1. 求帶式輸送機傳動裝置設計
課程設計說明書
一.電動機的選擇:
1.選擇電動機的類型:
按工作要求和條件,選用三機籠型電動機,封閉式結構,電壓380V,Y系列斜閉式自扇冷式鼠籠型三相非同步電動機。(手冊P167)
選擇電動機容量 :
滾筒轉速:
負載功率:
KW
電動機所需的功率為:
(其中: 為電動機功率, 為負載功率, 為總效率。)
2.電動機功率選擇:
折算到電動機的功率為:
3.確定電動機型號:
按指導書 表1推薦的傳動比合理范圍,取圓柱齒輪傳動一級減速器傳動比范圍為: .取V帶傳動比 ,則總傳動比理論范圍為 ,故電動機轉速的可選范圍為
符合這一范圍的同步轉速有750,1000和1500
查手冊 表 的:選定電動機類型為:
其主要性能:額定功率: ,滿載轉速: ,額定轉速: ,質量:
二、確定傳動裝置的總傳動比和分配傳動比
1.減速器的總傳動比為:
2、分配傳動裝置傳動比:
按手冊 表1,取開式圓柱齒輪傳動比
因為 ,所以閉式圓錐齒輪的傳動比 .
三.運動參數及動力參數計算:
1.計算各軸的轉速:
I軸轉速:
2.各軸的輸入功率
電機軸:
I軸上齒輪的輸入功率:
II軸輸入功率:
III軸輸入功率:
3.各軸的轉矩
電動機的輸出轉矩:
四、傳動零件的設計計算
1.皮帶輪傳動的設計計算:
(1)選擇普通V帶
由課本 表5.5查得:工作情況系數:
計算功率:
小帶輪轉速為:
由課本 圖5.14可得:選用A型V帶:小帶輪直徑
(2)確定帶輪基準直徑,並驗算帶速
小帶輪直徑 ,參照課本 表5.6,取 ,
由課本 表5.6,取
實際從動輪轉速:
轉速誤差為:
滿足運輸帶速度允許誤差要求.
驗算帶速
在 范圍內,帶速合適.
(3)確定帶長和中心距
由課本 式5.18得:
查課本 表5.1,得:V帶高度:
得:
初步選取中心距:
由課本 式5.2得:
根據課本 表5.2選取V帶的基準長度:
則實際中心距:
(4)驗算小帶輪包角:
據課本 式5.1得: (適用)
(5)確定帶的根數:
查課本 表5.3,得: .查課本 表5.4,得:
查課本 表5.4,得: .查課本 表5.2,得:
由課本 式5.19得:
取 根.
(6)計算軸上壓力
查課本 表5.1,得:
由課本 式5.20,得:單根V帶合適的張緊力:
由課本 式5.21,得:作用在帶輪軸上的壓力為 :
2、齒輪傳動的設計計算:
(1)選擇齒輪材料及精度等級
初選大小齒輪的材料均為45鋼,經調質處理,硬度為
由課本表取齒輪等級精度為7級,初選
(2)計算高速級齒輪
<1>查課本 表6.2得:
取 ,
由課本 圖6.12取 ,由課本 表6.3,取 ,
齒數教少取 ,取 則 .
<2>接觸疲勞許用應力
由課本 圖6.14查得: .
由課本 表6.5,查得: ,
則應力循環次數:
查課本 圖6.16可得接觸疲勞的壽命系數: ,
.
<3>計算小齒輪最小直徑
計算工作轉矩:
由課本 表6.8,取: ,
<4>確定中心距:
為便於製造和測量,初定: .
<5>選定模數 齒數 和螺旋角
一般: ,初選: 則 .
由 得:
由課本 表6.1取標准模數: ,則:
取 ,則: .
取 , .
齒數比:
與 的要求比較,誤差為1.6%,可用.是:
滿足要求.
<6>計算齒輪分度圓直徑
小齒輪: ;
大齒輪:
<7>齒輪寬度
圓整得大齒輪寬度: ,取小齒輪寬度: .
<8>校核齒輪彎曲疲勞強度
查課本 圖6.15,得 ;
查課本 表6.5,得: ;
查課本 圖6.17得:彎曲強度壽命系數: ;
由課本 表6.4,得: ,
Z較大 ,取 ,
則: ,
所以兩齒輪齒根彎曲疲勞強度滿足要求,此種設計合理.
〈9〉齒輪的基本參數如下表所示:
名稱 符號 公式 齒1 齒2
齒數
19 112
分度圓直徑
58.015 341.985
齒頂高
3 3
齒根高
3.75 3.75
齒頂圓直徑
64.015 347.985
齒根圓直徑
50.515 334.485
中心距
200
孔徑 b
齒寬
80 75
五、軸的設計計算及校核:
1.計算軸的最小直徑
查課本 表11.3,取:
軸:
軸:
軸:
取最大轉矩軸進行計算,校核.
考慮有鍵槽,將直徑增大 ,則: .
2.軸的結構設計
選材45鋼,調質處理.
由課本 表11.1,查得: .
由課本 表11.4查得: , .
由課本 式10.1得:聯軸器的計算轉矩:
由課本 表10.1,查得: ,
按照計算轉矩應小於聯軸器公稱轉矩的條件,查手冊 表8-7,
選擇彈性柱銷聯軸器,型號為: 型聯軸器,其公稱轉矩為:
半聯軸器 的孔徑: ,故取: .
半聯軸器長度 ,半聯軸器與軸配合的轂孔長度為: .
(1)軸上零件的定位,固定和裝配
單級減速器中可以將齒輪安排在箱體中央,相對兩軸承對稱分布.齒輪左面由套筒定位,右面由軸肩定位,聯接以平鍵作為過渡配合固定,兩軸承均以軸肩定位.
(2)確定軸各段直徑和長度
<1> 段:為了滿足半聯軸器的軸向定位要求, 軸段右端需制出一軸肩,故取 段的直徑 ,左端用軸端擋圈定位,查手冊表按軸端去擋圈直徑 ,半聯軸器與軸配合的轂孔長度: ,為了保證軸端擋圈只壓在半聯軸器上而不壓在軸的端面上,故段的長度應比略短,取: .
<2>初步選擇滾動軸承,因軸承同時受有徑向力和軸向力的作用 ,故選用蛋列圓錐滾子軸承,參照工作要求並根據: .
由手冊 表 選取 型軸承,尺寸: ,軸肩
故 ,左端滾動軸承採用縐件進行軸向定位,右端滾動軸承採用套筒定位.
<3>取安裝齒輪處軸段 的直徑: ,齒輪右端與右軸承之間採用套筒定位,已知齒輪輪轂的寬度為 ,為了使套筒端面可靠地壓緊齒輪,此軸段應略短與輪轂寬度,故取: ,齒輪右端採用軸肩定位,軸肩高度 ,取 ,則軸環處的直徑: ,軸環寬度: ,取 , ,即軸肩處軸徑小於軸承內圈外徑,便於拆卸軸承.
<4>軸承端蓋的總寬度為: ,取: .
<5>取齒輪距箱體內壁距離為: .
, .
至此,已初步確定了軸的各段直徑和長度.
(3)軸上零件的周向定位
齒輪,半聯軸器與軸的周向定位均採用平鍵聯接
按 查手冊 表4-1,得:平鍵截面 ,鍵槽用鍵槽銑刀加工,長為: .
為了保證齒輪與軸配合有良好的對中性,故選擇齒輪輪轂與軸的配合為; ,半聯軸器與軸的聯接,選用平鍵為: ,半聯軸器與軸的配合為: .
滾動軸承與軸的周向定位是借過渡配合來保證的,此處選軸的直徑尺寸公差為: .
(4)確定軸上圓角和倒角尺寸,
參照課本 表11.2,取軸端倒角為: ,各軸肩處圓角半徑: 段左端取 ,其餘取 , 處軸肩定位軸承,軸承圓角半徑應大於過渡圓角半徑,由手冊 ,故取 段為 .
(5)求軸上的載荷
在確定軸承的支點位置時,查手冊 表6-7,軸承 型,取 因此,作為簡支梁的軸的支撐跨距 ,據軸的計算簡圖作出軸的彎矩圖,扭矩圖和計算彎矩圖,可看出截面處計算彎矩最大 ,是軸的危險截面.
(6)按彎扭合成應力校核軸的強度.
<1>作用在齒輪上的力
因已知低速級大齒輪的分度圓直徑為: ,
得: , , .
<2>求作用於軸上的支反力
水平面內支反力:
垂直面內支反力:
<3>作出彎矩圖
分別計算水平面和垂直面內各力產生的彎矩.
計算總彎矩:
<4>作出扭矩圖: .
<5>作出計算彎矩圖: ,
.
<6>校核軸的強度
對軸上承受最大計算彎矩的截面的強度進行校核.
由課本 式11.4,得: ,
由課本 表11.5,得: ,
由手冊 表4-1,取 ,計算得: ,
得: 故安全.
(7)精確校核軸的疲勞強度
校核該軸截面 左右兩側.
<1>截面 右側:由課本 表11.5,得:
抗彎截面模量: ,
抗扭截面模量: ,
截面 右側的彎矩: ,
截面 世上的扭矩為: ,
截面上的彎曲應力: ,
街面上行的扭轉切應力: .
截面上由於軸肩而形成的理論應力集中系數 及 ,
由課本 圖1.15,查得:
得:
由課本 圖1.16,查得:材料的敏性系數為:
故有效應力集中系數為:
由課本 圖1.17,取:尺寸系數 ;扭轉尺寸系數: .
按磨削加工,
由課本 圖1.19,取表面狀態系數: .
軸未經表面強化處理,即: .
計算綜合系數值為:
.
由課本第一章取材料特性系數: .
計算安全系數 :
由課本 式,得: ,
.
由課本 表11.6,取疲勞強度的許用安全系數: .
,故可知其安全.
<2>截面 左側
抗彎截面模量為: .
抗扭截面模量為: .
彎矩及彎曲應力為: ,
扭矩及扭轉切應力為: ,
過盈配合處的 值: ,由 ,得: .
軸按磨削加工,由課本 圖1.19,取表面狀態系數為: .
故得綜合系數為: ,
.
所以在截面 右側的安全系數為: ,
.
.
故該軸在截面右側的強度也是足夠的.
3. 確定輸入軸的各段直徑和長度
六. 軸承的選擇及計算
1.軸承的選擇:
軸承1:單列圓錐滾子軸承30211(GB/T 297-1994)
軸承2:單列圓錐滾子軸承30207(GB/T 297-1994)
2.校核軸承:
圓錐滾子軸承30211,查手冊:
由課本 表8.6,取
由課本 表8.5,查得:單列圓錐滾子軸承 時的 值為: .
由課本 表8.7,得:軸承的派生軸向力: , .
因 ,故1為松邊,
作用在軸承上的總的軸向力為: .
查手冊 表6-7,得:30211型 , .
由課本 表8.5,查得: ,
,得: .
計算當量動載荷: ,
.
計算軸承壽命,由課本 式8.2,得: 取: .
則: .
七.鍵的選擇和計算
1.輸入軸:鍵 , , 型.
2.大齒輪:鍵 , , 型.
3.輸出軸:鍵 , , 型.
查課本 表3.1, ,式3.1得強度條件: .
校核鍵1: ;
鍵2: ;
鍵3: .
所有鍵均符合要求.
八.聯軸器的選擇
選擇 軸與電動機聯軸器為彈性柱銷聯軸器
型號為: 型聯軸器:
公稱轉矩: 許用轉速: 質量: .
選擇 軸與 軸聯軸器為彈性柱銷聯軸器
型號為: 型聯軸器:
公稱轉矩: 許用轉速: 質量: .
九.減數器的潤滑方式和密封類型的選擇
1、 減數器的潤滑方式:飛濺潤滑方式
2、 選擇潤滑油:工業閉式齒輪油(GB5903-95)中的一種。
3、 密封類型的選擇:密封件:氈圈1 30 JB/ZQ4606-86
氈圈2 40 JB/ZQ4606-86
十.設計小節
對一級減速器的獨立設計計算及作圖,讓我們融會貫通了機械專業的各項知識,更為系統地認識了機械設計的全過程,增強了我們對機械行業的深入了解,同時也讓我們及時了解到自己的不足,在今後的學習中會更努力地探究.
十一.參考資料
1.「課本」:機械設計/楊明忠 朱家誠主編 編號 ISBN 7-5629-1725-6 武漢理工大學出版社 2004年6月第2次印刷.
2.「手冊」:機械設計課程設計手冊/吳宗澤,羅聖國主編 編號ISBN7-04-019303-5 北京高等教育出版社 2006年11月第3次印刷.
3「指導書」:機械設計課程設計指導書/龔桂義,羅聖國主編 編號ISBN 7-04-002728-3 北京高等教育出版社 2006年11月第24次印刷.
2. 如何正確選用軸承
1、雙支點單向固定支承
每個軸承內、外圈沿軸向只有一個方向受約束。也叫兩端固定。
一個支承限制軸的雙向軸向位移(稱固定支承),另一個支承可沿軸向移動(稱游動支承),不能承受軸向負荷。適合於工作溫度較高和支點跨距較大的場合。
3、雙支點游動支承
兩個支承均無軸向約束,又稱兩端游動支承。常用於人字齒輪場合,以防齒輪卡死和人字齒兩側受力不均勻。
三、滾動軸承的固定
1、周向固定
其作用是保證軸承受力後,軸承的內圈與軸頸、外圈與座孔之間不致於產生相對圓周運動。
利用外圈與軸承座孔、內圈與軸頸之間的配合進行固定;
以軸承為基準件。軸承內孔與軸頸採用基孔制,外徑和座孔採用基軸制配合;
轉動圈比堅定圈緊。旋轉座圈一般應保證有過盈量,不轉的座圈應保證有較小的間隙的間隙配合或過渡配合。
2、軸向固定
見表13-11
四、滾動軸承支承的調整
1、軸向間隙的調整
調整墊片:增減軸承端蓋與機座結合面之間的墊片厚度進行調整。
調節壓蓋:用螺釘調節可調壓蓋(調節杯)的軸向位置。
調整環:增減軸承端面和壓蓋間的調整環的厚度進行調整。
2、軸系位置的調整
五、滾動軸承的游隙和預緊
1、軸承的游隙
ü軸承游隙可分為徑向游隙和軸向游隙;
ü游隙過大,旋轉精度降低;
ü游隙過小,摩擦增大,溫度升高,軸承壽命降低。
ü游隙代號在軸承代號的後置代號中標注出。共分六組:1、2、0、3、4、5,以字母C和游隙組別數字表示。
2、滾動軸承的預緊
預緊:在安裝軸承時採用某種措施,使滾動軸承內保持一個相當的軸向力,以消除軸承游隙,並使滾動體和內、外套圈之間產生預變形。
作用:增加軸承剛度,減小軸承工作時的振動,提高軸承的旋轉精度。
預緊方法:
ü定位預緊:在軸承的風(或外)套圈之間加一金屬墊片或磨窄某一套圈的寬度,在受到一定軸向力後產生預變形而預緊。
ü定壓預緊:利用彈簧的壓緊力使軸承承受一定的軸向負荷並產生預變形而預緊。
3. 什麼是軸承組合設計的兩端固定、一端游動方式它適用於什麼場合為什麼
在軸的兩個支點中,一個支點限升兆制軸的雙向移動,承受雙向軸向力,稱為固定端,而另一支點允許軸自由游動,不承受軸向力,稱為游動端,軸的這種支承方式稱鏈空為一端固定、一端游動式。它適用於工作溫度變化較大、跨距較大的長軸。因工作溫度變化較大的長軸的棚笑瞎伸長量較大,故需要游動支點,以補償熱伸長。
4. 軸承隔圈怎麼選配隔圈寬度對主軸的剛度有什麼影響對最優跨距的影響急求!
想問,可否是雙列圓錐軸承的中隔圈。一般來說軸承的中隔圈的寬度根據軸承的游隙要求而定製。而軸承的游隙影響了主軸的剛度。對於跨距不是很懂,是否是軸系中各個支撐點的距離呢?
5. 2018-08-25 滾動軸承
16.1 滾動軸承概述
16.1.1 滾動軸承的組成
滾動軸承一般由外圈、內圈、滾動體和保持架等四部分組成。
內圈裝配在軸上並與軸一起旋轉,外圈與軸承座孔裝配在一起,起支承作用。
滾動體是滾動軸承的核心元件,它使相對運動表面間的滑動摩擦變為滾動摩擦。保持架將滾動體等距離排列隔開,以避免滾動體直接接觸,減少發熱和磨損。
16.1.2 滾動軸承的材料及特點
滾動軸承的內圈、外圈和滾動體使用強度高、耐磨性好的軸承鋼製造,,工作表面要求磨削拋光,從而達到很高的精度。
軸承保持架有沖壓的和實體的兩種,沖壓保持架一般用低碳鋼板沖壓製成,與滾動體間有較大的間隙。實體保持架常用銅合金、鋁合金或塑料經切削加工製成,有較好的定心作用。
滾動軸承與滑動軸承相比,其特點如下:滾動軸承具有滾動摩擦的特點,摩擦阻力小,啟動及運轉力矩小,啟動靈敏,功率損耗小且軸承單位寬度承載能力較大,潤滑、安裝及維修方便等。與滑動軸承相比,滾動軸承的缺點是徑向輪廓尺寸大,接觸應力高,高速重載下軸承壽命較低且雜訊較大,抗沖擊能力較差。
16.2 滾動軸承的類型及其代號
16.2.1 滾動軸承的結構特性
公稱接觸角。滾動軸承的滾動體與外圈滾道接觸點的法線和軸承半徑方向的夾角α,稱為軸承公稱接觸角(簡稱接觸角)。公稱接觸角的大小反映了軸承承受軸向載荷的能力,接觸角越大,軸承承受軸向載荷的能力越大。
游隙。滾動軸承中滾動體與內圈、外圈滾道之間的間隙,稱為滾動軸承的游隙。游隙分為徑向游隙和軸向游隙,其定義是當軸承的一個套圈固定不動,另一個套圈沿徑向或軸向的最大移動量,稱為軸承的徑向游隙和軸向游隙。軸承標准中將徑向游隙分為基本游隙組和輔助游隙組,應優先選用基本游隙組值,軸向游隙值可由徑向游隙值按一定關系換算得到。
16.2.2 滾動軸承的類型
滾動軸承類型繁多,可從不同角度進行分類。按滾動體形狀分為球軸承和滾子軸承。球形滾動體與內外圈的接觸是點接觸,運轉時摩擦損耗小,承載能力和抗沖擊能力弱;滾子滾動體與內外圈是線接觸,承載能力和抗沖擊能力強,但運轉時摩擦損耗大。按滾動體的列數,滾動軸承又分為單列、雙列以及多列。
按軸承所承受的載荷的方向或公稱接觸角的不同,滾動軸承可以分為以下幾種。
向心軸承。向心軸承主要用於承受徑向載荷,0°≤α≤45°。向心軸承又分為徑向接觸軸承(α=0°)和向心角接觸軸承(0°<α≤45°)。
推力軸承。主要用於承受軸向載荷,45°<α≤90°。推力軸承又可分為軸向接觸軸承(α=90°)和推力角接觸軸承(45°<α<90°)。
16.2.3 滾動軸承的代號
為了統一表徵各類軸承的特點,便於阻止生產和選用,Gb/T 272-1933和JB/T 2974-2004規定了一般用途的滾動軸承代號的編制方法。滾動軸承代號由字母和數字表示,並由前置代號、基本代號和後置代號三部分構成。基本代號是軸承代號的主體,代表軸承的基本類型、結構和尺寸,由軸承類型代號、直徑系列、寬度系列和內徑代號構成。前置代號和後置代號是軸承在結構形狀、尺寸、公差、技術要求等方面有改變時,在基本代號左右增加的補充代號。
類型代號。類型代號用數字或字母表示。若代號為「0」,則可省略。
尺寸系列代號。尺寸系列代號由軸承的寬度系列代號和直徑系列代號組合而成。對於同一內徑的軸承,在承受大小不同的載荷時,可使用大小不同的滾動體,從而使軸承的外徑和寬度相應地發生了變化。寬度系列是指相同內外徑的向心軸承有幾個不同的寬度,寬度系列代號有8,0,1,2,3,4,5,6,對應於相同內徑軸承的寬度尺寸依次遞增。直徑系列是指相同內徑的軸承有幾個不同的外徑,直徑系列代號有7,8,9,0,1,2,3,4,5,對應於相同內徑軸承的外徑尺寸依次遞增。
內徑代號。內徑代號表示軸承內圈孔徑的大小,滾動軸承內徑可以從1mm到幾百mm變化。對常用內徑d=20~480mm的軸承,內徑一般為5的倍數,內徑代號的兩位數字表示軸承內徑尺寸被5除得的商數。對於內徑為10mm,12mm,15mm,17mm的軸承,內徑代號依次為00,01,02和03。對於內徑為500mm,22mm,28mm,32mm的軸承,用公稱內徑毫米數直接表示,但在與尺寸系列代號之間用「/」分開。
內部結構代號。內部結構代號表示軸承內部結構變化。代號含義隨不同類型、結構而異。
公差等級代號。表示軸承的精度等級,分為2級、4級、5級、6級、6X級和0級,共6個級別,依次由高級到低級,其代號分別為/P2,/P4,/P5,/P6,/P5X,/P0。公差等級中,6X級僅適用於圓錐滾子軸承,0級為普通級,在軸承代號中不標出。
游隙代號。常用的軸承徑向游隙系列分為1組、2組、0組、3組、4組、和5組,共6個組別,依次由小到大。0組游隙是常用的游隙組別,在軸承代號中不標出。其餘的游隙組別在軸承代號中分別用/C1,/C2,/C3,/C4,/C5表示。公差等級代號與游隙代號同時表示時,可進行簡化,取公差等級代號加上游隙組號組合表示,例如/P63表示公差等級6,徑向游隙3組。
配置代號,表示一對軸承的配置方式。
成套軸承分部件代號。表示軸承的分部件,用字母表示。滾動軸承的分部件表示可以自由地從軸承上分離下來的帶或不帶滾動體,或帶保持架和滾動體的軸承套圈或軸承墊圈,以及可以自由地從軸承上分離下來的滾動體與保持架的組件。
16.3 滾動軸承的選擇
16.3.1 軸承的載荷
軸承所受載荷的大小、方向和性質,是選擇軸承類型的主要依據。
根據軸承所受載荷的大小。在選擇軸承類型時,由於滾動軸承中主要元件間是線接觸,宜用於承受較大的載荷,承載後變形的也較小。而球軸承中主要為點接觸,宜用於承受較輕的或中等的載荷,故在載荷較小時,應優先選用球軸承。
根據軸承所受載荷的方向。在選擇軸承類型時,對於純軸向載荷,一般選用推力軸承;對於受較小的純軸向載荷可選用推力球軸承;較大的純軸向載荷可選用推力滾子軸承。對於純徑向載荷,一般選用深溝球軸承、圓柱滾子軸承或滾針軸承。當軸承在承受徑向載荷的同時,還有不大的軸向載荷時,可選用深溝球軸承或接觸角不大的角接觸球軸承或圓柱滾子軸承;當軸向載荷較大的時候,可選用接觸角較大的角接觸球軸承或圓柱滾子軸承,或者選用向心軸承和推力軸承組合在一起的結構。
16.3.2 軸承的轉速
從工作轉速對軸承要求看,可以確定以下幾點:球軸承與滾子軸承相比較,有較高的極限轉速,故在高速時應優先選用球軸承;在內徑相同的條件下,外徑越小,則滾動體越小,運轉時滾動體加在外圈滾道上的離心慣性力也就越小,因而也就更適於在更高的轉速下工作;保持架的材料與結構對軸承轉速影響極大,實體保持架比沖壓保持架允許更高一些的轉速、青銅實體保持架允許更高的轉速;推力軸承的極限轉速均很低,當工作轉速高時,若軸向載荷不十分大,可以用角接觸球軸承承受純軸向力;若工作轉速略超過樣本規定的極限轉速,可以提高軸承的公差等級,或適當加大軸承的徑向游隙、選用循環潤滑或油霧潤滑、加強對潤滑油的冷卻等措施改善軸承的高速性能。
16.3.3 軸承的調心性能
軸承能夠自動補償軸和箱體中心線的相對偏斜,從而保持軸承正常工作狀態的能力成為軸承的調心性。調心球軸承和調心滾子軸承都具有良好的調心性能,它們所允許的軸線偏斜角分別為3°和1°~2.5°。
圓柱滾子軸承和滾針軸承對軸承的偏斜最為敏感,這類軸承在偏斜狀態下的承載能力可能低於球軸承。因此在軸的剛度和軸承座孔的支承剛度較低時,應盡量避免使用這類軸承。
16.3.4 軸承的安裝和拆卸
便於裝拆,也是在選擇軸承類型時應考慮的一個因素。在軸承座沒有剖分面而必須沿軸向安裝和拆卸軸承部件時,應優先選用內、外圈可分離的軸承。當軸承在長軸上安裝時,為了便於裝拆,可以選用其內圈孔為1:12的圓錐孔(用以安裝在緊定襯套上)的軸承。
16.3.5 運轉精度
用滾動軸承支承的軸,其軸向及徑向運轉精度既與軸承零件的精度及彈性變形有關,也與相鄰部件的精度及彈性變形有關。因此,對於運轉精度要求高的軸承,需選用過盈配合。
16.3.6 經濟性要求
球軸承比滾子軸承價格便宜,調心軸承價格較高。在滿足使用功能的前提下,應盡量選用球軸承、低精度、低價格的軸承。
此外,軸承類型的選擇還要考慮軸承裝置整體設計要求,如軸承的配置使用性、游動性等要求,如支承剛度要求較高時,可成對採用角接觸型軸承,需調整徑向間隙時宜採用帶內錐孔的軸承,支點跨距大、軸的變形大或多支點軸,宜採用調心軸承,空間受限時,可採用滾針軸承。
16.4 滾動軸承的載荷分析、失效形式和設計准則
16.4.1 滾動軸承的工作情況分析
滾動軸承工作時各元件間的運動關系。滾動軸承是承受載荷而又旋轉的支承件。作用於軸承上的載荷通過滾動體由一個套圈傳遞給另一個套圈。內、外圈相對回轉,滾動體既自傳又繞軸承中心公轉。
滾動軸承中的載荷分布。以向心軸承為例,假定軸承僅受徑向載荷,考慮有一個滾動體的中心位於徑向載荷的作用線上,上半圈的滾動體不承受載荷,下半圈滾動體受載荷,且滾動體在不同位置受的載荷大小也在變化。
軸承元件上的載荷及應力變化。由軸承的載荷分布可知,滾動軸承工作時,滾動體所處位置不同,軸承各元件所受的載荷和應力隨時都在變化。在承載區內,滾動體所受的載荷由0逐漸增加到最大值,然後再逐漸減小到0。滾動體受的是變載荷和變應力。
16.4.2 滾動軸承的失效形式及設計准則
滾動軸承的主要失效形式:
疲勞點蝕。滾動軸承在工作時,滾動體或套圈的滾動表面反復受脈動循環變化接觸應力的作用,工作一段時間後,出現疲勞裂紋並繼續發展,使金屬表面產生麻坑或片狀剝落,造成疲勞點蝕。通常疲勞點蝕是滾動軸承的主要失效形式,,軸承的設計就是針對這種失效而展開的。
塑性變形。在較大的靜載荷及沖擊載荷作用下,在滾動接觸表面將會產生永久性的凹坑,會增大摩擦力矩,在軸承運轉中產生強烈振動和雜訊,降低運轉精度,即軸承因塑性變形而失效。因此對這種工況下的軸承需做靜強度計算。
磨損。由於密封不好、灰塵及雜質侵入軸承造成滾動體和滾道表面產生磨粒磨損,或由於潤滑不良引起軸承早期磨損或燒傷。
其他失效形式。由於裝拆操作、維護不當引起元件破裂。
滾動軸承設計准則,選定軸承類型後,決定軸承尺寸時,應針對主要失效形式進行計算。疲勞點蝕失效是疲勞壽命計算的主要依據,塑性變形是靜強度計算的主要依據。對一般工作條件下做回轉的滾動軸承應進行接觸疲勞壽命計算,還應做靜強度計算;對於不轉動、擺動或低速轉的軸承,要求控制塑性變形,應做靜強度計算;高速軸承由於發熱易造成磨損和燒傷,除進行壽命計算外,還要核驗極限轉速。
此外,決定軸承工作能力的因素還有軸承組合的合理結構、潤滑和密封等,它們對保證軸承正常工作其重要作用。
16.5 滾動軸承尺寸的選擇計算
16.5.1 基本額定壽命L
一個滾動軸承的壽命是指軸承中任一個滾動體或滾道首次出現疲勞擴展之前,一個套圈相對於另一個套圈的轉數,或在一定轉速下的工作小時數。
滾動軸承的壽命是相當離散的,由於製造精度、材料的均質程度等的差異,即使是同樣材料、同樣尺寸以及同一批生產出來的軸承在完全相同的條件下工作,它們的壽命也會不相同。
對一批軸承可用數理統計方法,分析計算一定可靠度R或失效概率n下的軸承壽命。一般在計算中取R=0.9,此時Ln = L10,稱為基本額定壽命。
16.5.2 基本額定動載荷C
軸承的壽命與所受載荷的大小有關,工作載荷越大,引起的接觸應力也就越大,因而在發生點蝕破壞前所能接受的應力變化次數也就越少,亦即軸承的壽命越短。把基本額定壽命軸承所能承受最大載荷取為基本額定動載荷。基本額定動載荷指的是大小和方向恆定的載荷,是向心軸承承受純徑向載荷或推力軸承承受純軸向載荷的能力。
16.5.3 當量動載荷P
為了進行壽命計算,須將實際載荷換算成一個與C載荷性質相同的假定載荷。在這個假定載荷作用下,軸承的壽命與實際載荷作用下的壽命相同,稱該假定載荷為當量動載荷,用P表示。在恆定的徑向載荷Fr和軸向載荷Fa作用下,當量動載荷為 P=XFr+YFa 。其中,X,Y分別是徑向動載荷系數和軸向動載荷系數。向心軸承只承受徑向載荷時P=Fr;推力軸承只承受軸向載荷時P=Fa。
16.5.4 壽命計算
軸承的載荷P與基本額定壽命L10之間的關系 PⁿL10=Cⁿx1=常數 ,其中,n=ε,下同;P是當量動載荷;L10是基本額定壽命;C是基本額定動載荷;ε是壽命指數,對於球軸承ε=3,滾子軸承ε=10/3。可得滾動軸承的基本額定壽命L10為 L10=(C/P)ⁿ ,在實際工程計算中,軸承壽命常用小時表示,此時基本額定壽命Lh(單位為小時)為 Lh=(10的6次方/60n)·(C/P)ⁿ 。其中,n次方之外的n是軸承的轉速,單位r/min。
如果載荷P和轉速n已知,預期計算壽命Lh'也確定,則所需軸承應具有的基本額定動載荷C'可計算得出 C'=P(60nLh'/10的6次方)括弧內開ε次方 。如果要講該數值用於高溫軸承,需要將C乘以溫度系數Ft,即對C值加以修正。考慮機械工作時的沖擊、振動對軸承載荷的影響,應將P乘以載荷系數Fp,對當量動載荷進行修正。
修正後,公式變為 L10=(FtC/FpP)ⁿ,Lh=(10的6次方/60n)·(FtC/FpP)ⁿ, C'=FpP(60nLh'/10的6次方)括弧內開ε次方/Ft 。這三個公式是設計計算時常用的軸承壽命計算式,由此可確定軸承的壽命或型號。
16.5.5 角接觸向心軸承軸向載荷的計算
為了使角接觸向心軸承的內部軸向力得到平衡,以免軸竄動,通常這種軸承都要成對使用,對稱安裝。Fa為軸向外載荷,F'是徑向載荷Fr產生的內部軸向力。O₁,O₂點分別為軸承1和軸承2的壓力中心,即支反力作用點。把內部軸向力F'的方向與外加軸向載荷Fa的方向一致的軸承標為2,另一端標為軸承1。取軸和與其相配合的軸承內圈為分離體,如達到軸向平衡時,應滿足 Fa+F₂'=F₁' 。
如果求得不滿足上式的時候,會出現兩種情況。當Fa+F₂'>F₁'時,則軸有向右躥動的趨勢,相當於軸承1被「壓緊」,軸承2被「放鬆」,但實際上軸必須處於平衡位置,所以被「壓緊」的軸承所受的總軸向力Fa₁必須與Fa+F₂'相平衡,即 Fa₁=Fa+F₂' ,而被「放鬆」的軸承2隻受其本身內部軸向力F₂',即Fa₂=F₂'。當Fa+F₂'<F₁'時,同前理,軸承1隻受其本身內部軸向力F₁',即Fa₁=F₁',軸承2所受的總軸向力為 Fa₂=F₁'-Fa 。
綜上,計算角接觸向心軸承所受軸向力的方法可以歸結為:先通過內部軸向力及外加軸向載荷的計算與分析,判定被「放鬆」或被「壓緊」的軸承;然後確定被「放鬆」軸承的軸向力僅為其本身內部軸向力,被「壓緊」軸承的軸向力則為除去本身內部軸向力後其餘各軸向力的代數和。
16.5.6 滾動軸承的靜載荷
基本額定靜載荷C0。對於轉速很低或緩慢擺動的滾動軸承,一般不會產生疲勞點蝕。但為了防止滾動體和內、外因產生過大的塑性變形,應進行靜強度計算。軸承受力最大的滾動體與滾道接觸中心處引起的接觸應力達到一定值的載荷,作為軸承靜載荷的界限,稱為基本額定靜載荷,以C0表示。對向心軸承來說,基本額定靜載荷是指使軸承套圈僅產生相對純徑向位移的載荷的徑向分量,稱之為徑向基本額定靜載荷,用C0r表示。對推力軸承,基本額定靜載荷是指中心軸向載荷,稱為軸向基本額定靜載荷,用C0a表示。
當量靜載荷P0。如果軸承的實際載荷情況與基本額定靜載荷的假定情況不同時,要將實際靜載荷換算為一個假想載荷。在該假想載荷下軸承中受載最大的滾動體與滾道接觸處產生的永久變形量與實際載荷作用下的相同,把這個假想載荷叫做當量靜載荷。其計算式為 P0=X0Fr+Y0Fa ,其中X0,Y0是徑向靜載荷系數和軸向靜載荷系數。
按靜載荷選擇軸承。公式為 C0≥S0P0 ,其中,S0是靜強度安全系數,P0是當量靜載荷。S0的取值取決於軸承的使用條件,當要求軸承轉動很平穩時,S0應大於1,以避免軸承滾動表面的局部塑性變形量過大;當對軸承轉動平穩性要求不高時,或軸承僅做擺動運動時,S0可取1或小於1,以盡量使軸承在保證正常運行的條件下發揮最大的靜載能力。
16.6 滾動軸承的組合設計
16.6.1 軸與軸承座孔的剛度和同軸度
軸和安裝軸承的箱體或軸承座,以及軸承組合中受力的其他零件必須有足夠的剛度。因為這些零件的變形都要阻礙滾動體的滾動而導致軸承的提前失效。
為了保證軸承正常工作,應保證軸的兩軸頸的同軸度和箱體上兩軸承孔的同軸度。保持同軸度最有效的辦法是採用整體結構的箱體,並將安裝軸承的兩個孔一次加工而成。
16.6.2 軸承的配置
合理的軸承配置應保證軸和軸上零件在工作中的正確位置,防止軸向竄動,固定其軸向位置,當受到軸向力時,能將力傳到機體上,同時,為了避免軸因受熱伸長致使軸承受過大的附載入荷,甚至卡死,又須允許它有一定的軸向游動量。為此,採取的配置方法有下列三種:
雙支點各單向固定。由兩個軸承各限制一個方向的軸向移動。考慮到軸受熱伸長,在一端的軸承外圈與軸承蓋端面之間留有一定的間隙。對於可調游隙式軸承,則在裝配時將間隙留在軸承內部。
一支點雙向固定,另一端支點游動。對於跨距較大且工作溫度較高的軸,其熱伸長量較大,應採用一支點雙向固定,另一端支點游動的支承結構。作為固定支撐的軸承,應能承受雙向軸向載荷,故內、外圈在軸向都要固定。
兩支點全游動。當軸和軸上零件已從其他方面得到軸向固定時,兩個支承就應該是全游動的。
16.6.3 滾動軸承的軸向固定
軸承內、外圈都應可靠固定,固定方法的選擇取決於軸承上的載荷性質、大小及方向,以及軸承類型和其在軸上的位置等。當沖擊振動愈嚴重,軸向載荷愈大,轉速愈高時,所用的固定方法應愈可靠。
軸承內圈軸向固定的常用方法有:用軸用彈性擋圈和軸肩固定,主要用於承受軸向載荷不大及轉速不很高的單列向心球軸承;用軸端擋圈和軸肩固定,可用於軸徑較大的場合,能在高轉速下承受較大的軸向載荷;用圓螺母和止動墊圈固定,拆裝方便,用於軸向載荷大、轉速高的場合;用緊定襯套、止動墊圈和圓螺母固定,用於光軸上軸向力和轉速都不大的、內圈為圓錐孔的軸承。
軸承外圈軸向固定的常用方法由:用嵌入箱體溝槽內的孔用彈性擋圈和凸台固定,常用於單列向心球軸承;用軸用彈性擋圈嵌入軸承外圈的止動槽內固定,適用於箱體不變設置凸台且外圈帶有止動槽的軸承;用軸承端蓋和凸台固定,適用於高速及承受很大軸向載荷的各類向心和向心推力軸承;用軸承蓋和套杯的凸台固定,適用於不宜在箱體上設置凸台等場合;用螺紋環固定,適用於軸承轉速極高,軸向載荷大,不適用於軸承固定的場合。
16.6.4 滾動軸承游隙的調整方法
為保證軸承正常工作,應使軸承內部留有一定間隙,稱為軸承游隙。調整游隙的常用方法有:
加厚或減薄端蓋與箱體間墊片的方法來調整游隙;通過調整螺釘,經過軸承外圈壓蓋,移動外圈來實現,在調整後應擰緊防松螺母;靠軸上的圓螺母來調整,但這種方法由於必須在軸上制出應力集中嚴重的螺紋,削弱了軸的強度。
當軸上有圓錐齒輪或蝸輪等零件時,為了獲得正確的嚙合位置,在安裝時或工作中需要有適當調整軸承的游隙和位置的裝置。
16.6.5 滾動軸承的預緊
滾動軸承的預緊,就是在安裝軸承時用某種方法使滾動體和內、外圈之間產生一定的初始壓力和預變形,以保證軸承內、外圈均處於壓緊狀態,使軸承在工作載荷下,處於負游隙狀態運轉。預緊的目的是:增加軸承的剛度;使旋轉軸在軸向和徑向正確定位,提高軸的旋轉精度;降低軸的振動和雜訊,減小由於慣性力矩引起的滾動體相對於內、外圈滾道的滑動;補償因磨損造成的軸承內部游隙變化;延長軸承壽命。
常用的預緊裝置:夾緊一對圓錐滾子軸承的外圈而預緊;在一對軸承中間裝入長度不等的套筒而預緊;夾緊一對磨窄了的軸承內圈或外圈而預緊;上述三種裝置由於工作時的溫升而使各零件間的尺寸關系發生變化時,預緊力的大小也隨之改變,採用預緊彈簧,則可以得到穩定的預緊力。
16.6.6 滾動軸承的配合與裝拆
為了防止軸承內圈與軸以及外圈與外殼孔在機器運轉時產生不應有的相對滑動,必須選擇正確的配合。滾動軸承是標准件,其內圈的孔為基準孔,與軸的配合採用基孔制;外圈的外圓柱面為基準軸,與軸承座孔的配合採用基軸制。
選擇軸承配合種類時,一般原則是對於轉速高、載荷大、溫度高、有振動的軸承應選用較緊的配合,而經常拆卸的軸承,應選用較松的配合。
軸承組合設計時,應考慮軸承的裝拆,以使在裝拆過程中不致損壞軸承和其他零件。
拆卸時,常用拆卸器或壓力機把軸承從軸上拆下來。
16.6.7 滾動軸承的潤滑
潤滑的主要目的是降低摩擦力、減輕磨損。此外,還有降低接觸應力、散熱、吸振、防銹等作用。
軸承的潤滑劑主要有潤滑脂和潤滑油兩種。此外,也有使用固體潤滑劑的。
脂潤滑。對於球軸承dn<160000,圓柱、圓錐軸承dn<100000~120000,調心滾子軸承dn<80000,推力球軸承dn<40000,一般採用潤滑脂潤滑。採用脂潤滑的結構簡單,潤滑脂不易流失,受溫度影響不大,對載荷性質、運動速度的變化有較大的適應性,使用時間較長。常用潤滑脂為鈣基潤滑脂和鈉基潤滑脂。
油潤滑。從滾動軸承潤滑和散熱的效果來看,油潤滑較好,但需要復雜的供油系統和密封裝置。油潤滑時,常用的潤滑方法有以下幾種:油浴潤滑,把軸承局部浸入潤滑油中;滴油潤滑,用給油器使油成滴滴下,油因轉動部分的攪動,在軸承箱內形成油霧狀,滴下的油將運動中摩擦熱量帶走,起冷卻作用;飛濺潤滑,用進入油池內的齒輪或甩油環的旋轉將油飛濺進行潤滑;噴油潤滑,用油泵將潤滑油增壓,通過油管或機體上特製的油孔,經噴嘴將油噴射到軸承中去,流過軸承的潤滑油,經過過濾冷卻後再循環使用;油霧潤滑,超高速的軸承可以採用油霧潤滑,潤滑油在油霧發生器中變成油霧。
固體潤滑。常用的固體潤滑方法有:用黏結劑將固體潤滑劑黏結在滾道和保持架上;把固體潤滑劑加入工程塑料和粉末冶金材料中,製成有自潤滑性能的軸承零件;用電鍍、高頻濺射、離子鍍層、化學沉積等技術使固體潤滑劑或軟金屬在軸承零件摩擦表面形成一層均勻緻密的薄膜。常用的固體潤滑劑有二硫化鉬、石墨、聚四氟乙烯等。
16.6.8 滾動軸承的密封
密封是為了防止灰塵、水分及其他雜質進入軸承,並組織軸承內潤滑劑的流失。
軸承的密封方法很多,通常可歸納成兩大類,即接觸式密封和非接觸式密封
接觸式密封。這類密封的密封件與軸接觸。工作時軸旋轉,密封件與軸之間有摩擦與磨損,故軸的轉速高時不宜採用。
毛氈圈密封。將矩形截面毛氈圈安裝在軸承端蓋的梯形槽內,利用毛氈圈與軸接觸起密封作用。
密封圈密封。密封圈由耐油橡膠、皮革或塑料製成。安裝時用螺旋彈簧把密封唇口箍緊在軸上,有較好的密封效果,適用於軸的圓周速度v<7m/s,工作溫度為-40~100℃的用紙或油潤滑的軸承。
非接觸式密封。這類密封利用間隙(或加甩油環)密封,轉動件與固定件不接觸,故允許軸有很高的轉速。
間隙密封。在軸承端蓋與軸間留有很小的徑向間隙而獲得密封,間隙越小,軸向寬度越長,密封效果越好。
迷宮式密封。在軸承端蓋和固定於軸上轉動件間制出曲路間隙而獲得密封,有徑向迷宮式和軸向迷宮式兩種。
擋油環密封。擋油環與軸承座孔間由很小的徑向間隙,且擋油環外突出軸承座孔端面∆=1~2mm。工作時擋油環隨軸一同轉動,利用離心力甩去落在擋油環上的油和雜物,起密封作用。
甩油密封。油潤滑時,在軸上開出溝槽或裝入一個環,都可以把欲向外流失的油甩開,再經過軸承端蓋的集油腔及與軸承腔相通的油孔流回。或者在緊貼軸承處裝一甩油環,在軸上車有螺旋式送油槽,可有效防止油外流。
組合密封。將上述各種密封方式組合在一起,以充分發揮其密封性能,提高整體密封效果。
6. 懸臂軸的軸承支承方式
背對背式,面對面式。
1、背對背式。載荷作用中心處於軸承中心線之外,支點間跨距較大,懸臂長度較小,故懸臂端剛性較大,當軸受熱伸長時,軸承游隙增大,軸承不會卡死破壞。
2、面對面式。載荷作用中心處於軸承中心線之內,結構簡單,裝拆方便,當軸受熱伸長時,軸承游隙減小,容易造成軸承卡死,因此要特別注意軸承游隙的調整。
7. 減速機間隙如何調整
以下是對選用幾種固定方法的減速機在調整軸承空隙的辦法總結。
1 軸系兩頭固定方法
這種結構常選用端蓋固定軸承外圈,結構簡略,運用便利。在一般的齒輪減速機及軸承支承點跨距<300㎜的蝸桿減速機中較為常見。
1)外裝式端蓋的減速機軸承空隙調整
此種方法結構簡略,運用便利,在減速機中被廣泛選用。
外裝式端蓋固定的齒輪軸系結構:出廠時大多會在兩頭留有適量的軸向空隙,以確保軸承的靈敏運轉及軸系零件的熱伸長。此空隙一般在0.25㎜~0.4㎜范圍內,否則會使翻滾體受載不均勻並引起較為嚴重的軸向竄動。因而要靠調整軸承空隙來確保必定的軸向空隙。在調整此種固定方法的軸系時,首要打開減速機的觀察孔,看準齒輪的嚙合狀況後,再確定軸系是從哪個方向移動空隙。
假如確定高速軸向輸入側調整空隙,就要把高速軸的悶蓋拆下,用深度游標卡尺測出軸承距端蓋平面的深度記下;然後用撬杠類東西把軸系向輸入側移動,再測出悶蓋端軸承距端蓋平面的深度,兩個深度尺度的差值便是軸承移動的量。把軸系移動好後,就在軸承孔上加上與移動量相等的墊片,最終裝上悶蓋。
待一切部件裝配完後,悄悄盤動減速機,查看各軸滾動是否靈敏。若仍有卡阻,則可對加的墊片厚度適量減薄。直到把減速機各軸的滾動調整到靈敏。根據實際狀況,還能夠把裝置於箱體上的軸承端蓋進行切削加工,切削深度為軸承移動量或略大於移動量的0.20㎜。如切削深度大於端蓋平面厚度的1/3,則因為端蓋太薄,強度減弱,需求從頭加工端蓋。
對可調整空隙的向心推力軸承,可通過調整軸承由外圈的相對方位得到需求的軸承游隙。這種游隙一般比較小,以確保軸承剛性和削減雜訊、振盪。對不行調空隙的軸承(如向心球軸承),可在裝配時通過調整,使固定端蓋與軸承外圈端面間留有適量的空隙,以容許軸系的熱伸長。
在圓錐齒輪減速機中,關於懸臂的小錐齒輪的軸系,要求具有良好的剛性,並且能調整軸系的軸向方位,以達到兩齒輪錐頂重合。因而常將整個軸系裝於套環內而形成一個獨立組件。套杯的肩起固定軸承的效果,凸肩不行過高,以利於軸承的拆開套杯凸緣及軸承端蓋處都有墊片用來調整軸承空隙及調理軸系的軸向方位。
圓錐齒輪軸系選用向心推力軸承時,軸承有正裝置和反裝置兩種安置方案。正裝置的結構支點跨距較小,剛度較差,但用墊片完成調整比較便利。反裝置的結構裝置軸承不方便,用圓螺母調整比較麻煩,但支點跨距較大,剛性較好。當要求兩軸承安置緊湊而有需求進步軸系的剛性時,常選用此種結構。
2)嵌入式端蓋的減速機軸承空隙調整
主要是通過減速機自身的調整端蓋來完成軸承空隙的調整,不用拆開減速機的零部件。某礦卷揚機選用的蝸輪蝸桿減速機蝸桿軸承空隙的調整形式。
在生產空隙時停機對減速機軸承空隙進行調整,假如能卸出輸出端的負載,調整將更為准確,利用調整端蓋上的調整螺栓進行調整,調好後,悄悄盤動減速機,查看各軸滾動是否靈敏。若仍有卡阻,則反復調整,直到把減速機各軸的滾動調整到靈敏、無顯著軸向竄動為佳。
因為運用中各零件的彼此效果,使得固定軸承外圈(或內圈)的擋圈和端蓋上壓軸承外圈的台肩會發生必定量的磨損,這些不起眼的磨損,累加起來也會使軸系有很大空隙,也能導致軸系發生竄動。
值得注意的是與調整螺栓配套的嵌入壓蓋,與軸承外圈觸摸的部分,有的減速機上該壓蓋觸摸面過少,經常導致磨損敏捷,大大縮短了軸承空隙調整周期,解決的辦法是:增加內壓蓋與軸承外圈的觸摸面積(從頭製造加工,加寬內壓蓋的軸承外圈壓邊),也能有用的延伸軸承空隙的調整周期,避免軸承的損壞。
當然,內壓蓋磨損還有其它的原因,比如軸承支承孔磨損嚴重,破壞了原有的合作公差,致使軸承走外圓(外圈在摩擦力效果下隨軸承滾動)等。