Ⅰ 數學家的故事急!!!!~~~
數學家陳景潤的小故事
數學家陳景潤邊思考問題邊走路,撞到一棵樹幹上,頭也不抬說:「對不起、對不起。」繼續思考。
數學家魯道夫的小故事
16世紀德國數學家魯道夫,花了畢生精力,把圓周率算到小數後35位,後人稱之為魯道夫數,他死後別人便把這個數刻到他的墓碑上。
數學家雅谷伯努利的小故事
瑞士數學家雅谷伯努利,生前對螺線(被譽為生命之線)有研究,他死之後,墓碑上 就刻著一條對數螺線,同時碑文上還寫著:「我雖然改變了,但卻和原來一樣」。這是一句既刻劃螺線性質又象徵他對數學熱愛的雙關語。
數學家的故事——蘇步青
蘇步青1902年9月出生在浙江省平陽縣的一個山村裡。雖然家境清貧,可他父母省吃儉用,拚死拼活也要供他上學。他在讀初中時,對數學並不感興趣,覺得數學太簡單,一學就懂。可量,後來的一堂數學課影響了他一生的道路。
那是蘇步青上初三時,他就讀浙江省六十中來了一位剛從東京留學歸來的教數學課的楊老師。第一堂課楊老師沒有講數學,而是講故事。他說:「當今世界,弱肉強食,世界列強依仗船堅炮利,都想蠶食瓜分中國。中華亡國滅種的危險迫在眉睫,振興科學,發展實業,救亡圖存,在此一舉。『天下興亡,匹夫有責』,在座的每一位同學都有責任。」他旁徵博引,講述了數學在現代科學技術發展中的巨大作用。這堂課的最後一句話是:「為了救亡圖存,必須振興科學。數學是科學的開路先鋒,為了發展科學,必須學好數學。」蘇步青一生不知聽過多少堂課,但這一堂課使他終身難忘。
楊老師的課深深地打動了他,給他的思想注入了新的興奮劑。讀書,不僅為了擺脫個人困境,而是要拯救中國廣大的苦難民眾;讀書,不僅是為了個人找出路,而是為中華民族求新生。當天晚上,蘇步青輾轉反側,徹夜難眠。在楊老師的影響下,蘇步青的興趣從文學轉向了數學,並從此立下了「讀書不忘救國,救國不忘讀書」的座右銘。一迷上數學,不管是酷暑隆冬,霜晨雪夜,蘇步青只知道讀書、思考、解題、演算,4年中演算了上萬道數學習題。現在溫州一中(即當時省立十中)還珍藏著蘇步青一本幾何練習薄,用毛筆書寫,工工整整。中學畢業時,蘇步青門門功課都在90分以上。
17歲時,蘇步青赴日留學,並以第一名的成績考取東京高等工業學校,在那裡他如飢似渴地學習著。為國爭光的信念驅使蘇步青較早地進入了數學的研究領域,在完成學業的同時,寫了30多篇論文,在微分幾何方面取得令人矚目的成果,並於1931年獲得理學博士學位。獲得博士之前,蘇步青已在日本帝國大學數學系當講師,正當日本一個大學准備聘他去任待遇優厚的副教授時,蘇步青卻決定回國,回到撫育他成長的祖任教。回到浙大任教授的蘇步青,生活十分艱苦。面對困境,蘇步青的回答是「吃苦算得了什麼,我甘心情願,因為我選擇了一條正確的道路,這是一條愛國的光明之路啊!」
這就是老一輩數學家那顆愛國的赤子之心
數學家的墓誌銘
一些數學家生前獻身於數學,死後在他們的墓碑上,刻著代表著他們生平業績的標志。
古希臘學者阿基米德死於進攻西西里島的羅馬敵兵之手(死前他還在主:「不要弄壞我的圓」。)後,人們為紀念他便在其墓碑上刻上球內切於圓柱的圖形,以紀念他發現球的體積和表面積均為其外切圓柱體積和表面積的三分之二。 德國數學家高斯在他研究發現了正十七邊形的尺規作法後,便放棄原來立志學文的打算 而獻身於數學,以至在數學上作出許多重大貢獻。甚至他在遺囑中曾建議為他建造正十七邊形的稜柱為底座的墓碑。
16世紀德國數學家魯道夫,花了畢生精力,把圓周率算到小數後35位,後人稱之為魯 道夫數,他死後別人便把這個數刻到他的墓碑上。 瑞士數學家雅谷•伯努利,生前對螺線(被譽為生命之線)有研究,他死之後,墓碑上 就刻著一條對數螺線,同時碑文上還寫著:「我雖然改變了,但卻和原來一樣」。這是一句既刻劃螺線性質又象徵他對數學熱愛的雙關語
祖沖之(公元429-500年)是我國南北朝時期,河北省淶源縣人.他從小就閱讀了許多天文、數學方面的書籍,勤奮好學,刻苦實踐,終於使他成為我國古代傑出的數學家、天文學家.
祖沖之在數學上的傑出成就,是關於圓周率的計算.秦漢以前,人們以"徑一周三"做為圓周率,這就是"古率".後來發現古率誤差太大,圓周率應是"圓徑一而周三有餘",不過究竟余多少,意見不一.直到三國時期,劉徽提出了計算圓周率的科學方法--"割圓術",用圓內接正多邊形的周長來逼近圓周長.劉徽計算到圓內接96邊形, 求得π=3.14,並指出,內接正多邊形的邊數越多,所求得的π值越精確.祖沖之在前人成就的基礎上,經過刻苦鑽研,反復演算,求出π在3.1415926與3.1415927之間.並得出了π分數形式的近似值,取為約率 ,取為密率,其中取六位小數是3.141929,它是分子分母在1000以內最接近π值的分數.祖沖之究竟用什麼方法得出這一結果,現在無從考查.若設想他按劉徽的"割圓術"方法去求的話,就要計算到圓內接16,384邊形,這需要化費多少時間和付出多麼巨大的勞動啊!由此可見他在治學上的頑強毅力和聰敏才智是令人欽佩的.祖沖之計算得出的密率, 外國數學家獲得同樣結果,已是一千多年以後的事了.為了紀念祖沖之的傑出貢獻,有些外國數學史家建議把π=叫做"祖率".
祖沖之博覽當時的名家經典,堅持實事求是,他從親自測量計算的大量資料中對比分析,發現過去歷法的嚴重誤差,並勇於改進,在他三十三歲時編製成功了《大明歷》,開辟了歷法史的新紀元.
祖沖之還與他的兒子祖暅(也是我國著名的數學家)一起,用巧妙的方法解決了球體體積的計算.他們當時採用的一條原理是:"冪勢既同,則積不容異."意即,位於兩平行平面之間的兩個立體,被任一平行於這兩平面的平面所截,如果兩個截面的面積恆相等,則這兩個立體的體積相等.這一原理,在西文被稱為卡瓦列利原理, 但這是在祖氏以後一千多年才由卡氏發現的.為了紀念祖氏父子發現這一原理的重大貢獻,大家也稱這原理為"祖暅原理".義大利科學家阿涅澤(Maria Gaetana Agnesi,1718~1799)在自然科學與哲學的著作對整個學術世界開啟了一扇窗.而她最著名的數學作品,《分析講義》,被公認是第一部完整的微積分教科書之一。
阿涅澤生於1718年,從小便被認為是個天才.在她家裡的聚會中,她總是談及有關邏輯、機械、化學、植物學、動物學、礦物學以及解析幾何等這些廣泛的話題。她在九歲的時候,便為了倡導女性有權受高等教育,舉行了一場冗長且具有說服力的演說。雖然她是以拉丁文演說,但卻以當地的方言回答台下的觀眾。11歲時,她已精通了拉丁語、法文、希臘文、德文、希伯來文和西班牙文,當然也包括她的母語義大利文。
阿涅澤生性謙虛內向。從1738年後,她不願再參與家中的聚會,轉而加入修道會,將其一生奉獻給窮苦貧困的人民。阿涅澤的父親說服她繼續進行她的研究,從此之後,她過著與世隔絕的生活,將自己完全地投入在數學的研究里頭。
後來的十四年裡,阿涅澤專注在數學的領域里,並寫了些令人贊賞的作品。她的《分析講義》是本超過千頁的精典之作,書中包含了從代數到微積分和微分方程的原始發現。由於她的著作,阿涅澤的名字常常與鍾型曲線(又稱"阿涅澤巫婆",方程為)擺在一起。由於它的數學性質和其在物理方面的應用,此曲線引起了數學家研究的興趣。
阿涅澤的書被法國的科學院稱作是"在其領域中,寫的最好最完整的著作",教皇貝內帝克十四世(Pope Benedict XIV)頒給她一面金牌,以表彰她在數學上的卓越貢獻。1750年,阿涅澤被任命為波洛尼亞大學的數學與自然哲學系的系主任。然而她僅接受他們所授與的榮譽頭銜。
1751年,阿涅澤正值數學事業的顛峰時期,她卻突然停止了所有數學與科學的研究。她一直照顧她父親直至1752年她的父親去逝,接著便負起照顧及教育她的二十位弟妹之責任。之後,她把她的余年都奉獻給慈善事業,在1771年成為老人之家的董事。
歐拉1707年出生在瑞士的巴塞爾(Basel)城,13歲就進巴塞爾大學讀書,得到當時最有名的數學家約翰•伯努利(Johann Bernoulli,1667-1748年)的精心指導.
歐拉淵博的知識,無窮無盡的創作精力和空前豐富的著作,都是令人驚嘆不已的!他從19歲開始發表論文,直到76歲,半個多世紀寫下了浩如煙海的書籍和論文.到今幾乎每一個數學領域都可以看到歐拉的名字,從初等幾何的歐拉線,多面體的歐拉定理,立體解析幾何的歐拉變換公式,四次方程的歐拉解法到數論中的歐拉函數,微分方程的歐拉方程,級數論的歐拉常數,變分學的歐拉方程,復變函數的歐拉公式等等,數也數不清.他對數學分析的貢獻更獨具匠心,《無窮小分析引論》一書便是他劃時代的代表作,當時數學家們稱他為"分析學的化身".
歐拉是科學史上最多產的一位傑出的數學家,據統計他那不倦的一生,共寫下了886本書籍和論文,其中分析、代數、數論佔40%,幾何佔18%,物理和力學佔28%,天文學佔11%,彈道學、航海學、建築學等佔3%,彼得堡科學院為了整理他的著作,足足忙碌了四十七年.
歐拉著作的驚人多產並不是偶然的,他可以在任何不良的環境中工作,他常常抱著孩子在膝上完成論文,也不顧孩子在旁邊喧嘩.他那頑強的毅力和孜孜不倦的治學精神,使他在雙目失明以後,也沒有停止對數學的研究,在失明後的17年間,他還口述了幾本書和400篇左右的論文.19世紀偉大數學家高斯(Gauss,1777-1855年)曾說:"研究歐拉的著作永遠是了解數學的最好方法."
歐拉的父親保羅•歐拉(Paul Euler)也是一個數學家,原希望小歐拉學神學,同時教他一點教學.由於小歐拉的才人和異常勤奮的精神,又受到約翰•伯努利的賞識和特殊指導,當他在19歲時寫了一篇關於船桅的論文,獲得巴黎科學院的獎的獎金後,他的父親就不再反對他攻讀數學了.
1725年約翰•伯努利的兒子丹尼爾•伯努利赴俄國,並向沙皇喀德林一世推薦了歐拉,這樣,在1727年5月17日歐拉來到了彼得堡.1733年,年僅26歲的歐拉擔任了彼得堡科學院數學教授.1735年,歐拉解決了一個天文學的難題(計算慧星軌道),這個問題經幾個著名數學家幾個月的努力才得到解決,而歐拉卻用自己發明的方法,三天便完成了.然而過度的工作使他得了眼病,並且不幸右眼失明了,這時他才28歲.1741年歐拉應普魯士彼德烈大帝的邀請,到柏林擔任科學院物理數學所所長,直到1766年,後來在沙皇喀德林二世的誠懇敦聘下重回彼得堡,不料沒有多久,左眼視力衰退,最後完全失明.不幸的事情接踵而來,1771年彼得堡的大火災殃及歐拉住宅,帶病而失明的64歲的歐拉被圍困在大火中,雖然他被別人從火海中救了出來,但他的書房和大量研究成果全部化為灰燼了.
沉重的打擊,仍然沒有使歐拉倒下,他發誓要把損失奪回來.在他完全失明之前,還能朦朧地看見東西,他抓緊這最後的時刻,在一塊大黑板上疾書他發現的公式,然後口述其內容,由他的學生特別是大兒子A•歐拉(數學家和物理學家)筆錄.歐拉完全失明以後,仍然以驚人的毅力與黑暗搏鬥,憑著記憶和心算進行研究,直到逝世,竟達17年之久.
歐拉的記憶力和心算能力是罕見的,他能夠復述年青時代筆記的內容,心算並不限於簡單的運算,高等數學一樣可以用心算去完成.有一個例子足以說明他的本領,歐拉的兩個學生把一個復雜的收斂級數的17項加起來,算到第50位數字,兩人相差一個單位,歐拉為了確定究竟誰對,用心算進行全部運算,最後把錯誤找了出來.歐拉在失明的17年中;還解決了使牛頓頭痛的月離問題和很多復雜的分析問題.
歐拉的風格是很高的,拉格朗日是稍後於歐拉的大數學家,從19歲起和歐拉通信,討論等周問題的一般解法,這引起變分法的誕生.等周問題是歐拉多年來苦心考慮的問題,拉格朗日的解法,博得歐拉的熱烈贊揚,1759年10月2日歐拉在回信中盛稱拉格朗日的成就,並謙虛地壓下自己在這方面較不成熟的作品暫不發表,使年青的拉格朗日的工作得以發表和流傳,並贏得巨大的聲譽.他晚年的時候,歐洲所有的數學家都把他當作老師,著名數學家拉普拉斯(Laplace)曾說過:"歐拉是我們的導師." 歐拉充沛的精力保持到最後一刻,1783年9月18日下午,歐拉為了慶祝他計算氣球上升定律的成功,請朋友們吃飯,那時天王星剛發現不久,歐拉寫出了計算天王星軌道的要領,還和他的孫子逗笑,喝完茶後,突然疾病發作,煙斗從手中落下,口裡喃喃地說:"我死了",歐拉終於"停止了生命和計算".
歐拉的一生,是為數學發展而奮斗的一生,他那傑出的智慧,頑強的毅力,孜孜不倦的奮斗精神和高尚的科學道德,永遠是值得我們學習的.歐拉在數學上的建樹很多,對著名的哥尼斯堡七橋問題的解答開創了圖論的研究。歐拉還發現 ,不論什麼形狀的凸多面體,其頂點數v、棱數e、面數f之間總有v-e+f=2這個關系。v-e+f被稱為歐拉示性數,成為拓撲學的基礎概念。在數論中,歐拉首先引進了重要的歐拉函數φ(n),用多種方法證明了費馬小定理。以歐拉的名字命名的數學公式、定理等在數學書籍中隨處可見, 與此同時,他還在物理、天文、建築以至音樂、哲學方面取得了輝煌的成就。〔歐拉還創設了許多數學符號,例如π(1736年),i(1777年),e(1748年),sin和cos(1748年),tg(1753年),△x(1755年),∑(1755年),f(x)(1734年)等.
德國數學家大衛•希爾伯特(1862~1943)是20世紀最偉大的數學家之一.他對數學的貢獻是巨大的和多方面的,研究領域涉及代數不變式,代數數域,幾何基礎,變分法,積分方程,無窮維空間,物理學和數學基礎等.他在1899年出版的《幾何基礎》成為近代公理化方法的代表作,且由此推動形成了「數學公理化學派」,可以說希爾伯特是近代形式公理學派的創始人.1900年希爾伯特38歲時在巴黎舉行的第二屆國際數學家大會上作了題為《數學問題》的著名講演.在講演中,他根據19世紀數學研究的成果與發展趨勢,以卓越的遠見和非凡的洞察力,提出了新世紀所面臨的23個問題.這23個問題涉及現代數學的大部分重要領域(著名的哥德巴赫猜想就是第8個問題中的一部分),對這些問題的研究有力地推動了20世紀各個數學分支的發展.
1910年11月12日,華羅庚生於江蘇省金壇縣。他家境貧窮,決心努力學習。上中學時,在一次數學課上,老師給同學們出了一道著名的難題:「有一個數,3個3個地數,還餘2;5個5個地數,還餘3;7個7個地數,還餘2,請問這個得數是多少?」大家正在思考時,華羅庚站起來說:「23」他的回答使老師驚喜不已,並得到老師的表揚。從此,他喜歡上了數學。
華羅庚上完初中一年級後,因家境貧困而失學了,只好替父母站櫃台,但他仍然堅持自學數學。經過自己不懈的努力,他的《蘇家駒之代數的五次方程式解法不能成立的理由》論文,被清華大學數學系主任熊慶來教授發現,邀請他來清華大學;華羅庚被聘為大學教師,這在清華大學的歷史上是破天荒的事情。
1936年夏,已經是傑出數學家的華羅庚,作為訪問學者在英國劍橋大學工作兩年。而此時抗日的消息傳遍英國,他懷著強烈的愛國熱忱,風塵僕僕地回到祖國,為西南聯合大學講課。
華羅庚十分注意數學方法在工農業生產中的直接應用。他經常深入工廠進行指導,進行數學應用普及工作,並編寫了科普讀物。
華羅庚也為青年樹立了自學成才的光輝榜樣,他是一位自學成才、沒有大學畢業文憑的數學家。他說:「不怕困難,刻苦學習,是我學好數學最主要的經驗」,「所謂天才就是靠堅持不斷的努力
有一次,他跟鄰居家的孩子一起出城去玩,他們走著走著;忽然看見路旁有座荒墳,墳旁有許多石人、石馬。這立刻引起了華羅庚的好奇心,他非常想去看個究竟。於是他就對鄰居家的孩子說:
「那邊可能有好玩的,我們過去看看好嗎?」
鄰居家的孩子回答道:「好吧,但只能呆一會兒,我有點害怕。」
膽大的華羅庚笑著說:「不用怕,世間是沒有鬼的。」說完,他首先向荒墳跑去。
兩個孩子來到墳前,仔細端詳著那些石人、石馬,用手摸摸這兒,摸摸那兒,覺得非常有趣。愛動腦筋的華羅庚突然問鄰居家的孩子:「這些石人、石馬各有多重?」
鄰居家的孩子迷惑地望著他說:"我怎麼能知道呢?你怎麼會問出這樣的傻問題,難怪人家都叫你『羅獃子』。」
華羅庚很不甘心地說道:「能否想出一種辦法來計算一下呢?」
鄰居家的孩子聽到這話大笑起來,說道:「等你將來當了數學家再考慮這個問題吧!不過你要是能當上數學家,恐怕就要日出西山了。」
華羅庚不顧鄰家孩子的嘲笑,堅定地說:「以後我一定能想出辦法來的。」
當然,計算出這些石人、石馬的重量,對於後來果真成為數學家的華羅庚來講,根本不在話下。
金壇縣城東青龍山上有座廟,每年都要在那裡舉行廟會。少年華羅庚是個喜愛湊熱鬧的人,凡是有熱鬧的地方都少不了他。有一年華羅庚也同大人們一起趕廟會,一個熱鬧場面吸引了他,只見一匹高頭大馬從青龍山向城裡走來,馬上坐著頭插羽毛、身穿花袍的「菩薩」。每到之處,路上的老百姓納頭便拜,非常虔誠。拜後,他們向「菩薩」身前的小罐里投入錢,就可以問神問卦,求醫求子了。
華羅庚感到好笑,他自己卻不跪不拜「菩薩」。站在旁邊的大人見後很生氣,訓斥道:
「孩子,你為什麼不拜,這菩薩可靈了。」
「菩薩真有那麼靈嗎?」華羅庚問道。
一個人說道:「那當然,看你小小年紀千萬不要冒犯了神靈,否則,你就會倒楣的。」
「菩薩真的萬能嗎?」這個問題在華羅庚心中盤旋著。他不相信一尊泥菩薩真能救苦救難。
廟會散了,看熱鬧的老百姓都回家了。而華羅庚卻遠遠地跟蹤著「菩薩」。看到「菩薩」進了青龍山廟里,小華羅庚急忙跑過去,趴在門縫向裡面看。只見「菩薩」能動了,他從馬上下來,脫去身上的花衣服,又順手抹去臉上的妝束。門外的華庚驚呆了,原來百姓們頂禮膜拜的「菩薩」竟是一村民裝扮的。
華羅庚終於解開了心中的疑團,他將「菩薩」騙人的事告訴了村子裡的每個人,人們終於恍然大悟了。從此,人們都對這個孩子刮目相看,再也無人喊他「羅獃子」了。正是華羅庚這種打破砂鍋問到底的精神,使他後來成為一名卓越的數學家