Ⅰ 滾動軸承故障診斷技術
你好,我是凱美瑞軸承的工程師。滾動軸承故障診斷方法有以下幾種
1.溫度法通過監測軸承座(或箱體 )處的溫度來判斷軸承工作是否正常。溫度監測對軸承載荷、速度和潤滑情況的變化反映比較敏感,尤其是對潤滑不良而引起的軸承過熱現象很敏感。所以;用於這種場合比較有效。但是,當軸承出現諸如早期點蝕、剝落、輕微磨損等比較微小的故障時,溫度監測基本上沒有反映,只有當故障達到一定的嚴重程度時,用這種方法才能監測到。所以,溫度監測不適用於點蝕、局部剝落等所謂局的部損傷類故障。
2.油樣分析法是一種從軸承所使用的潤滑油中取出油樣,通過收集和分析油樣中金屬顆粒的大小和形狀來判斷軸承工況和故障的方法。這種方法只適用於油潤滑軸承,而不適用於脂潤滑軸承。另外,這種方法易受其它非軸承損壞掉下的顆粒的影響。所以,這種方法具有很大的局限性。
3.振動法是通過安裝在軸承座或箱體適當方位的振動感測器監測軸承振動信號,並對此信號進行分析與處理來判斷軸承工況與故障的。由於振動法具有:①、適用於各種類型各種工況的軸承;②、可以有效地診斷出早期微小故障;③、信號測試與處理簡單、直觀:④、診斷結果可靠等優點,所以在實際中得到了極為廣泛的應用。目前,國內外開發生產的各種滾動軸承臨測與診斷儀器和系統巾大都是根據振動法的原理製成的,有關軸承監測與診斷方面的文獻80% 以上討論的是振動法。從適用、實用、有效的觀點看,目前沒有比振動法更好的滾動軸承監視與診斷方法了。與振動法密切相關的是雜訊法,即通過滾動軸承在運行過程中的雜訊來判斷其故障。由於所監測到的雜訊信號中混有大量的非軸承原因產生的雜訊,要把軸承雜訊與其它雜訊分離開來十分困難,所以這種方法用得較少。
隨著科學技術的不斷發展,一些新的監測技術不斷出現並應用於滾動軸承的上況監視與診斷中,例如聲發射技術,光纖技術,等等。但是由於種種原因和局限性,這些技術真正普及應用於實際的滾動軸承診斷還有一段距離。
Ⅱ 怎樣判斷洗衣機軸承是否損壞
主要是聽洗衣機在轉動時,是否發出不正常的雜音,手摸洗衣機箱體是否有較大的振動。正常的洗衣機在運行時這兩樣都很小。
一般設備上的軸承沒有遭受水浸的危險,但洗衣機軸承由於橡膠密封套老化磨損,很容易遭受水浸生銹而損壞。定期進行檢修,更換橡膠密封套,並且用一次性注射器給軸承加註潤滑油,還是可以延長洗衣機軸承工作壽命的。
基本結構
包括塑料圓柱形內筒和具有至少一個排水口的金屬製成的滾筒外筒,所述的內筒和外筒相適配,所述的內筒由底座、圓柱內筒和埠環組成,圓柱內筒一端連接底座,另一端連接埠環,所述的圓柱內筒由2個或2個以上的側壁板和2個或2個以上的凸棱板相互接合構成,所述側壁板是具有四個輪廓邊的圓弧板,其四個輪廓邊分別與底座、埠環和凸棱板連接,並設置有連接結構。
以上內容參考:網路-洗衣機
Ⅲ 軸承的失效原因和失效的形態是什麼
軸承的失效原因: 一,軸承往往因安裝不合適而導致整套軸承各零件之間的受力狀態發生變化,軸承在不正常的狀態下運轉並過早失效。根據軸承安裝、使用、維護、保養的技術要求,對運轉中的軸承所承受的載荷、轉速、工作溫度、振動、雜訊和潤滑條件進行監控和檢查,發現異常立即查找原因,進行調整,使其恢復正常。此外,對潤滑脂質量和周圍介質、氣氛進行分析檢驗也很重要。 首先,結構設計合理的同時具備有先進性,才會有較長的軸承壽命。軸承的製造一般要經過鍛造、熱處理、車削、磨削和裝配等多道加工工序。各加工工藝的合理性、先進性、穩定性也會影響到軸承的壽命。其中影響成品軸承質量的熱處理和磨削加工工序,往往與軸承的失效有著更直接的關系。近年來對軸承工作表面變質層的研究表明,磨削工藝與軸承表面質量的關系密切。 軸承材料的冶金質量曾經是影響滾動軸承早期失效的主要因素。隨著冶金技術(例如軸承鋼的真空脫氣等)的進步,原材料質量得到改善。原材料質量因素在軸承失效分析中所佔的比重已經明顯下降,但它仍然是軸承失效的主要影響因素之一。選材是否得當仍然是軸承失效分析必須考慮的因素。 軸承失效分析的主要任務,就是根據大量的背景材料、分析數據和失效形式,找出造成軸承失效的主要因素,以便有針對性地提出改進措施,延長軸承的服役期,避免軸承發生突發性的早期失效。 軸承失效基本形態: 1.粘附和磨粒磨損失效 是各類軸承表面最常見的失效模式之一。軸承零件之間相對滑動摩擦導致其表面金屬不斷損失稱為滑動摩損。持續的磨損將使零件尺寸和形狀變化,軸承配合間隙增大,工作表面形貌變壞,從而喪失旋轉精度,使軸承不能正常工作。滑動磨損形式可分為磨粒磨損、粘附磨損、腐蝕磨損、微動磨損等,其中最常見的為磨粒磨損和粘附磨損。 軸承零件的摩擦面之間由外來硬顆粒或金屬磨削引起摩擦面磨損的現象屬於磨粒磨損。它常在軸承表面造成鑿削式或犁溝式的擦傷。外來硬顆粒常常來自於空氣中的塵埃或潤滑劑中的雜質。粘附磨損主要是由於摩擦表面的輪廓峰使摩擦面受力不均,局部摩擦熱使摩擦表面溫度升高,造成潤滑油膜破裂,嚴重時表面層金屬將會局部溶化,接觸點產生粘著、撕脫、再粘著的循環的過程,嚴重時造成摩擦面的焊合和卡死。 2.接觸疲勞(疲勞磨損)失效 接觸疲勞失效是各類軸承最常見的失效模式之一,是軸承表面受到循環接觸應力的反復作用而產生的失效。軸承零件表面的接觸疲勞剝落是一個疲勞裂紋從萌生、擴展到裂紋的過程。初始的接觸疲勞裂紋首先從接觸表面以下最大正交切應力處產生,然後擴展到表面形成麻點狀剝落或小片狀剝落,前者被稱為點蝕或麻點剝落;後者被稱為淺層剝落。如初始裂紋在硬化層與心部交界區產生,造成硬化層的早期剝落,則稱為硬化層剝落。 參考資料: http://www.ttzcw.com/college/coll_info/tp1/2010102915210020504.html
Ⅳ 滾動軸承常見的故障形式有哪些
滾動軸承是轉動設備中應用最為廣泛的機械零件,同時也是最容易產生故障的零件。據統計,在使用滾動軸承的轉動設備中,大約有30%的機械故障都是由於滾動軸承而引起的。滾動軸承的常見故障形式有以下幾種。
1. 疲勞剝落(點蝕) 滾動軸承工作時,滾動體和滾道之間為點接觸或線接觸,在交變載荷的作用下,表面間存在著極大的循環接觸應力,容易在表面處形成疲勞源,由疲勞源生成微裂紋,微裂紋因材質硬度高、脆性大,難以向縱深發展,便成小顆粒狀剝落,表面出現細小的麻點,這就是疲勞點蝕。嚴重時,表面成片狀剝落,形成凹坑;若軸承繼續運轉,將形成大面積的剝落。疲勞點蝕會造成運轉中的沖擊載荷,使設備的振動和雜訊加劇。然而,疲勞點蝕是滾動軸承正常的、不可避免的失效形式。軸承壽命指的就是出現第一個疲勞剝落點之前運轉的總轉數,軸承的額定壽命就是指90%的軸承不發生疲勞點蝕的壽命。(利用軸承故障檢測儀對軸承進行診斷)
2. 磨損 潤滑不良,外界塵粒等異物侵入,轉配不當等原因,都會加劇滾動軸承表面之間的磨損。磨損的程度嚴重時,軸承游隙增大,表面粗糙度增加,不僅降低了軸承的運轉精度,而且也會設備的振動和雜訊隨之增大。
3. 膠合 膠合是一個表面上的金屬粘附到另一個表面上去的現象。其產生的主要原因是缺油、缺脂下的潤滑不足,以及重載、高速、高溫,滾動體與滾道在接觸處發生了局部高溫下的金屬熔焊現象。 通常,輕度的膠合又稱為劃痕,重度的膠合又稱為燒軸承。 膠合為嚴重故障,發生後立即會導致振動和雜訊急劇增大,多數情況下設備難以繼續運轉。
4. 斷裂 軸承零件的裂紋和斷裂是最危險的一種故障形式,這主要是由於軸承材料有缺陷和熱處理不當以及嚴重超負荷運行所引起的;此外,裝配過盈量太大、軸承組合設計不當,以及缺油、斷油下的潤滑喪失也都會引起裂紋和斷裂。
5. 銹蝕 銹蝕是由於外界的水分帶入軸承中;或者設備停用時,軸承溫度在露點以下,空氣中的水分凝結成水滴吸附在軸承表面上;以及設備在腐蝕性介質中工作,軸承密封不嚴,從而引起化學腐蝕。銹蝕產生的銹斑使軸承表面產生早期剝落,同時也加劇了磨損。
6. 電蝕 電蝕主要是轉子帶電,電流擊穿油膜而形成電火化放電,使表面局部熔焊,在軸承工作表面形成密集的電流凹坑或波紋狀的凹凸不平。
7. 塑性變形(凹坑及壓痕) 對於轉速極低(n<1 r/min)的軸承,或間歇擺動的軸承,其故障形式主要是永久性塑性變形,即在滾道上受力最大處形成凹坑。發生塑性變形,主要與過大的擠壓應力有關,例如,工作載荷過重,沖擊載荷過大,熱變形影響等。軸承出現凹坑後,會產生很大的振動和雜訊。 此外,當硬顆粒從外界進入滾動體與滾道之間時,會在滾道表面形成壓痕。
8. 保持架損壞 潤滑不良會使保持架與滾動體或座圈發生磨損、碰撞。裝配不當所造成的保持架變形,會使保持架與滾動體或座圈之間產生卡澀,從而加速了保持架的磨損。保持架磨損後,間隙變大,與滾動體之間的撞擊力增大,以致使保持架斷裂。
滾動軸承的故障種類是多種多樣的,然而,在實際應用中最常見和最有代表性的故障類型通常只是三種,,即疲勞剝落(點蝕)、磨損、膠合。其中,膠合從發生到軸承完全損壞的過程往往極短暫,因此一般難以通過定期檢查及時發現。
Ⅳ 如何判斷電機滾動軸承是否損壞和能否繼續使用
如何判斷電機滾動軸承是否損壞和能否繼續使用
1.對於小型電機,用手將轉子的軸伸端上下搬動,如果這時轉軸能有較大的活動量,說明軸承磨損嚴重。
2.拆開電機兩端的端蓋進行檢查,如果發現繞組和鐵心表面存在油漬,說明軸承漏油,密封件不嚴或變形所致。
3.軸承拆下後,抹去軸承里的潤滑脂,再用汽油把軸承洗凈。然後用手將外圈相對於滾珠來回晃動,好的軸承其間隙幾乎覺察不出來。若滾珠與內、外圈間隙很大,說明軸承磨損嚴重,需更換新的。