導航:首頁 > 製冷設備 > 超聲波聲束指向怎麼算

超聲波聲束指向怎麼算

發布時間:2023-12-15 19:35:18

『壹』 超聲波有哪些物理特性與超聲診斷有什麼關系

超聲波有以下幾種主要物理特性,並與超聲診斷有密切關系。超聲波的聲束指向性:當聲源直徑遠遠大於所發射聲波波長時,其發射的聲波才具有一定方向傳播的特性。診斷用超聲波頻率極高,波長大大小於換能器晶體片(聲源)的直徑,因此,超聲波的成束性好,指向性強。臨床上利用這種良好的聲束指向性准確地對機體某一器官和病變進行定向探測或引導穿刺來診斷疾病。反射和折射:超聲波在均勻的介質內沿直線傳播。在入射到兩種聲阻抗不同的介質界面時,如果界面的寬度大於波長,就會發生反射和折射。界面兩側聲阻抗差值有千分之一即可形成界面反射,因此超聲波對不同的軟組織分辨消正並率很高。目前所用的超聲診斷儀就是根據超聲波的反射特性而研製的。反射構成的回波,代表了組織結構內不同的解剖學和病理組織學信息,是超聲成像的基礎。繞射和散射:超聲波在介質內傳播過程中,如遇到聲阻抗不同、直徑等於或小於1/2波長的微粒時,超聲波則繞過拿跡微粒繼續前進,這種現象叫做繞射。繞射可使超聲波達到沿直線傳播不能達到的區域。而當聲波遇到一個界面遠小於其波長的微粒時,部分聲能激發微粒振動,形成新的點狀聲源向各個方向輻射聲波,這種現象稱為散射。散射是人體組織細微結構的成像基礎。例如,多普勒頻譜儀接收人
體紅細胞的散射回波,獲得多普勒的頻移信號,以此顯示其運動狀態。一清芹般來說,超聲波在人體內的大界面上產生反射,而在軟組織(包括血液)內的微小界面上發生散射。聲波的衰減:超聲波在介質中傳播時,入射的能量隨著傳播距離的增加而減少,這種現象稱為衰減。其主要原因是介質對聲波的吸收、擴散和散射。聲波的衰減給位置較深的病變診斷帶來困難。但這一特性,也可以幫助我們診斷一些疾病,如結石的後方由於聲能明顯衰減,出現聲影等,有助於識別某些特殊的病變。

『貳』 超聲成像詳細資料大全

超聲(Ultrasound,簡稱US)醫學是聲學、醫學、光學及電子學相結合的學科。凡研究高於可聽聲頻率的聲學技術在醫學領域中的套用即超聲醫學。包括超聲診斷學、超聲治療學和生物醫學超聲工程,所以超聲醫學具有醫、理、工三結合的特點,涉及的內容廣泛,在預防、診斷、治療疾病中有很高的價值。

超聲成像是利用超聲聲束掃描人體,通過對反射信號的接收、處理,以獲得體內器官的圖象。常用的超聲儀器有多種:A型(幅度調制型)是以波幅的高低表示反射信號的強弱,顯示的是一種「回聲圖」。M型(光點掃描型)是以垂直方向代表從淺至深的空間位置,水平方向代表時間,顯示為光點在不同時間的運動曲線圖。以上兩型均為一維顯示,套用范圍有限。B型(輝度調制型)即超聲切面成象儀,簡稱「B超」。是以亮度不同的光點表示接收信號的強弱,在探頭沿水平位置移動時,顯示屏上的光點也沿水平方向同步移動,將光點軌跡連成超聲聲束所掃描的切面圖,為二維成象。至於D型是根據超聲都卜勒原理製成.C型則用近似電視的掃描方式,顯示出垂直於聲束的橫切面聲象圖。近年來,超聲成象技術不斷發展,如灰階顯示和彩色顯示、實時成象、超聲全息攝影、穿透式超聲成像、超聲計並機斷層圾影、三維成象、體腔內超聲成像等。

超聲成像方法常用來判斷臟器的位置、大小、形態,確定病灶的范圍和物理性質,提供一些腺體組織的解剖圖,鑒別胎兒的正常與異常,在眼科、婦產科及心血管系統、消化系統、泌尿系統的套用十分廣泛。

基本介紹

發展歷程,基本原理,聲波,超音波,束射性,反射和折射,散射與衍射,超音波的衰減,基本設備,都卜勒超聲,超聲診斷儀,圖像特點,切面聲像圖的回聲描述,超聲圖像的常見偽像,檢查技術,裝置,探測前准備,探測方法和 *** ,診斷與臨床套用,B型超聲檢測技術的臨床套用,超聲都卜勒檢測技術的臨床套用,超聲成像原理,

發展歷程

20世紀50年代建立,70年代廣泛發展套用的超聲診斷技術,總的發展趨勢是從靜態向動態圖像(快速成像)發展,從黑白向彩色圖像過渡,從二維圖像向三維圖像邁進,從反射法向透射法探索,以求得到專一性、特異性的超聲信號,達到定量化、特異性診斷的目的。 近三十年來,醫學超聲診斷技術發生了一次又一次革命性的飛躍,80年代介入性超聲逐漸普及,體腔探頭和術中探頭的套用擴大了診斷范圍,也提高了診斷水平,90年代的血管內超聲、三維成像、新型聲學造影劑的套用使超聲診斷又上了一個新台階。其發展速度令人驚嘆,目前已成為臨床多種疾病診斷的首選方法,並成為一種非常重要的多種參數的系列診斷技術。

基本原理

聲波

能夠在聽覺器官引起聲音感覺的波動稱為聲波。人類能夠感覺的聲波頻率范圍約在20-20000HZ。頻率超過20000HZ,人的感覺器官感覺不到的聲波,叫做超音波。 聲波的基本物理性質如下: (一)聲波的頻率、周期和速度 聲源振動產生聲波,聲波有縱波、橫波和表面波三種形式。而縱波是一種疏密波,就像一根彈簧上產生的波。用於人體診斷的超音波是聲源振動在彈性介質中產生的縱波。聲波在介質中傳播,介質中質點在平衡位置來回振動一次,就完成一次全振動,一次全振動所需要的時間稱振動周期(T)。在單位時間內全振動的次數稱為頻率(f),頻率的單位是赫茲(HZ)。f=1/T,聲波在介質中以一定速度傳播,質點振動一周,波動就前進一個波長(λ)。波速(C)=λ/T或C=f·λ。 (二)聲阻抗 聲波在媒介中傳播,其傳播速度與媒質密度有關。在密度較大介質中的聲速比密度較小介質中的聲速要快。在彈性較大的介質中聲速比彈性較小的介質中要快。這就引出了聲阻抗的定義,聲阻抗為介質密度(ρ)和聲速(C)的乘積。用字母Z表示,Z=ρ·C。

超音波

超音波就是頻率大於20KHZ,人耳感覺不到的聲波,它也是縱波,可以在固體、液體和氣體中傳播,並且具有與聲波相同的物理性質。但是由於超音波頻率高,波長短,還具有一些自身的特性。

束射性

超音波具有束射性。這一點與一般聲波不同,而與光的性質相似,即可集中向一個方向傳播,有較強的方向性,由換能器發出的超音波呈窄束的圓柱形分布,故稱超聲束。

反射和折射

當一束超音波入射到比自身波長大很多倍的兩種介質的交界面上時,就會發生反射和折射。反射遵循反射定律,折射遵循折射定律。由於入射角等於反射角,因此超音波探查疾病時要求聲束盡量與組織界面垂直。超音波的反射還與界面兩邊的聲阻抗有關,兩介質聲阻抗差越大,入射超聲束反射越強。聲阻抗差越小反射越弱。 穿過大界面的透射聲,可能沿入射聲束的方向繼續進行,亦可能偏離入射聲束的方向而傳播,後一種現象稱超聲折射,是由於兩種介質內聲速的不同所致。

散射與衍射

超音波在介質內傳播過程中,如果所遇到的物體界面直徑大於超音波的波長則發生反射,如果直徑小於波長,超音波的傳播方向將發生偏離,在繞過物體以後又以原來的方向傳播,此時反射回波很少,這種現象叫衍射。因此波長越短超音波的分辨力越好。如果物體直徑大大小於超音波長的微粒,在通過這種微粒時大部分超音波繼續向前傳播,小部分超音波能量被微粒向四面八方輻射,這種現象稱為散射。

超音波的衰減

超音波在介質中傳播時,入射超聲能量會隨著傳播距離的增加而逐漸減小,這種現象稱作超音波的衰減。 衰減有以下兩個原因:(1)超音波在介質中傳播時,聲能轉變成熱能,這叫吸收;(2)介質對超音波的反射、散射使得入射超音波的能量向其他方向轉移,而返回的超音波能量越來越小。

基本設備

都卜勒超聲

基本原理 都卜勒效應 都卜勒效應是奧地利物理學家克里斯汀·約翰·都卜勒於1842年首次提出來的。描述了光源與接收器之間相對運動時,光波頻率升高或降低的現象。這種相對運動引起的接收頻率與發射頻率之間的差別稱為都卜勒頻移或都卜勒效應。 聲波同樣具有都卜勒效應的特點,都卜勒超聲最適合對運動流體做檢測,所以都卜勒超聲對心臟及大血管血流的檢測尤為重要。 都卜勒超聲心動圖的基本方式 1 脈沖式都卜勒(PW) 2 連續式都卜勒(CW) 3 彩色都卜勒血流顯像(CDFI)

超聲診斷儀

(一)A型超聲診斷儀 A超是一種幅度調制型,是國內早期最普及最基本的一類超聲診斷儀,目前已基本淘汰。 (二)M型超聲診斷儀 M超是採用輝度調制,以亮度反映回聲強弱,M型顯示體內各層組織對於體表(探頭)的距離隨時間變化的曲線,是反映一維的空間結構,因M型超聲多用來探測心臟,故常稱為M型超聲心動圖,目前一般作為二維彩色都卜勒超聲心動圖儀的一種顯示模式設定於儀器上。 (三)B型超聲診斷儀 B型顯示是利用A型和M型顯示技術發展起來的,它將A型的幅度調制顯示改為輝度調制顯示,亮度隨著回聲信號大小而變化,反映人體組織二維切面斷層圖像。 B型顯示的實時切面圖像,真實性強,直觀性好,容易掌握。它只有20多年歷史,但發展十分迅速,儀器不斷更新換代,近年每年都有改進的新型B型儀出現,B型儀已成為超聲診斷最基本最重要的設備。目前較常用的B型超聲顯像方式有:掃查方式:線型(直線)掃查、扇形掃查、梯形掃查、弧形掃查、徑向掃查、圓周掃查、復合掃查;掃查的驅動方式:手動掃查、機械掃查、電子掃查、復合掃查。 (四)D型超聲診斷儀 超聲都卜勒診斷儀簡稱D型超聲診斷儀,這類儀器是利用都卜勒效應原理,對運動的臟器和血流進行探測。在心血管疾病診斷中必不可少,目前用於心血管診斷的超聲儀均配有都卜勒,分脈沖式都卜勒和連續式都卜勒。近年來許多新課題離不開都卜勒原理,如外周血管、人體內部器官的血管以及新生腫瘤內部的血供探查等等,所以現在彩超基本上均配備都卜勒顯示模式。 (五)彩色都卜勒血流顯像儀 彩色都卜勒血流顯像簡稱彩超,包括二維切面顯像和彩色顯像兩部分。高質量的彩色顯示要求有滿意的黑白結構顯像和清晰的彩色血流顯像。在顯示二維切面的基礎上,打開「彩色血流顯像」開關,彩色血流的信號將自動疊加於黑白的二維結構顯示上,可根據需要選用速度顯示、方差顯示或功率顯示。目前國際市場上彩超的種類及型號繁多,檔次開發日新月異,更具高信息量、高解析度、高自動化、范圍廣、簡便實用等特點。

圖像特點

不同類型的超聲儀有不同的圖像特點,因B型超聲是最重要的診斷方法,故對其圖像特點做以下介紹:

切面聲像圖的回聲描述

1 回聲強弱的描述:根據圖像中不同灰階將回聲信號分為強回聲、等回聲、低回聲和無回聲。而回聲強弱或高低的標准一般以該臟器正常回聲為標准或將病變部位回聲與周圍正常臟器回聲強度的比較來確定。如液體為無回聲,結石氣體或鈣化為強回聲等。正常人體軟組織的內部回聲由強到弱排列如下:腎竇>胎盤>胰腺>肝臟>脾臟>腎皮質>皮下脂肪>腎髓質>腦>靜脈血>膽液和尿液。 2 回聲分布的描述:按圖像中光點的分布情況分為均勻或不均勻,密集或稀疏。在病灶部的回聲分布可用「均質」或「非均勻」表述。 3 回聲形態的描述:光團:回聲光點聚集呈明亮的結團狀,有一定的邊界。光斑:回聲光點聚集呈明亮的小片狀,邊界清楚。光點:回聲呈細小點狀。光環:顯示圓形或類圓形的回聲環。光帶:顯示形狀似條帶樣回聲。 4 某些特殊徵象的描述:即將某些病變聲像圖形象化地命名為某征,用以強調這些徵象,常用的有「靶環」征、「牛眼」征、「駝峰」征、「雙筒槍」征等。 5 彩色都卜勒血流顯象還可對臟器內或腫塊內、外及外周血管的分布、走向、多少、粗細、形態以及血流速度等多項參數加以顯示。

超聲圖像的常見偽像

1 多次反射 超聲垂直照射到平整的界面而形成聲波在探頭與界面之間來回反射,出現等距離的多條回聲,強度漸次減弱,尤其與薄層氣體所構成的界面上,如肝左葉與胃內氣體之間、膀胱回聲前部分的細小回聲。 2 多次內部混響 超聲在靶內來回反射,形成彗星尾征,如子宮內節育環。 3 切片厚度偽像又稱部分容積效應。 因聲束寬度較寬(即超聲切面圖的切片厚度較厚)引起。如膽囊內假膽泥樣圖像。 4 旁瓣偽像 由聲束主瓣外的旁瓣反射造成,在結石和腸氣等強回聲兩側呈現「狗耳」樣或稱「披紗」樣圖像。 5 聲影 由於前方有強反射或聲衰減很大的物質存在,以致在其後方出現聲束不能到達的區域即縱條狀無回聲區稱為聲影區,利用聲影可識別結石、鈣化灶和骨骼等。 6 折射聲影 超聲從低聲速介質進入高聲速介質,在入射角超過臨界角時,產生全反射,以致其後方出現聲影,見於球形結構的兩側後方或器官的兩側邊緣,又稱邊緣聲影。 7 鏡面偽像 超聲束投射到表面平滑的人體強回聲大界面如橫膈面上時,猶如光投射到平面鏡上一樣,產生相似的實、虛兩圖像,如橫膈兩側出現對稱的兩個腫塊回聲。

檢查技術

裝置

1 實時線陣超聲診斷儀:適用於一般的腹部檢查,可有多種不同頻率探頭。主要缺點是探頭與人體接觸面較大,檢查時需要大的透聲窗才能使聲束有效地經過檢查目標。 2 實時扇型超聲診斷儀:心臟探查最常用,探頭小,便於肋間掃查,缺點是近場視野小。 3 實時凸陣超聲診斷儀:凸陣探頭具有比扇型探頭近場視野大,又比線陣探頭遠場視野廣的優點。 4 彩色和頻譜都卜勒超聲診斷儀:用於探查心血管、各種器官及病變相關血管,外周血管的血流速度、血流量等血流動力學改變。

探測前准備

一般不必作探測前准備,在探測易受消化道氣體干擾的深部器官時,需空腹檢查或作更嚴格的腸道准備。膽囊檢查需前晚進清淡飲食,當天禁早餐;婦產科和膀胱前列腺檢查要求充盈膀胱;經直腸檢查前需排便或 *** ;某些特殊檢查另有特別的檢查前准備要求,將在具體章節中介紹。

探測方法和 ***

(一)探測方法 1 直接探測法:探頭與受檢者皮膚或黏膜等直接接觸,是常規採用的探測方法。 2 間接探測法:探頭與人體之間灌入液體或插入水囊、Proxon耦合(延遲)塊等使超聲從發射到進入人體有一個時間上的延遲。目的有三:①使被檢部位落入聚集區,增加分辨力;②使表面不平整的部位得到耦合;③使嬌嫩的被檢組織(如角膜)不受擦傷。 (二) *** 超聲探測的 *** 因探測部位需要不同,可採用各種 *** ,如仰卧位、左右側卧位、俯卧位、坐位、立位、截石位、膝胸位等等,無一定限制。將在各論中分別介紹。

診斷與臨床套用

B型超聲檢測技術的臨床套用

超聲診斷基礎著眼於詳盡的觀察與分析。捕捉各種特徵,綜合分析病因,研究各種生理情況下的改變,以及結合其他形式進行診斷。 (一)超聲圖像觀察 1 臟器外形及大小、柔度或可動度 各種臟器均有其自然的解剖形態及大小尺寸。觀察臟器的輪廓有無形態失常,腫塊的形狀、位置、大小、數目、范圍等,腹腔臟器的活動度等。 2 病灶邊緣回聲 發現病灶後,觀察病灶的邊緣回聲,有無包膜,是否光滑,壁的厚薄,以及周邊是否有暈圈等。 3 後壁及後方回聲 由於人體各種正常組織和病變組織對聲能吸收衰減不同,故表現後方不同的回聲。如含液性的囊腫或膿腫,則出現後壁回聲「增強」;而鈣化、結石、氣體等,則其後方形成「聲影」。某些酷似液性病灶的均勻實質性病灶,後方則無回聲增強效應。 4 內部結構特徵 可分為結構如常,正常結構消失,界面的增多或減少、界面散射點的大小與均勻度的不同以及其他各種不同類型的異常回聲等。 5 周鄰關系 根據局部解剖關系判斷病變與周鄰臟器的連續性,有無壓迫、粘連或浸潤。 6 功能性檢測 如套用脂餐試驗觀察膽囊的收縮功能。空腹飲水後,測定胃的排空功能及收縮蠕動狀態等。 (二)常見的病理性圖像特點 1囊性與實質性病變 超聲對液體與實質組織有著顯著的圖像差別,因而很好鑒別。 2 均質性與非均質性病變 均質性病變呈均勻一致的低回聲、等回聲或強回聲,非均質性病變則呈復雜的回聲結構。 3 鈣化性與含氣性病變 鈣化性病變圖像穩定,聲影清晰,含氣性病變圖像不穩定,聲影混渾。 4 炎性與纖維化病變 急性炎症早期以水腫為主,局部回聲減低,臟器腫脹,經線值增大;慢性炎症纖維組織增加,回聲增粗增多。 纖維化病變多呈強回聲,按其病變程度不同而表現不同。如血吸蟲肝纖維化呈典型的「地圖」樣改變。 5 良性與惡性病變 一般而言,良性病變質地均勻、界面單一故回聲均勻、規則。惡性病變因生長快,伴出血,變性,瘤內組織界面復雜不均勻,表現為不規則的回聲結構。 如(1)腫瘤邊緣:①有:良性或惡性未向外伸展;②假邊緣:光暈圈,水牛眼;③規則:良性、惡性均可;④分界截然:良性為多;⑤不規則,偽足伸展:惡性為多。 (2)內部回聲:①均勻:良性較大;②不均:惡性較大。 (3)內部其他結構:①正常:多為良性;②異常:多為惡性。 (4)後方回聲:①正常或增強:多為良性;②正常或減弱:多為惡性。 (5)侵入或轉移:阻塞或侵入管道、鄰近組織及/或臟器擴散或轉移者考慮為惡性。

超聲都卜勒檢測技術的臨床套用

超聲都卜勒是近年來迅速發展的一種檢測技術,隨著電子學的進步,此法在臨床上得到日益廣泛的套用,對心臟疾病、周圍血管疾患實質器官的血流灌注、小器官血流供應、佔位性病變血供情況及胎兒血液循環的檢查上具有重大的價值。 (一)鑒別液性暗區的性質 在切面超聲顯像圖上常見有各種形式的液性暗區,可分別代表膿腔、積液、膽汁、尿液、羊水或血液等,一般情況下根據解剖部位、周圍輪廓、徑線長短及連續關系等,其性質易於區分,但有時因斷面復雜,暗區較多,在鑒別時很困難。進行都卜勒檢查時因動脈、靜脈及靜止的液腔有明顯的不同,對鑒別性質有很大幫助。如肝內膽管高度擴張時,某一斷面很難區分門靜脈與擴張的膽管,彩色血流顯像加上去,門靜脈有彩色血流顯示並有典型門靜脈頻譜,而膽管無血流顯示。再如診斷下肢深靜脈血栓時,首先要用彩色都卜勒鑒別並行的兩條血管哪一條為動脈,哪一條為靜脈,然後再行進一步追蹤檢查。 (二)鑒別器官及病變組織的血供 彩色都卜勒血流顯像及能量圖可以清晰顯示臟器的正常血供,當有病變或新生佔位性病灶出現時,通過血流顯示可以做出具有重要意義的鑒別診斷。甲亢病人甲狀腺血供異常豐富,呈典型特徵的「火海」征;肝臟腫瘤如原發性肝癌則可探及腫瘤內部及周邊血供豐富,並見動脈頻譜;如血管瘤則血流很少,無動脈頻譜。 (三)探測血流速度 人體任何一條血管及心瓣膜口的血流速度都有一定的正常范圍,如二尖瓣口舒張期峰值速度60cm/s~130cm/s,門靜脈右支主幹的峰值速度在18cm/s左右。血流速度參數有峰值速度、加速度、減速度、平均速度、速度積分等,通過以上參數可對血流動力學異常做出判斷。 (四)估計壓力差 利用數學公式-簡化的伯努利方程:P1-P2=4V2(P1、P2分別代表所測瓣口前後的壓力,V為通過瓣口時的血流速度),可以測出瓣口前後的壓力差,間接反映血流是否通暢,有無狹窄,並可通過測三尖瓣返流速度推算肺動脈壓力。 (五)測量血流量 血流通過某一管腔時,其血流量(Q)與血流速度(V)快慢、管腔面積(A)大小及血流時間(T)長短有密切關系,Q=V·A·T。根據以上公式,大部分彩色都卜勒血流顯像儀在描記血流頻譜輪廓並標志管腔兩側壁的位置後,均能自動計算血流量,對臨床幫助很大。

超聲成像原理

陣列聲場延時疊加成像是超聲成像中最傳統,最簡單的,也是目前實際當中套用最為廣泛的成像方式。在這種方式中,通過對陣列的各個單元引入不同的延時,而後合成為一聚焦波束,以實現對聲場各點的成像。

『叄』 關於超聲波的

我們的耳朵只能分辨頻率為二十至二萬赫的聲音,頻率比人的聽頻范圍高的聲波就叫做超聲波。不同的動物可聽到的聲波頻率范圍不盡相同。狗可以聽到一些超聲波,所以狗只訓練員可以用超聲波哨子呼喚狗兒。超聲波對於蝙蝠更為重要,這種動物是靠超聲波來「看」世界的!
蝙蝠先會發出一連串超聲的尖叫聲,聲波遇到障礙物便會反射,就像我們向山谷拍手會聽到回聲一樣。由於超聲波的頻率高,相對較少出現繞射現象,所以回聲十分清晰。蝙蝠分析回聲的方向和回傳時間,便可以知道環境的精確圖像。人們根據蝙蝠「看」事物的原理,發明了聲納探測器,用來測量水深。船隻上的發射器先向海底發射超聲波,再由另一些儀器接收和分析反射回來的訊息,從而得到整個海床的面貌。
醫學的超聲波掃描術可說是超聲波最重要的應用。超聲波掃描不涉及有害的輻射,遠比 X-射線等檢驗工具安全,所以常用於產前檢查 (右圖)。醫生會將一個發出高頻超聲波 (頻率為1-5 兆赫) 的手提換能器,貼著母親的肚皮進行掃描。聲波到達各種身體組織的邊界時會有不同程度的反射 (例如液體及軟組織的邊界、軟組織及骨的邊界)。接收器收到反射波,便可計算出反射的強度及反射面的距離,以分辨不同的身體組織,並得到胎兒的影像。接收器使用了壓電的原理,把超聲波所產生的壓力轉變成電子訊號,再輸送到儀器分析。超聲波掃描可以幫助醫生量度胎兒的大小以確定產期,檢查胎兒的性別、生長速度、頭的位置是否正常向下、胎盤的位置是否正常、陽水是否足夠,與及監察抽陽水的過程,以保障胎兒的安全等。此外,超聲波掃描術也用於婦科檢查,它可以幫助醫生有效地把生長在乳房或卵巢的惡性組織分辨出來。
超聲波掃描術的兩個重要分支-多普勒超聲波掃描術和立體超聲波成像技術,更擴大了超聲波在醫學上的用途。
多普勒超聲波掃描術已應用了頗長的時間,這技術利用了波動的多普勒效應。反射超聲波物體的運動,會改變回聲的頻率;當物體正向著接收器移動時,頻率便會升高,相反當物體正在遠去時,頻率便會降低。從回聲的頻率改變,儀器便可計算到物體的運動速度。多普勒超聲波掃描術主要用於檢查血液在心臟及主要動脈中的流動速度。血液的流動情況會以一個顏色的影像顯示出來,不同的顏色代表不同的流速 (右圖)。這有助醫生及早發現胎兒先天性心臟毛病。
立體超聲波成像技術是很新的技術。檢查員首先從多個不同角度拍攝胎兒的二維超聲波影像,然後利用計算機技術合成胎兒的立體影像。利用這技術可清晰地顯示胎兒的樣貌 ,甚至攝錄到胎兒細致如踢腳或轉身等動態,實在為准父母帶來不少驚喜。外表的缺憾如兔唇、多指甚至細如斑痣等都可以清楚地顯示出來。立體成像技術將會成為未來超聲波技術研究的重點。
此外,高頻的超聲波帶有強大的振動能。將超聲波入射載滿水的容器,再放入需要的清洗的對象,水的振動便可去除對象上的塵垢,而不需直接接觸對象的表面。眼鏡公司替我們洗眼鏡時就是用這種方法。如果將高能超聲波聚焦,能量甚至足以震碎石塊,所以可以用來擊碎體內結石,使患者免受手術之苦。

『肆』 超聲波的原理及應用

從客觀上講,超聲和可聽聲,除頻率范圍不同外,並沒有差異.但超聲由於頻率高,便具有一些特點,尤其重要的是,這些特點可加以利用,這正是人們所以研究超聲規律的原因.

超聲的特點之一很簡單,就是聽不見.前面提到,聲音來源於部件的振動.振動除產生聲波外,還可以產生其它作用,其中一些作用將在下面介紹.如果我們激發振動的目的是這些其它作用,那麼通常我們不想同時產生聽得見的聲音,因為這些聲音這時是雜訊.在這種情況下,可以激發20000Hz以上的振動,既能完成一些其它功能,又不伴生干擾.

超聲的第二個特點是波長小.任何一種波動(聲波、電磁波、等離子波等等)都有一些共同的基本參數,其中之一是傳播速度,另一個就是波長.聲波是機械波,或說是力學波.媒質中有聲波傳播時,原來是靜止的媒質質點會以原佔位置為中心作很微小(例如也許只幾十納米)的振動,每個質點在振動若干次後將恢復靜止.但這種振動的狀態,由於媒質的彈性,會傳給緊鄰的質點,依次向下傳遞,可能傳得很遠,在海洋中甚至可傳到1000km以外.這種傳遞的速度就是聲波的傳播速度.

確定.對於單一頻率的正弦或餘弦波,波長是波峰與波峰之間或波谷與波谷之間的空間距離.

超聲頻率高,因此波長小.這有兩點重要後果.一點是不必用尺寸很大的聲源,即振動源,就可以產生指向性比較尖銳的聲波.定性地說,指向性描述聲源所發射聲束的狹窄程度,狹窄的象手電筒所發射的光,寬廣的或說彌散的可象電燈泡所發射的光.在許多聲波應用中,我們需要前者而不需要後者.可以證明,如果要產生前者,聲源的尺寸應當比聲波的波長大幾倍.1MHz的聲波在水中的波長約為1.4mm,而1000Hz的聲波在水中的波長約為1.4m,製作和搬運一個直徑幾毫米的聲源顯然比製作和搬運一個直徑幾米的聲源省事得多.

由於同樣的原理,不僅容易實現狹窄的聲束,還容易實現聲束聚焦,象人們通常聚焦光那樣.在焦點或焦區,聲強可以很高,從而產生一些強烈的作用.

超聲波長小的第二點重要後果是,超聲可以被微小的障礙物散射開來.平面聲波在傳播過程中遇到有限大小的障礙物時會被障礙物所散射,就是說,入射波不再沿原方向傳播,而是向四周散開,包括散到與入射方向相反的方向.所謂障礙物是指材料的聲學參量ρc不同於基質ρ0c的物體,ρ是密度(因此基質內的空穴也是障礙物.).沿各個方向散開的聲波幅度分布,或說散射圖案,因障礙物的尺寸與波長之比而異.可以想見,當ρc差別不大時,如果聲波波長遠大於障礙物的尺寸,聲波幾乎會忽略障礙物的存在,反之則聲波幾乎象碰上一個界面,而被反射和折射.如果聲波波長接近於障礙物的尺寸,聲波的散開程度會較大.在某些聲波應用中我們倒希望聲波被散開,從而可以通過測量散射圖案,判斷不透明媒質中有沒有障礙物以及是怎樣的形狀、大小、內含物的障礙物.假若障礙物很大,我們可以採用頻率低、波長長的聲波,若障礙物很小,我們就需用頻率高、波長短的超聲.

超聲的第三個特點是與物質有相互作用.聲波的某些物理的、化學的、生物的效應,或籠統地說,聲波與物質的相互作用,只有在高頻率范圍才會發生.例如有多種類的所謂「弛豫效應」,分別只在不同的高頻率范圍才能出現.又例如,超聲在液體中有一個很突出的物理效應,叫「空化效應」.超聲會在液體中產生空穴或氣泡,這些氣泡處於非穩定狀態,在適當條件下會迅速崩潰,從而在氣泡內產生幾千度的高溫,在氣泡周圍產生近千大氣壓的激波.高溫和強激波的出現則可以導致聲致發光、水中聲致自由基、機械作用(如粉碎、乳化等等)、化學反應活性加強、高分子解聚等效應.

超聲的一個特點是容易形成細聲束,以及可以被相當小的障礙物所散射,其中包括背(逆)向散射.將這束細聲束向正前方射出,同時使它上下左右擺動,便可以搜索前方有沒有障礙物.用電子學的手段,容易測量反射波或背散射波回轉的時間,在已知聲速的情況下,可以確定前方障礙物的位置.當障礙物足夠大時,從回波隨聲束移動的分布,可以顯示出障礙物的形狀;對比較小的障礙物,人們正在尋求判斷障礙物的大小、形狀、內含物等特徵的方法.對於不均勻的透明材料,我們常用光學的辦法檢測;對於不透明材料,用普通的光學方法是做不到的.而包括超聲的聲波則能夠透入任何媒質,不論這媒質是氣體、液體、還是固體,也不論透不透光,對不同媒質的差別只是透入深淺不同.利用超聲來檢查或顯示媒質中是否存在障礙物,以及障礙物有哪些特徵,叫做超聲檢測.

『伍』 實施超聲探傷時,應如何選擇超聲探頭

超聲波探傷中,超聲波的發射和接收都是通過探頭來實現的。探頭的種類很多,結構型式也不一樣。探傷前應根據被檢對象的形狀、衰減和技術要求來選擇探頭。探頭的選擇包括探頭型式、頻率、晶片尺寸和斜探頭K值的選擇等。

  1. 探頭型式的選擇
    常用的探頭型式有縱波直探頭、橫波斜探頭表面波探頭、雙晶探頭、聚焦探頭等。一般根據工件的形狀和可能出現缺陷的部位、方向等條件來選擇探頭的型式,使聲束軸線盡量與缺陷垂直。
    縱波直探頭只能發舉敬射和接收縱波,束軸線垂直於探測面,主要用於探測與探測面平行的缺陷,如鍛件、鋼板中的夾層、折疊等缺陷。
    橫波斜探頭是通過波形轉換來實現橫波探傷的。主要用於探測與深測面垂直或成一定角的缺陷。如焊縫生中的未焊透、夾渣、未溶合等缺陷。
    表面波探頭用於探測工件表面缺陷,雙拿凱晶探頭用於探測工件近表面缺陷。聚焦探頭用於水浸探測管材或板材。

  2. 探頭頻率的選擇
    超聲波探傷頻率在O.5~10MHz之間,選擇范圍大。一般選擇頻率時應考慮以下因索。
    (1)由於波的繞射,使超聲波探傷靈敏度約為,因此提高頻率,有利於發現正敏慎更小的缺陷。
    (2)頻率高,脈沖寬度小,分辨力高,有利於區分相鄰缺陷。
    (3)可知,頻率高,波長短,則半擴散角小,聲束指向性好,能量集中,有利於發現缺陷並對缺陷定位。
    (4)可知,頻率高,波長短,近場區長度大,對探傷不利。
    (5)可知,頻率增加,衰減急劇增加。
    由以上分析可知,頻率的離低對探傷有較大的影響。頻率高,靈敏度和分辨力高,指向性好,對探傷有利。但頻率高,近場區長度大,衰減大,又對探傷不利。實際探傷中要全面分析考慮各方面的因索,合理選擇頻率。一般在保證探傷靈敏度的前提下盡可能選用較低的頻率。
    對於晶粒較細的鍛件、軋製件和焊接件等,一般選用較高的頻率,長用2.5~5.0MHz。對晶粒較粗大的鑄件、奧氏體鋼等宜選用較低的頻率,常用O.5~2.5MHz。如果頻率過高,就會引起嚴重衰減,示波屏上出現林狀回波,信噪比下降,甚至無法探傷。

  3. 探頭晶片尺寸的選擇中科朴道超聲波探傷儀
    探頭圓晶片尺寸一般為φ10~φ30mm,晶片大小對探傷也有一定的影響,選擇晶片尺寸時要考慮以下因素。
    (l)可知,晶片尺寸增加,半擴散角減少,波束指向性變好,超聲波能量集中,對探傷有利。
    (2)由N=等可知,晶片尺寸增加,近場區長度迅速增加,對探傷不利。
    (3)晶片尺寸大,輻射的超聲波能量大,探頭未擴散區掃查范圍大,遠距離掃查范圍相對變小,發現遠距離缺陷能力增強。
    以上分析說明晶片大小對聲柬指向性,近場區長度、近距離掃查范圍和遠距離缺陷檢出能力有較大的影響。實際探傷中,探傷面積范圍大的工件時,為了提高探傷效率宜選用大晶片探頭。探傷厚度大的工件時,為了有效地發現遠距離的缺陷宜選用大晶片探頭。探傷小型工件時,為了提高缺陷定位定量精度宜選用小晶片探頭。探傷表面不太平整,曲率較大的工件時,為了減少耦合損失宜選用小晶片探頭。

  4. 橫渡斜探頭K值的選擇
    在橫波探傷中,探頭的K值對探傷靈敏度、聲束軸線的方向,一次波的聲程(入射點至底面反射點的距離)有較大的影響。由圖l.39可知,對於用有機玻璃斜探頭探傷鋼制工傳,βs=40°(K=O.84)左右時,聲壓往復透射率最高,即探傷靈敏度最高。由K=tgβs可知,K值大,βs大,一次波的聲程大。因此在實際探傷中,當工件厚度較小時,應選用較大的K值,以便增加一次波的聲程,避免近場區探傷。當工件厚度較大時,應選用較小的K值。

閱讀全文

與超聲波聲束指向怎麼算相關的資料

熱點內容
洗手台閥門漏水怎麼換 瀏覽:7
設備用多少點怎麼看 瀏覽:879
儀表空氣管道一般用什麼閥門 瀏覽:677
南湖五金大市場怎麼樣 瀏覽:821
常州市躍達電動工具有限公司怎麼樣 瀏覽:372
小型空調掛脖子是用什麼製冷劑 瀏覽:103
工業激光設備用在哪些行業 瀏覽:606
天津工業大學機械工程多少分 瀏覽:308
閥門用什麼銅 瀏覽:270
銅都閥門廠工資待遇 瀏覽:974
貴州有什麼機械廠 瀏覽:347
山東德州五金市場最近的 瀏覽:116
汽車萬向傳動裝置的組成答案 瀏覽:37
分離軸承沒有裝好會出現什麼現象 瀏覽:465
給排水中閥門怎麼選擇 瀏覽:587
怎麼查qq最近登陸的設備 瀏覽:745
在哪裡考光電儀器操作證書是什麼 瀏覽:37
減肥用什麼儀器較好 瀏覽:897
哪個設備實現aaa物聯網客戶 瀏覽:719
酸性介質採用什麼材質的閥門 瀏覽:530