析方法
1.原材料缺陷引起的裂紋
材料缺陷有材料裂紋、縮管殘余、白點、脫碳、夾雜、顯微孔隙和鋼板分層等。這些缺陷在以後的加工及使用過程中成為裂紋萌生的發源地。
2. 鍛造工藝不良產生的裂紋
由於鍛造工藝不良在套圈或鋼球中形成裂紋或折疊等缺陷,如深度過大,經車加工或軟磨後仍無法徹底去除,而保留部分裂紋或受熱處理及磨加工的應力影響,裂紋將進一步擴展。
3.沖壓折疊裂紋
沖壓是製造鋼球和滾子的一道關鍵工序,如果切料胎模的孔徑過大,或由於切料的孔徑過大,以及切料刀鈍化,或由於切料胎模與切料刀之間的空隙過大都有可能造成鋼球或滾子表面缺陷,使之報廢.
4.車加工表面粗糙導致淬火裂紋
軸承鋼的成分、組織和性能,對其切削性能有直接的影響;切削工藝,尤其是切削速度和進給量,對工件表面也將產生重要的影響,工件表面車紋的深淺與淬火裂紋的形成有直接關系。
5.熱處理工藝不良產生的裂紋
熱處理工藝規范選擇不當和熱處理操作方法,不正確都容易造成軸承零件的變形和開裂,使之
報廢。
6.磨削燒傷產生的裂紋
研究證明,磨削瞬時高溫在極短的時間內(10-4~10-6s)可使表面局部達到1000~1500
℃,工件在瞬間高溫作用下容易造成不同程度的熱損傷(包括表面燒傷和裂紋),形成各種磨削變質層。磨削裂紋的產生僅僅是這種磨削熱損傷的一種極端形式。