① 數控機床電源故障都有哪些情況分析
多年的數控機床維修經驗證實,在故障總數中,由電源引發的故障佔了相當大的比例。數控機床電源故障中很多屬於機床用戶有能力自行排除的器件損壞故障,其領域已屬於片級修理。
1、數控機床電源
把數控機床所使用的電源分成了三級,從一次電源到三次電源,依次為派生關系,其造成的故障頻次和難度也依次增加。具體分級如下:
(1)一次電源。一次電源即由車間電網供給的三相380V電源,它是數控機床工作的總能源供給。要求該電源要穩定,一般電壓波動范圍要控制在5%~10%,並且要無高頻干擾。
(2)二次電源。由三相電源經變壓器從一次電源派生。其用途主要有:
1)派生的單相交流220V、交流1l0V,供電給CNC單元及顯示器單元,做為熱交換器、機床控制迴路和開關電源的電源。
2)有的數控機床派生的三相低電壓做直流24V整流橋塊的電源。有的數控機床由三相變壓器產生三相交流220V,供給伺服放大器電源組件作為其工作電源。
(3)三次電源。三次電源是數控機床使用的各種直流電源,它是由二次電源轉化來的。主要有這樣幾種:
1)由伺服放大器電源組件提供的直流電壓、由伺服放大器組件逆變成頻率和電壓幅值可變的三相交流電以控制交流伺服電動機的轉速。
2)整流橋塊提供的交流24V,作為液壓系統電磁閥,電動機閘電磁鐵電源和伺服放大器單元的「ready」和「controllerenable」信號源。
3)由開關電源或DC/DC電源模塊提供的低壓直流電壓,這些電壓有:+5V、±12V、±15V,分別做為測量光柵、數控單元和伺服單元電氣板的電源。
2、數控機床電源迴路使用的器件
數控機床從一次電源到三次電源使用的器件分別有:
(1)車間配電裝置,一般包括:與車間電網連接的三相交流穩壓器和斷路器(又稱空氣開關,或閘刀開關)。
(2)機床元器件,包括:濾波器、電抗器、三相交流變壓器、斷路器、整流器、熔斷器、伺服電源組件、DC/DC模塊和開關電源。
3、電源故障實例分析
(1)電網波動過大PLC不工作。表現為PLC無輸出。先查輸入信號(電源信號、干擾信號、指令信號與反饋信號)。例如,採用SINUMERIK3G-4B系統的數控車床,其內置式PLC無法工作。採用觀察法,先用示波器檢查電網電壓波形,發現電網波動過大,欠壓雜訊跳變持續時間>1s(外因)。由於該機床處於調試階段,電源系統內組件故障應當排除在外,由內部抗電網干擾措施(濾波、隔離與穩壓)可知,常規的電源系統已無法隔斷或濾去持續時間過長的電網欠壓雜訊,這是抗電網措施不足所致(內因),導致PLC不能獲得正常電源輸入而無法工作。在系統電源輸入端加入一個交流穩壓器,PLC工作正常。
(2)電源故障。某雙工位數控車床,每個工位都由單獨的NC系統控制,NC系統採用西門子公司的SINUMERIK810/T系統。右工位的NC系統經常在零件自動加工中斷電停機,重新啟動系統後,NC系統仍可自動工作。檢查24V供電電源負載,並無短路問題。對圖樣進行分析,兩台NC系統,共用一個24V整流電源。引起這個故障可能有兩個原因:
1)供電質量不高,電源波動,而出故障的NC系統對電源的要求較靈敏。
2)NC系統本身的問題,系統不穩定。
根據這個判斷,首先對24V電源電壓進行監視,發現其電壓幅值較低,只有21V左右。經觀察發現,在出故障的瞬間,這個電壓向下浮動,而NC系統斷電後,電壓馬上回升到22V左右。故障一般都發生在主軸啟動時,其原因可能是24V整流變壓器有問題,容量不夠,或匝間短路,使整流電壓偏低,電網電壓波動,影響NC系統的正常工作。為確定這個故障的原因,用交流穩壓電源將交流380V供電電壓提高到400V,這個故障就沒有再出現。為此更換24V整流變壓器,問題徹底解決。
(3)一台VDF.BOEHRINGER公司(德國)生產的PNE480L數控車床,合上主開關啟動數控系統時,在顯示面板上除READY(准備好)燈不亮外,其餘指示燈全亮。該機數控系統為西門子SYSTEM5T系統。因為故障發生於開機的瞬間,因此應檢查開機清零信號RESET是否異常。又因為主板上的DP6燈亮,而且DP6是監視有關直流電源的,因此需要對驅動DP6的相關電路及有關直流電源進行檢查。其步驟如下:
因為DP6燈亮屬報警顯示,故首先對DP6的相關電路進行檢查。經檢查,確認驅動DP6的雙穩態觸發器LA10邏輯狀態不對,已損壞。用新件更換後,雖然DP6指示燈不亮了,但故障現象仍然存在,數控箱還是不能啟動。檢查*RESET信號及數控箱內各連接器的連接情況良好,但*RESET信號不正常,並發現與其相關的A38位置上的LA01與非門電路邏輯關系不正確。於是對各直流電流進行檢查。
檢查±15V、±5V、±12V、+24V,發現電壓為-5V~4.0V,誤差超過±5%。進一步檢查,發現該電路整流橋後有一濾波大電容C19的焊腳處印製電路板銅箔斷裂。將其焊好後,電壓正常,LA01電路邏輯關系及*RESET信號正確,故障排除,數控箱能正常啟動。
(4)返回參考點異常。這是由於返回參考點時沒有滿足「必須沿返回參考點方向,並距參考點不能過近(128個脈沖以上)及返回參考點進度不能過低」的條件。對這類故障的處理步驟是[2,3]:
1)距參考點位置>128個脈沖,返回參考點過程中。①電動機轉了不到1轉(即沒有接收到1轉信號),此時首先變更返回時的開始位置,在位置偏差量>128個脈沖的狀態下,在返回參考點方向上進行1轉以上的快速進給,檢測是否輸入過1轉信號。②電動機轉了1轉以上,這是使用了分離型的脈沖編碼器。此時,檢查位置返回時脈沖編碼器的1轉信號是否輸入到了軸卡中,如果是,則是軸卡不良;如果未輸入,則先檢查編碼器用的電源電壓是否偏低(允許電壓波動在0.2V以內),否則是脈沖編碼器不良。
2)距參考點位置<128個脈沖。①檢查進給速度指令值,快速進給倍率信號,返回參考點減速信號及外部減速信號是否正常。②變更返回時的開始位置,使其位置偏差量超過128個脈沖。③返回參考點速度過低。速度必須為位置偏差量超過128個脈沖的速度,如果速度過低,電動機1轉信號散亂,不可能進行正確的位置檢測。
(5)某加工中心,配置F-0M系統,在自動運轉時突然出現刀庫、工作台同時旋轉。經復位、調整刀庫、工作台後工作正常。但在斷電重新啟動機床時,CRT上出現410號伺服報警。查L/M軸伺服PRDY、VRDY兩指示燈均亮;進給軸伺服電源AC100V、AC18V正常;x、y、z伺服單元上的PRDY指示燈均不亮,三個MCC也未吸合;測量其上電壓發現24V、±15V異常;軸伺服單元上電源熔斷器電阻太大,經更換後,直流電壓恢復正常,重新運行機床,401號報警消失。
(6)故障現象:某公司產VF2型立式銑加工中心。機床運行一年零七個月以後,加工中出現161號報警(x-axisovercurrentordrivefault),機床停止運行。使用「RESET」鍵報警可以清除,機床可恢復運行。此故障現象偶爾發生,機床帶病運行兩年後,故障發生頻次增加,而且出現故障轉移現象:即使用復位鍵清除161號報警時,報警信息轉報162號(Y-axisovercurrentordrivefault),如果再次清除,則再次轉報z軸,以此類推。機床已無法維持運行。
故障分析及檢查:根據故障報警信息在幾伺服軸之間轉移現象,不難看出故障發生在與各伺服軸都相關的公共環節,也就是說,是數控單元的「位置控制板」或伺服單元的電源組件出現了故障。位控板是數控單元組件之一,根據經驗分析,數控單元電氣板出現故障的概率很低,所以分析檢查伺服電源組件是比較可行的排故切入點。檢查發現此機床伺服電源分成兩部分,其中輸出低壓直流±12V兩路的是開關電源。測量結果分別是:+11.73V,-11.98V。分析此結果,正電壓輸出低了0.27V,電壓降低幅度2.3%。由於缺乏量化概念,在暫時找不到其它故障源的情況下,假定此開關電源有故障。
故障排除:為驗證輸出電壓偏差是造成機床故障的根源,用一台WYJ型雙路晶體管直流穩壓器替代原電源,將兩路輸出電壓調節對稱,幅值調到12V,開機後,機床報警消失。在接下來的20個工作日的考驗運行中,故障不再復現。完全證實了故障是由於此伺服電源組件損壞引起的。
理論分析[4]:運算放大器和比較器,有些用單電源供電,有些用雙電源供電,用雙電源的運放要求正負供電對稱,其差值一般不能大於0.2V(具有調節功能的運放除外),否則將無法正常工作。而此故障電源,兩路輸出電壓相差了0.25V,超出了誤差允許范圍,這是故障發生的根本原因。
② 數控機床開關電源常見故障有哪些怎麼維修處理
開關電源壞,結果就是產生報警、系統啟動不了,不能執行指令等現象,或者開關電源輸出短路等,都是這種現象,設計電路不同,產生的現象就不同。處理就是更換開關電源,查找短路點等。
③ 數控機床長時間沒有通電會有什麼後果怎樣解決
可能發生的問題
1,不能正常啟動,報警頻發,主要原因是伺服系統或者主板(電池沒電)積累灰塵,微電路短路。
2,觸頭可能銹蝕接觸不良。
3,導軌等潤滑部分,磨動摩擦的部分油脂缺乏或粘連,造成伺服電機過負荷。
4,散熱風扇多數為浮動軸承,浮動油粘連,系統偵測不出轉速,報警。還要與你放置的環境有關,數控設備為精密設備,長期不用要定期檢查開機試車。
數控機床種類多,各類數控機床因其功能,結構及系統的不同,各具不同的特性。其維護保養的內容和規則也各有特色,具體應根據機床種類、型號及實際使用情況,並參照機床使用說明書要求,制訂和建立必要的保養制度。
1、機床清潔:將機床內工件、治具、鐵屑等清理干凈,外部排屑機內鐵屑清理干凈;外部鈑金擦拭乾凈,電控箱空調、油冷機過濾網清洗干凈。
2、防銹處理:將工作台清理擦拭乾凈,抹上防銹油;機床全程慢速運行一小時潤滑線軌;切削液是否需要更換,優先處理做好防銹,機床開始需要工作時再添加切削液。
3、做好車間的總斷電、斷氣、斷供液: 將數控機床Y軸運行到中間,Z軸回零,關去機床 總電開關和變壓器進線開關、氣源等。
4、防水防潮:關好電器箱做好防護。
5、機床防鼠處理:機床同樣做好防鼠處理,以防老鼠咬斷電線。
數控機床的開機調試
數控機床是一種技術含量很高的機電一體化設備,採取正確方式開機調試是十分關鍵的,這在很大程度上決定了數控機床能否發揮正常的經濟效益以及它本身的使用壽命。
開機前檢查:檢查機床外圍環境,電器箱有無進水等異常現象,油品是否變質。
逐步開機:在開機前必須檢測好機床的電源電壓,一定要在電源總開關開啟約10min電壓 穩定後,才能開啟機床的電源開關,再開啟電箱內的其他電源開關,檢查電壓是否缺相和過低,在無異常情況下開啟機床電源,並觀察有無異常現象, 有無漏氣。開機無報警情況下,不要執行任何動作, 讓電器元件通電30min。
慢速移動:檢查有無干涉,用手輪全程移動機床,並注意有無異常現象,再執行原點回歸 步驟。
機床磨合:長時間自動慢速運行機床, 並低速旋轉主軸。
④ 數控機床沒電顯示伺服器電池沒電怎麼辦
首先要更換電池,其次要重新還原機床參數。因為機床長時間斷電,電池電量耗盡機床參數會丟失,最好聯系一下機床生產廠家,根據機床廠家的指引還原參數。自己也可以按機床說明書將同型號機床的參數先備份出來再還原到這台機床上。
⑤ 數控機床的常見電氣故障及診斷維修方法有哪些
1.1 數控基床電氣裝置常見故障
數控機床的電氣裝置部分的故障主要是硬體故障,其中的硬體故障為:控制系統某元器件接觸不良或損壞、無供電電源等,這種故障必須更換損壞的器件或者維修後才能排除故障。
1.2 數控機床可編程式控制制器的故障分析
數控機床可編程式控制制器,也就是plc控制器部分的故障分為:(1)軟體故障:包括數控機床用戶程序,如果用戶程序出現故障,在數控機床運行時會發生一些無報警的機床故障,因此PLC用戶程序要編制好。(2)硬體故障:也即是在PLC輸入輸出模塊出現問題而引起的故障。對於個別輸入輸出口出現故障,可以通過修改PLC程序,可使用備用介面替代出現故障的介面。
1.3 數控機床伺服系統的故障分析
數控機床伺服控制系統是數控機床故障率最高的部分。伺服控制系統可分為直流伺服控制單元、直流永磁電動機和交流伺服控制單元、交流伺服電動機有兩個部分,兩者各有其優、缺點。伺服系統的故障一般都是由於伺服控制單元、伺服電動機、測速裝置、編碼器等出現問題引起的,要分別對各單元進行分析。
1.4顯示器的故障分析
通常情況下,數控機床顯示器出現錯誤的表現為:系統的軟體出錯,從而會導致系統顯示的混亂或者不正常或根本無法顯示,如果機床的電源出現故障或者系統主板出現故障的話都會導致系統的不正常顯示。其中,顯示系統本身出現故障是引起系統顯示器不正常的最主要原因,因此,如果系統不能正常顯示,就必須首先要分清造成此現象的主要原因。
數控機床的顯示不正常可以分為完全無顯示和顯示不正常兩種情況。當電源和系統的其他部分工作正常時,系統無顯示的原因,一般情況下是由於硬體原因引起,而顯示混亂或顯示不正常,一般來說是由於系統軟體引起的。另外,系統不同,所引起的原因也不同,這要根據實際情況進行分析。
1.5 控制元件、檢測開關的故障分析
數控機床常用的控制元件有液壓元件、氣動元件、電氣執行元件、機械裝置、檢測開關,檢測元件有:檢測開關,這些常見的機床控制元件、檢測開關由於接觸不良引起各種故障比較多,這類故障很容易解決,但是必須用儀器儀表配合檢查。
2 數控機床常見電氣故障診斷與排除方法
數控機床故障排查的方法很多,大致可以分為以下幾種:
2.1直觀檢查法
這是故障分析之初必用的方法,就是利用感官的檢查。
(1)問。即向故障現場人員仔細詢問故障產生的過程、故障表象及故障後果,並且在整個分析判斷過程中可能要多次詢問。
(2)看。總體查看機床各部分工作狀態是否處於正常狀態(例如各坐標軸位置、主軸狀態、刀庫、機械手位置等),各電控裝置(如數控系統、溫控裝置、潤滑裝置等)有無報警指示,局部查看有無保險燒煅,元器件燒焦、開裂、電線電纜脫落,各操作元件位置正確與否等等 。
(3)摸。在整機斷電條件下可以通過觸摸各主要電路板的安裝狀況、各插頭座的插接狀況、各功率及信號導線(如伺服與電機接觸器接線)的聯接狀況等來發現可能出現故障的原因。
(4)試。這是指為了檢查有無冒煙、打火、有無異常聲音、氣味以及觸摸有無過熱電動機和元件存在而通電,一旦發現立即斷電分析。
2.2儀器檢查法
儀器檢查法就是使用常規電工儀表對各組交、直流電源電壓及相關直流和脈沖信號等進行測量,從中找尋可能的故障。例如用萬用表檢查各電源情況,及對某些電路板上設置的相關信號狀態測量點的測量,用示波器觀察相關的脈動信號的幅值、相位甚至有無,用PLC 編程器查找PLC程序中的故障部位及原因等。
2.3 信號與報警指示分析法
(1)硬體報警指。這是指包括數控系統、伺服系統在內的各電子、電器裝置上的各種狀態和故障指示燈,結合指示燈狀態和相應的功能說明便可獲知指示內容及故障原因與排除方法。
(2)軟體報警指示。如前所述的系統軟體、PLC程序與加工程序中的故障通常都設有報警顯示,依據顯示的報警號對照相應的診斷說明手冊便可獲知可能的故障原因及故障排除方法。
2.4 介面狀態檢查法
現代數控系統多將PLC集成於其中,而CNC與PLC之間則以一系列介面信號形式相互通訊聯接。有些故障是與介面信號錯誤或丟失相關的,這些介面信號有的可以在相應的介面板和輸入/輸出板上有指示燈顯示,有的可以通過簡單操作在CRT屏幕上顯示,而所有的介面信號都可以用PLC編程器調出。檢修時,要求維修人員既要熟悉本機床的介面信號,又要熟悉PLC編程器的應用。
2.5 參數調整法
數控系統都設置許多可修改的參數以適應不同機床、不同工作狀態的要求。這些參數不僅能使各電氣系統與具體機床相匹配,而且更是使機床各項功能達到最佳化所必需的。因此,任何參數的變化(尤其是模擬量參數)甚至丟失都是不允許的;而機床運行所引起的機械或電氣性能的變化會改變其最佳化狀態。此類故障需要重新調整相關的一個或多個參數方可排除。這種方法對維修人員的要求是很高的,不僅要對具體系統主要參數十分了解,既熟悉其作用,而且要有較豐富的電氣調試經驗。
2.6 備件置換法
當故障集中於某一印製電路板上時,由於電路集成度的不斷擴大而要把故障落實於某一區域乃至某一元件比較困難,為了縮短停機時間,在有相同備件的條件下可以先將備件換上,然後再檢查修復故障板。備件板的更換要注意以下問題:
(1)更換任何備件都必須在斷電情況下進行。
(2)在更換備件板上要記錄下原有的開關位置和設定狀態,並將新板作好同樣的設定,否則會產生報警而不能工作。
(3)某些印製電路板的更換還需在更換後進行某些特定操作以完成其中軟體與參數的建立。這一點需要仔細閱讀相應電路板的使用說明。
(4)有些印製電路板是不能輕易拔出的,例如含有工作存儲器的板,或者備用電池板,它會丟失有用的參數或者程序。必須更換時也必須遵照有關說明操作。
鑒於以上條件,在拔出舊板更換新板之前一定要先仔細閱讀相關資料,弄懂要求和操作步驟之後再動手,以免造成更大的故障。
2.7交叉換位法
當發現故障板或者不能確定是否故障板而又沒有備件的情況下,可以將系統中相同或相兼容的兩個板互換檢查分散機 塗料分散機 高速分散機 實驗室分散機 真空分散機 升降分散機 高粘度分散機 實驗室分散機 雙行星混合機 雙行星攪拌機 多功能混合機 電池漿料攪拌機 環氧樹脂攪拌機 電池漿料混合機,不僅硬體接線的正確交換,還要將一系列相應的參數交換,一定要事先考慮周全,設計好軟、硬體交換方案,准確無誤再行交換檢查。
2.8 特殊處理法
當今的數控系統其中軟體含量越來越豐富,有系統軟體、機床製造者軟體、甚至還有使用者自己的軟體,由於軟體邏輯的設計中不可避免的一些問題,會使得有些故障狀態無從分析,例如死機現象。對於這種故障現象則可以採取特殊手段來處理,比如整機斷電,稍作停頓後再開機,有時則可能將故障消除。維修人員可以在自己的長期實踐中摸索其規律或者其他有效的方法。
⑥ 發那科數控車床運行中自動斷電原因,斷電後需大概十分鍾才能上電
你把fanuc數控車型號,那個系統都說明白。是6M系統,0系統,0M系統,0T系統,0I系統還是最新的其他系統。
數控系統上電,分為強電上電和弱電啟動(即電腦啟動),你的是強電斷電還是弱電斷電。
⑦ 數控機床電源的常見故障及抗干擾措施
數控機床電源的常見故障及抗干擾措施
由於我國工業用電電網電壓波動較大,由此造成數控系統電源部分故障頻率較高。那具體的故障都有哪些呢?有什麼抗干擾措施沒有?我為此特意整理了相關知識分享給大家!
電源是電路板的能源供應部分,電源不正常,電路板的工作必然異常。
一、開關電源常見的故障
1、熔絲熔斷
如果燒斷時保險管發黑有斑點,說明線路有嚴重短路,它是由於高壓濾波電容擊穿,整流管擊穿等明顯故障原因引起。如果保險管不黑,屬慢慢熔斷,可進行靜態測量。一般是半橋中的一個開關管擊穿或不良。
2、熔絲不斷,輸出無電壓
這種情況先檢查有無300V直流電壓。如果沒有,故障發生在逆變之前;如果有300V高壓而無輸出,這時可用示波器檢查開關管集電極有無20kHz波形。如果開關管被擊穿或沒有振起。高頻變壓器開路均可造成逆變停止。另外,逆變電器正常但被後級的過流或過壓電路動作而保護,使輸出無電壓。如果12V檔主輸出電源輸出空載,就會引起過保護而使輸出無電壓。
3、電源輸出電壓不準
一般情況下,數控系統各檔穩壓直流電壓的允許電壓范圍為額定值的±5%之內,如果超此范圍,可調整電壓調節電位器。將主輸出電壓檔調至標准值。如果不能調至標准值,可能是電位器壞了或穩壓管壞了。如果只有某一檔電壓偏離較大,則很可能是該檔整流二極體損壞,要盡可能調換同型號的二極體。有時開關電源的負載能力差,也會使輸出電壓降低過大,這可能因參數變化使電路工作點偏離線性區域,如放大環節增益降低,檢測電路處於非線性狀態等。
4、開關電源發出重復地特殊響聲
這通常是工作頻率過低所造成,可用示波器檢測脈沖寬度調制器,正常工作時將近20kHz左右。如定時迴路電容器容量變大,也會引起振盪頻率過低,使電源產生特殊的重復的響聲。使開關電源不能正常工作。更換合適的電容即可恢復其正常工作。
二、數控機床抗干擾途徑
1、採用抗干擾的優質電源
經驗表明由電源引入的干擾是系統干擾的主要來源,抗干擾性能好的優質電源是提高系統可靠性的關鍵。
2、阻斷雜訊干擾傳遞路徑
數控系統使用現場的電磁環境一般較為惡劣,特別是附近大型電氣設備起動及停止時會在公用交流電網和控制迴路上產生高頻瞬變雜訊。這些雜訊會通過數控系統的輸入電源竄入系統內部,因此必須採取濾波、隔離、屏蔽和保護等措施將雜訊阻斷在系統外部。
1)使用電源濾波器抑制輸入電源雜訊
電源濾波器是抑制電源干擾的有力措施,目前市場上有各種型號規格的濾波器可供選擇。從抗干擾的角度出發,應驗證其插入衰減量是否達到要求。另外,濾波器對雜訊的實際抑制效果還取決於使用方法,應注意以下三點:
a、濾波器要盡量靠近電源輸入插座安裝,進線和出線使用雙絞線並靠近地電位布線,二者一定要分開走線,不能平行走線,更不能捆紮在一起。
b、濾波器的接地電阻應越小越好,最好直接安裝在系統機殼上離系統接地端子最近的位置,這樣能更好的抑制高頻共模雜訊。
c、數控系統內部的伺服電動機驅動器、外圍介面電路和計算機電路的電源可分別用3個濾波器供電,這樣不僅能抑制外部電源干擾,還能抑制各部分之間的相互干擾。
2)採用變比為1∶1的隔離變壓器進行隔離
隔離變壓器是在它的初級繞組和次級繞組之間加了一層屏蔽層,並將它和鐵芯一起接地,防止干擾信號通過初次級之間的電路進人直流供電系統。它能有效地抑制由電網侵入的瞬態強脈沖干擾,使得直流或低頻干擾信號不容易通過傳導的方式形成感應雜訊。
3)將電源裝在金屬屏蔽盒內,並與系統內其它部分盡量隔開安裝,可減少雜訊在系統內部的輻射干擾。
4)建立掉電保護功能
工業電網的供電不穩定或者系統電源的偶然故障,突然掉電的事故是難免的。這就要求系統在發生掉電時保護好現場的數據,待電壓恢復正常時,便可從掉電處繼續執行程序。系統的掉電保護方案可用帶掉電保護的RAM(如FLASH)或可讀寫EEPROM等來保存系統掉電時的現場數據及標志字。
3、抑制電源工作產生的噪音
1)抑制直流穩壓電源雜訊
一部分數控系統的電源(+5V)是由三端集成穩壓器構成的。電路中有TTL器件時,其開關動作時間為5~10ns,在瞬變電流和公共阻抗的作用下,直流電源線上產生開關雜訊。使電路的雜訊容限降低,導致邏輯電路和微處理器誤動作。減小開關雜訊的有效方法是在每個集成電路的電源端與接地端之間接入一個0.01~0.1μF的限噪 鉭 電容或高頻無感濾波電容,在設計電路板時應將此電容安裝在該集成電路的.電源輸入側並盡量縮短電容的配線。
2)抑制開關電源的雜訊
目前,開關電源在數控系統中得到廣泛使用。但是開關電源的雜訊大、雜訊頻譜寬及高頻輻射干擾嚴重。這些固有的缺點不能從根本上予以消除,只能使用隔離、濾波和屏蔽等措施來阻斷雜訊的傳輸。具體方法如下:
a.減小開關級晶體管與電源屏蔽殼之間的耦合電容,以減少雜訊的產生;
b.用電感線圈將開關電源機殼與數控系統外殼相連,以減小共模雜訊;
c.在交流電源輸入端接入線路濾波器,不但能抑制共模雜訊和串模雜訊的產生,並且對外部電源雜訊也同樣有效。
d.開關電源有多個負載時,應採取將各負載電路在電源處就分開的布線方法,而不採用在離開開關電源一段距離後再接負載的方法。按後者布線時,分布電容使各負載的線路不平衡,導致形成較大的串模雜訊。另外,電源外殼與負載電路一點接地並且接地阻抗要盡可能小。開關電源到各個負載電路採用雙絞線相連;
e.開關電源需要同時給大功率負載與小信號負載供電,盡管它們的電壓一致,也要分別用兩組獨立的開關電源來供電,這兩組電源的地線要有公共連接點,這樣不會形成公共阻抗,防止兩路負載之間相互影響。
4、合理接地與布線
系統中直流電源的工作地應與系統中繼電器、電磁閥及其驅動電源所構成的功率地分開,兩者不可混接。另外、接地電纜應足夠粗,並且電阻要小。布電源線時,應使強電和弱電分開,輸入線與輸出線分開。要根據電流的大小,盡量加粗導線的寬度,使電源線、地線的走向與數據傳輸的方向一致。採取以上方法對數控系統電源部分進行改進設計,有效地消除了干擾的影響,增加了整個數控系統的可靠性。
;