Ⅰ 超聲波儀有哪些作用
你看,一位懷孕八九個月的媽媽想要看看肚子里的小寶寶生長得怎麼樣了。她躺到了檢查床上,醫生拿起探頭放在媽媽的肚皮上不斷地移動。嘿!在醫生旁邊的熒光顯示屏上就清晰地顯示出寶寶的頭、四肢、心、肺、肝、胃等的圖像。寶寶的發育是否正常,是否生病,在此即可一目瞭然,這下媽媽可以放心了。
今天,超聲波診斷儀已發展為一個「家族」,B型超聲波儀的兄弟除A型外,還有M型和D型。
M型超聲波診斷儀應用於心臟檢查,其曲線變化可顯示主動脈、心臟瓣膜、心室間隔及心室壁等。目前已成為心臟疾患診斷的重要工具。
D型超聲波診斷儀是在1982年研製成功的,又稱多普勒超聲波儀。由於頭蓋骨能吸收X射線,又能反射和散射一般超聲波,所以用X光機和一般的超聲波儀都無法有效探測大腦,而用多普勒超聲波儀就可解決問題。因為它發生的超聲波是脈沖低頻超聲波,能穿過頭蓋骨到達腦血管。
當一列速度很快的火車拉著汽笛從我們身邊開過去時,我們會發現所聽到的汽笛聲調發生著顯著的變化。在火車開近的時候音調變高,開過去離開時音調卻變低。這個現象被奧地利物理學家多普勒注意到了,並解釋為:由於波源與接收器之間的相對運動,使接受器收到的頻率與波源發出的不一樣。這就是多普勒效應。
人們只要利用多普勒效應,把血流在血管里頻率移動變化的信號採集起來,轉換成頻譜進行動態分辨,就可以判斷出大腦血管里血流是否正常,血管有否病變。由於它在診斷時對大腦沒有傷害,檢查操作又很簡便,因此目前已在神經科、腦外科及臨床各科得到廣泛應用。
多普勒超聲波儀顯示的圖像顏色分明,很好看,因此又有「彩超」之稱。
我國近年來較多使用多普勒超聲波儀檢測孕婦肚中胎兒,它能有效地預報胎兒體內氧氣和血液的情況,使許多胎兒不僅能免於窒息死亡,還可消除他們多種後遺症。為此,它被醫生們稱為是胎兒的「守護神」。
Ⅱ 超聲波樁基檢測方法
按照超聲波換能器通道在樁體中的不同的布置方式,超聲波透射法基樁檢測有三種方法:
(1)樁內單孔透射法
在某些特殊情況下只有一個孔道可供檢測使用,例如在鑽孔取芯後,我們需進一步了解芯樣周圍混凝土質量,作為鑽芯檢測的補充手段,這時可採用單孔檢測法,此時,換能器放置於一個孔中,換能器間用隔聲材料隔離(或採用專用的一發雙收換能器)。超聲波從發射換能器出發經耦合水進入孔壁混凝土表層,並沿混凝土表層滑行一段距離後,再經耦合水分別到達兩個接收換能器上,從而測出超聲波沿孔壁混凝土傳播時的各項聲學參數。需要注意的是, 當孔道中有鋼質套管時,由於鋼管影響超聲波在孔壁混凝土中的繞行,故不能用此法。
(2)樁外單孔透射法
當樁的上部結構已施工或樁內沒有換能器通道時,可在樁外緊貼樁邊的土層中鑽一孔作為檢測通道,檢測時在樁頂面放置一發射功率較大的平面換能器,接收換能器從樁外孔中自上而下慢慢放下,超聲波沿樁身混凝土向下傳播,並穿過樁與孔之間的土層,通過孔中耦合水進入接收換能器,逐點測出透射超聲波的聲學參數,根據信號的變化情況大致判定樁身質量。由於超聲波在土中衰減很快,這種方法的可測樁長十分有限,且只能判斷夾層、斷樁、縮頸等。另外灌注樁樁身剖面幾何形狀往往不規則,給測試和分析帶來困難。
該方法在規范中均沒有提及,不推薦使用。
(3)樁內跨孔透射法
此法是一種成熟可靠的方法,是超聲波透射法檢測樁身質量的最主要形式,其方法是在樁內預埋兩根或兩根以上的聲測管,在管中注滿清水,把發射、接收換能器分別置於兩管道中。檢測時超聲波由發射換能器出發穿透兩管間混凝土後被接收換能器接收,實際有效檢測范圍為聲波脈沖從發射換能器到接收換能器所掃過的面積。根據不同的情況,採用一種或多種測試方法,採集聲學參數,根據波形的變化,來判定樁身混凝土強度,判斷樁身混凝土質量,跨孔法檢測根據兩換能器相對高程的變化,又可分為平測、斜測、交叉斜測、扇形掃描測等方式,在檢測時視實際需要靈活運用。
平測法
斜測法
扇測法
樁內跨孔透射法三種方法的運用:
現場的檢測過程一般首先是採用平測法對全樁各個檢測剖面進行普查,找出聲學參數異常的測點。
然後,對聲學參數異常的測點採用加密平測測試、斜測或扇形掃測等細測方法進一步檢測,這樣一方面可以驗證普查結果,另一方面可以進一步確定異常部位的范圍,為樁身完整性類別的判定提供可靠依據。
Ⅲ 無損檢測超聲檢測中有時候缺陷是直射波發現的有時候是一次反射波甚至二次反射波發現的我要問的是超聲波儀
呵呵,這個問題問的好。這個問題在我剛剛接觸超聲波也想過。首先我們了解超聲波儀器的原理:超聲波儀器是通過一個同步電路來產生觸發脈沖,這個觸發脈沖被同時加在掃描電路和發射電路上,掃描電路控制熒光屏,發射電路產生脈沖給探頭,探頭產生超聲波,超聲波與到界面被發射會來,被改搏探頭接受,顯示在熒光屏上。這是一個大概的過程,你想要了解具的去看看書。超聲波實踐記錄的是超聲波傳播的時間。我們知道聲速,就可以計算出距離,也就是我們說的聲程(直探頭的深度)。斜探頭還需要入射角也就是K值,才能計算出深度和水平,就是一個三角函數的關系。這個儀器已經幫我們算好了,所以我們可以用聲程,深度,水平距離來調儀器,一般習慣用深度。
你說的是不用輸入板厚也可以判斷?其實輸不輸板厚對超聲波判斷探傷是沒影響的,要求輸入板厚是儀器幫你顯示熒光屏的比例,不需要再手動調比例。
一般小儀器是不會判斷是陸晌幾次波發現缺陷的,需要操作者來判斷。我們根據深度來調儀器,那麼板厚深度的波是一次底波,2倍板厚深度的波是2次底波,缺陷波一般與底波分開的,在早殲鋒一次底波前的缺陷波就是直射波發現的。在一,二次底波之間的缺陷波,是二次波發現的。原理就是這樣了。自動的設備是可以記錄的,原理一樣的。
如果還有什麼不明白的地方,可以一起探討。
Ⅳ 聲波儀詳細資料大全
聲波儀,主要用於岩土工程質量檢測如樁基無損檢測,岩土工程波速原位測試,備隱混凝土結構無損檢測等一系列地基工程勘察等。
Ⅳ 樁基完整性檢測幾種常見方法對比
某高速公路橋梁工程樁,樁徑:1600 mm;樁長:43.5 m,樁型鑽孔灌注樁。樁基驗收檢測方案為超聲波透射法檢測,分別對次樁依次採用:超聲波透射法檢測,低應變反射波法檢測,鑽孔取芯完整性檢測,鑽孔電視檢測四種檢測方法對其進行完整性判定。下面分別將這四種檢測方法的檢測過程和檢測結果公布如下,好好學習哦~
一、超聲波透射法檢測
檢測目的:基樁的完整性
儀器型號:RSM-SY7(F)
RSM-SY7(F)基樁多跨孔超聲波檢測儀
現場檢測圖
採用四隻45KHz超聲波跨孔探頭,一次提升同時完成四管,六剖面的測試,從超聲波測試結果來看,發現有五個剖面在6.8-7.0米處,出現幅值超判據情況。
再對該樁6.9米處異常點波形觀察,異常點信號首波幅值和後續諧振波信號都偏弱,但其聲速正常。由於是在同深度,多剖面信號異常,在與施工方溝通排除聲測管焊接因素的影響,在做鑽孔取芯前,使用低應變反射波法檢測進一步查明缺陷情況。
異常點信號
正常點信號
二、低應變反射波法檢測
檢測目的:基樁的完整性
儀器型號:RSM-PRT(M)
採用加速度感測器,通過改變不同的錘擊頻率及不同的采樣間隔對該樁的6.8米處的,缺陷進行核查判斷。學習交流qq群44642190
RSM-PRT(M)雙通道低應變檢測儀
低應變檢測現場
採用加速度感測器,通過改變不同的錘擊頻率及不同的采樣間隔對該樁的6.8米處的,缺陷進行核查判斷。
第一次採集結果:信號在6.8米處有較小幅值的同相反射。
第二次採集結果:變換感測器安裝位置信號在6.8米處有較大幅值的同相反射,並可見第二次、第三次缺陷反射。
第三次採集結果:採用頻率較高的鋼筋敲擊,提高缺陷位置精度,同相缺陷反射幅值較小,但也很清晰,可見微弱第二次缺陷反射。最終低應變檢測核定其缺陷位置在距樁頂6.8米處,與超聲波投射法檢測缺陷深度相符,因低應變數據缺陷較為嚴重,懷疑樁大面積斷樁,決定採用鑽孔取芯進一步驗證其缺陷情況。
三、鑽孔取芯完整性檢測
檢測目的:基樁的完整性
儀器型號:鑽孔取芯機
採用鑽機對該樁進行鑽孔取芯檢測,著重觀察該樁6.9米處混凝土完整性情況,但通過對芯樣的目測觀察,在 6.9 米處未取出連續較完整的芯樣,以鑽孔取芯檢測結果出具報告也很難判定該樁缺陷情況。芯樣照片如下:
四、鑽孔電視攝像檢測
檢測目的:基樁的完整性
儀器型號:SR-DCT(W)
SR-DCT(W)鑽孔電視
SR-DCT(W)鑽孔電視現場測試
採用SR-DCT(W)對樁鑽芯孔,進行攝像檢測,觀察測試圖片,清晰可見在6.9 米處,出現環狀裂紋。可以最終判定該樁距樁頂6.9米處,局部斷裂缺陷。學習交流qq群44642190
五、總結
本案例為多種檢測方法對基樁完整性判定的案例,採用的這幾種檢測方法,由於其檢測原理不同,對同個缺陷所反應的信號差異也顯現的較為明顯,簡單概括不同的方法有具體以下特點:
超聲波透射法檢測:
檢測深度不受限制,可以覆蓋整樁,由於是超聲換能器按一定的移距逐點檢測,通過對逐點信號聲速和波幅的變化情況,對樁的混凝土完整性進行判斷,相對低應變反射波法,其檢測范圍和數據精度要高很多。
但超聲波檢測也存在一定的盲區,比如聲測管以外的混凝土,橫向裂縫或深度范圍小的層狀缺陷。
本案例所遇到的樁缺陷就是橫向裂縫缺陷,估計是由於混凝土初凝階段,後續施工造成的。超聲波檢測如采樣移距設置不合適,很容易造成漏判,其信號反應不明顯,但在同深度,都有聲幅降低的情況。遇到這樣缺陷,雖也可以採用超聲波的斜側方法對其進一步判定,但由於缺陷深度范圍較小,估計測試效果不會太明顯。
低應變反射波法檢測:
檢測深度受樁周土(岩)力學特性和錘擊能量影響,對小尺寸缺陷反應不明顯,缺陷的分辨能力和測試深度范圍不及超聲波檢測。
但對如案例中所遇到的橫向裂縫缺陷,低應變的分辨能力強,從實測信號來看,同相缺陷反射波清晰,並可見二次三次反射,是對該樁缺陷類型和程度進一步判定的數據補充。