A. 怎樣解決超聲波測厚儀測量時常見問題呢
超聲波測厚儀測量時常見問題及解決方法:
(1)工件表面粗糙度過大,造成探頭與接觸面耦合效果差,反射回波低,甚至無法接收到回波信號。對於表面銹蝕,耦合效果極差的在役設備、管道等可通過砂、磨、挫等方法對表面進行處理,降低粗糙度,同時也可以將氧化物及油漆層去掉,露出金屬光澤,使探頭與被檢物通過耦合劑能達到很好的耦合效果。
(2)工件曲率半徑過大,尤其是小徑管測厚時,因常用探頭表面為平面,與曲面接觸為點接觸或線接觸,聲強透射率低(耦合不好)。可選用小管徑專用探頭(6mm ),能較精確的測量管道等曲面材料。
(3)檢測面與底面不平行,聲波遇到底面產生散射,探頭無法接受到底波信號。
(4)鑄件、奧氏體鋼因組織不均勻或晶粒粗大,超聲波在其中穿過時產生嚴重的散射衰減,被散射的超聲波沿著復雜的路徑傳播,有可能使回波湮沒,造成不顯示。可選用頻率較低的粗晶專用探頭(2.5MHz)。
(5)探頭接觸面有一定磨損。常用測厚探頭表面為丙烯樹脂,長期使用會使其表面粗糙度增加,導致靈敏度下降,從而造成顯示不正確。可選用500#砂紙打磨,使其平滑並保證平行度。如仍不穩定,則考慮更換探頭。
(6)被測物背面有大量腐蝕坑。由於被測物另一面有銹斑、腐蝕凹坑,造成聲波衰減,導致讀數無規則變化,在極端情況下甚至無讀數。
(7)被測物體(如管道)內有沉積物,當沉積物與工件聲阻抗相差不大時,測厚儀顯示值為壁厚加沉積物厚度。
(8)當材料內部存在缺陷(如夾雜、夾層等)時,顯示值約為公稱厚度的70%,此時可用超聲波探傷儀進一步進行缺陷檢測。
(9)溫度的影響。一般固體材料中的聲速隨其溫度升高而降低,有試驗數據表明,熱態材料每增加100°C,聲速下降1%。對於高溫在役設備常常碰到這種情況。應選用高溫專用探頭(300-600°C),切勿使用普通探頭。
(10)層疊材料、復合(非均質)材料。要測量未經耦合的層疊材料是不可能的,因超聲波無法穿透未經耦合的空間,而且不能在復合(非均質)材料中勻速傳播。對於由多層材料包紮製成的設備(像尿素高壓設備),測厚時要特別注意,測厚儀的示值僅表示與探頭接觸的那層材料厚度。
(12)耦合劑的影響。耦合劑是用來排除探頭和被測物體之間的空氣,使超聲波能有效地穿入工件達到檢測目的。如果選擇種類或使用方法不當,將造成誤差或耦合標志閃爍,無法測量。因根據使用情況選擇合適的種類,當使用在光滑材料表面時,可以使用低粘度的耦合劑;當使用在粗糙表面、垂直表面及頂表面時,應使用粘度高的耦合劑。高溫工件應選用高溫耦合劑。其次,耦合劑應適量使用,塗抹均勻,一般應將耦合劑塗在被測材料的表面,但當測量溫度較高時,耦合劑應塗在探頭上。
(13)聲速選擇錯誤。測量工件前,根據材料種類預置其聲速或根據標准塊反測出聲速。當用一種材料校正儀器後(常用試塊為鋼)又去測量另一種材料時,將產生錯誤的結果。要求在測量前一定要正確識別材料,選擇合適聲速。
(14)應力的影響。在役設備、管道大部分有應力存在,固體材料的應力狀況對聲速有一定的影響,當應力方向與傳播方向一致時,若應力為壓
應力,則應力作用使工件彈性增加,聲速加快;反之,若應力為拉應力,則聲速減慢。當應力與波的傳播方向不一至時,波動過程中質點振動軌跡受應力干擾,波的傳播方向產生偏離。根據資料表明,一般應力增加,聲速緩慢增加。
(15)金屬表面氧化物或油漆覆蓋層的影響。金屬表面產生的緻密氧化物或油漆防腐層,雖與基體材料結合緊密,無名顯界面,但聲速在兩種物質中的傳播速度是不同的,從而造成誤差,且隨覆蓋物厚度不同,誤差大小也不同。
亞測(上海)儀器科技有限公司是一家集研製、開發、生產和銷售為一體專業化儀器設備公司。公司超聲波測厚儀器設備以恆定速度在其內部傳播的各種材料均可採用此原理測量,如金屬類、塑料類、陶瓷類、玻璃類。可以對各種板材和加工零件作精確測量,另一重要方面是可以對生產設備中各種管道和壓力容器進行監測,監測它們在使用過程中受腐蝕後的減薄程度。廣泛應用於石油、化工、冶金、造船、航空、航天等各個領域。適合測量金屬(如鋼、鑄鐵、鋁、銅等)、塑料、陶瓷、玻璃、玻璃纖維及其他任何超聲波的良導體的厚度。
B. 超聲波測厚儀正確校準步驟是怎樣呢
1.選用與被測物的資料、聲速及曲率一樣的兩個規范試塊,其中一個試塊的厚度等於或略高於測量范疇的下限,另一個試塊的厚度盡可能接近測量范疇的上限,履行二點校準可以提升測量精度.
2. 超聲波測厚儀履行二點校準之前應先關掉zui小值捕捉性能。
操作如下:選用性能菜單存儲控制中的刪除校準數據功然後將二點校準功能關上。
3.超聲波測厚儀校準前一定要刪除以前的校準數據
操作如下:選用性能菜單存儲控制中的刪除校準數據功然後將二點校準功能關上
4.打開二點校準功能。
5.按鍵前往到主顯示界面。
屏幕提示校準薄片ThinCalibration。
然後按鍵屏幕提示校準厚片ThickCalibration.
6. 超聲波測厚儀在測量厚度的狀況下按進入兩點校準方式,
屏幕提示校準薄片ThinCalibration。
7.測量薄片。用或調整測量值到規范值。
然後按鍵屏幕提示校準厚片ThickCalibration.
8.測量厚片。用或調整測量值到標准值。
9. 超聲波測厚儀按鍵兩點校準好了,即可履行測量形態。
注意:測量管材時,由於聲阻抗的相配和耦合的情況會影響測量誤差,為了zhun確測量管材的厚度,在測量管材時咱們盡量選用與被測物的材質、聲速及曲率一樣的兩個規范試塊履行二點校準。
C. 超聲波測厚儀的鑒定標准
我告訴你,鑒定標準是按
JJF
1126-2004,《超聲波測厚儀校準規范》
我們是做超聲波測厚儀的廠家
經常給客戶送去做鑒定
市計量站的,也是這個標准
省計量院的,還是這個標准
D. 如何解決超聲波測厚儀中的常見問題
超聲波測厚儀使用技巧:
1、一般測量方法:
(1)在一點處用探頭進行兩次測厚,在兩次測量中探頭的分割面要互為90°,取較小值為被測工件厚度值。
(2)40mm多點測量法:當測量值不穩定時,以一個測定點為中心,在直徑約為40mm的圓內進行多次測,取最小值為被測工件厚度值。
2、精確測量法:在規定的測量點周圍增加測量數目,厚度變化用等厚線表示。
3、連續測量法:用單點測量法沿指定路線連續測量,間隔不大於5mm。
4、網格測量法:在指定區域劃上網格,按點測厚記錄。此方法在高壓設備、不銹鋼襯里腐蝕監測中廣泛使用。
E. 超聲波測厚儀測量出來的為什麼不準呢
無示值顯示或示值閃爍不穩原因分析:這種現象在現場設備和管道檢測中時常出現,經過大量現象和數據分析,歸納原因如下:
(1)被測物背面有大量腐蝕坑。由於被測物另一面有銹斑、腐蝕凹坑,造成聲波衰減,導致讀數無規則變化,在極端情況下甚至無讀數。
(2)檢測面與底面不平行,聲波遇到底面產生散射,探頭無法接受到底波信號。
(3)工件曲率半徑太小,尤其是小徑管測厚時,因常用探頭表面為平面,與曲面接觸為點接觸或線接觸,聲強透射率低(耦合不好)。
(4)探頭接觸面有一定磨損。常用測厚探頭表面為丙烯樹脂,長期使用會使其表面粗糙度嶒加,導致靈敏度下降,從而造成不顯示或閃爍。
(5)工件表面粗糙度過大,造成探頭與接觸面耦合效果差,反射回波低,甚至無法接收到回波信號。在役設備、管道大部分是表面銹蝕,耦合效果極差。
(6)鑄件、奧氏體鋼因組織不均勻或晶粒粗大,超聲波在其中穿過時產生嚴重的散射衰減,被散射的超聲波沿著復雜的路徑傳播,有可能使回波湮沒,造成不顯示。
F. 超聲波測厚儀常見問題如何解決呢
1.檢測測厚儀電池是否有電。
2.在可以開機的情況下,校準測厚儀,不能校準的情況下恢復出廠設置。再次校準。如果還不能恢復正常,建議返廠檢查
G. 超聲波測厚儀測量方法有那些呢
超聲波測厚儀的常見測量方法有以下幾種:
一、一般測量方法
(1)在一點處用探頭進行兩次測厚,在兩次測量中探頭的分割面要互為90°,取較小值為被測工件厚度值。
(2)30mm 多點測量法:當測量值不穩定時,以一個測定點為中心,在直徑約為30mm 的圓內進行多次測量,取小值為被測工件厚度值。
二、網格測量法
在指定區域劃上網格,按點測厚記錄。此方法在高壓設備、不銹鋼襯里腐蝕監測中廣泛使用。
三、測量法
在規定的測量點周圍增加測量數目,厚度變化用等厚線表示。
四、連續測量法
用單點測量法沿指定路線連續測量,間隔不大於5mm。
H. TT100超聲波測厚儀測量碳鋼時,校正能校到4.0,但是測量不銹鋼時將聲速設為5740m/s,校正就是3.8
測量碳鋼是4.0說明機器探頭是准確的,所以不是機器的毛病。
測量不銹鋼的版時候你可以先用千權分尺卡下厚度是否是4.如果是你可以利用反側發測出來這個試件的聲速,如果是5740,那麼說明這個試塊是好的;
如果速度不是5740,說明你選用的不銹鋼試塊本事有問題,有可能裡面的材質不均勻,建議換一個不銹鋼試塊再試下。
I. 怎樣選擇超聲波測厚儀的校準試塊
對不同材料在不同條件下進行測量,校準試塊的材料越接近被測材料,測量就越理想的參考試塊將是一組被測材料的不同厚度的試塊,試塊能提供儀器補償校正因素(如材料的微觀結構,熱處理條件,粒子方向,表面粗糙等)。為了滿大精度測量的要求,一套參考試塊將是很重要的.
在大部分情況下,只要使用一個參考試塊就能得到令人滿意的測量精度,這個試塊應具有與被測材料相同的材質和相近的厚度.取均勻被測材料用千分尺測里後就能作為一個試塊。
對於薄材料,在它的厚度接近於探頭測星下限時,可用試塊來確定準確的低限。不要測量低於下限厚度的材料.如果一個厚度范圍是可以估計的,那麼試塊的厚度應選上限值. 當被測材料較厚時,特別是內部結構較為復雜的合金等,應在一組試塊中選擇一個接近被測材料的,以便於掌握校準。
大部分鍛件和鑄件的內部結構具有方向性,在不同的方向上,其聲速將會有少量的變化,為了解決這個問題,試塊應具有與被測材料相同方向的內部結構,聲波在試塊中的傳播方向也要與在被測材料中的方向相同。
J. 超聲波測厚儀測量誤差如何確定
在實際檢測工作中,經常碰到測厚儀示值與設計值(或預期值)相比,明顯偏大或偏小,原因分析如下: (1、層疊材料、復合(非均質)材料。要測量未經耦合的層疊材料是不可能的,因超聲波無法穿透未經耦合的空間,而且不能在復合(非均質)材料中勻速傳播。對於由多層材料包紮製成的設備(像尿素高壓設備),測厚時要特別注意,測厚儀的示值僅表示與探頭接觸的那層材料厚度。 (2、聲速選擇錯誤。測量工件前,根據材料種類預置其聲速或根據標准塊反測出聲速。當用一種材料校正儀器後(常用試塊為鋼)又去測量另一種材料時,將產生錯誤的結果。 (3、溫度的影響。一般固體材料中的聲速隨其溫度升高而降低,有試驗數據表明,熱態材料每增加100°C,聲速下降1%。對於高溫在役設備常常碰到這種情況。 (4、耦合劑的影響。耦合劑是用來排除探頭和被測物體之間的空氣,使超聲波能有效地穿入工件達到檢測目的。如果選擇種類或使用方法不當,將造成誤差或耦合標志閃爍,無法測量。實際使用中由於耦合劑使用過多,造成探頭離開工件時,儀器示值為耦合劑層厚度值。 (5、被測物體(如管道)內有沉積物,當沉積物與工件聲阻抗相差不大時,測厚儀顯示值為壁厚加沉積物厚度。 (6、金屬表面氧化物或油漆覆蓋層的影響。金屬表面產生的緻密氧化物或油漆防腐層,雖與基體材料結合緊密,無名顯界面,但聲速在兩種物質中的傳播速度是不同的,從而造成誤差,且隨覆蓋物厚度不同,誤差大小也不同。 (7、當材料內部存在缺陷(如夾雜、夾層等)時,顯示值約為公稱厚度的70%(此時要用超聲波探傷儀進一步進行缺陷檢測)。 (8、應力的影響。在役設備、管道大部分有應力存在,固體材料的應力狀況對聲速有一定的影響,當應力方向與傳播方向一致時,若應力為壓應力,則應力作用使工件彈性增加,聲速加快;反之,若應力為拉應力,則聲速減慢。當應力與波的傳播方向不一至時,波動過程中質點振動軌跡受應力干擾,波的傳播方向產生偏離。根據資料表明,一般應力增加,聲速緩慢增加。 當對所測信號的性質不太了解時,可採用以下的辦法來保證頻譜分析儀的安全使用:如果有RF功率計,可以用它來先測一下信號電平,如果沒有功率計,則在信號電纜與頻譜儀的輸入端之間應接上一個一定量值的外部衰減器,頻譜儀應選擇最大的射頻衰減和可能的最大基準電平,並且使用最寬的頻率掃寬(SPAN),保證可能偏出屏幕的信號可以清晰看見。