⑴ 超聲波發射接收 怎麼接
您好!!
40kHZ超聲波發射電路(1)
40kHZ超聲波發射電路之一,由F1~F3三門振盪器在F3的輸出為40kHZ方波,工作頻率主要由C1、R1和RP決定,用RP可調電阻來調節頻率。 F3的輸出激勵換能器T40-16的一端和反向器F4,F4輸出激勵換能器T40-16的另一端,因此,加入F4使激勵電壓提高了一倍。電容C3、C2平衡F3和F4的輸出,使波形穩定。電路中反向器F1~F4用CC4069六反向器中的四個反向器,剩餘兩個不用(輸入端應接地)。電源用9V疊層電池。測量F3輸出頻率應為40kHZ±2kHZ,否則應調節RP。發射超聲波信號大於8m。
40kHZ超聲波發射電路(2)
40kHZ超聲波發射電路之二,電路中晶體管VT1、VT2組成強反饋穩頻振盪器,振盪頻率等於超聲波換能器T40-16的共振頻率。T40-16是反饋耦合元件,對於電路來說又是輸出換能器。T40-16兩端的振盪波形近似於方波,電壓振幅接近電源電壓。S是電源開關,按一下S,便能驅動T40-16發射出一串40kHZ超聲波信號。電路工作電壓9V,工作電流約25mA。發射超聲波信號大於8m。電路不需調試即可工作。
40kHZ超聲波發射電路(3)
40kHZ超聲波發射電路之三,由VT1、VT2組成正反饋回授振盪器。電路的振盪頻率決定於反饋元件的T40-16,其諧振頻率為40kHZ±2kHZ。頻率穩定性好,不需作任何調整,並由T40-16作為換能器發出40kHZ的超聲波信號。電感L1與電容C2調諧在40kHZ起作諧振作用。本電路適應電壓較寬(3~12V),且頻率不變。電感採用固定式,電感量5.1mH。整機工作電流約25mA。發射超聲波信號大於8m。
40kHZ超聲波發射電路(4)
40kHZ超聲波發射電路之四,它主要由四與非門電路CC4011完成振盪及驅動功能,通過超聲換能器T40-16輻射出超聲波去控制接收機。其中門YF1與門YF2組成可控振盪器,當 S按下時,振盪器起振,調整RP改變振盪頻率,應為40kHZ。振盪信號分別控制由YF4、YF3組成的差相驅動器工作,當YF3輸出高電平時,YF4一定輸出低電平;YF3輸出低電平時,YF4輸出高電平。此電平控制T40-16換能器發出40kHZ超聲波。電路中YF1~YF4採用高速CMOS電路 74HC00四與非門電路,該電路特點是輸出驅動電流大(大於15mA),效率高等。電路工作電壓9V,工作電流大於35mA,發射超聲波信號大於 10m。
40kHZ超聲波發射電路(5)
40kHZ超聲波發射電路之五,由LM555時基電路及外圍元件構成40kHZ多諧振盪器電路,調節電阻器RP阻值,可以改變振盪頻率。由LM555第3腳輸出端驅動超聲波換能器T40 -16,使之發射出超聲波信號。電路簡單易制。電路工作電壓9V,工作電流40~50mA。發射超聲波信號大於8m。LM555可用NE555直接替代,效果一樣。
雙穩態超聲波接收機電路
由於單穩態接收機無記憶功能,所以不能用在家用電器的開與關中,適用面不寬。是一種雙穩態超聲波接收機電路,它的前級電路同圖2-186電路完全一樣,只是執行電路不同。
電路中,由VT5、VT6及相關輔助元件構成雙穩態電路,當VT4每導通一次(發射機工作一次),觸發信號經C7、C8向雙穩電路送進一個觸發脈沖, VT5、VT6狀態翻轉一次,當VT6從截止狀態轉變成導通狀態時,VD5截止,VT7截止,繼電器K釋放;當再來一個觸發信號時,VT6由導通轉變為截止狀態,VD5導通,VT7導通,繼電器K吸合......由於增加了雙穩電路,使之用於電燈、電扇、電視等電器遙控成為現實。調試時,在a點與+6V(電源)之間用導線快速短路一下後松開,繼電器應吸合(或釋放),再短路一下松開,繼電器應釋放(或吸合),如果繼電器無反應,請檢查雙穩電路元件焊接質量和元件參數。一般情況下一次即可成功。
單穩式超聲波接收器電路
單穩式超聲波接收器電路原理圖,超聲波換能器R40-16諧振頻率為40kHZ,經R40-16選頻後,將40kHZ以外的干擾信號衰減,只有諧振於40kHZ的有用信號(發射機信號)送入VT1~VT3組成的高通放大器放大,經C5、VD1檢出直流分量,控制VT4、VT5組成的電子開關帶動繼電器K工作。由於該電路僅作單路信號放大,當發射機每發射一次超聲波信號時,接收機的繼電器吸合一次(吸合時間同發射機發射信號時間相同),無記憶保持功能。可用作無線遙控攝象機快門控制、兒童玩具控制、窗簾控制等。電路中VT1β≥200,VT2β≥150,其他元件自定。電路不需調試即可工作。如靈敏度和抗干擾不夠,可檢查三極體的β值與電容C4的容量是否偏差太大。經實測,配合相應的發射機,遙控距離可達8m以上。在室內因牆壁反射,故沒有方向性。電路工作電壓3V,靜態電流小於 10mA。
⑵ 超聲波振動原理是什麼
一般人聽到的聲音頻率是20~20000Hz的聲波信號,高於20000Hz的聲波為超音波,聲波的傳遞依照正弦曲線縱向傳播,即一層強一層弱,依次傳遞,當弱的聲波信號作用於液體時,會對液體產生一定的負壓,使液體內形成許許多多微小的氣泡;而當強的聲波信號作用於液體時,則會對液體產生一定的正壓,因而,液體中形成的微小氣泡被壓碎。經研究證明:超音波作用於液體時,液體中每個氣泡的破裂會產生能力極大的沖擊波,相當於瞬間高達上1000個的大氣壓,這種現象被稱為「空化效應」。超音波清洗正是應用液體中氣泡破裂所產生的沖擊波來達到清洗和沖刷工件內外表面的作用。
當超音波發生器將50Hz的日常供電頻率改變為28KHz(或者更高)後,通過輸送電纜線將其輸送給粘結在盛放清洗液的清洗槽底部(或側面)的超音波換能器,由換能器將高頻的電能轉換成機械振動並發射至清洗液中,當高頻的機械振動傳播到液體里後,液體內即產生上述的「空化效應」,對物體所有表面的附著物產生物理性剝脫力,達到清洗的目的。
由於超音波頻率很高,在液體中產生的空化作用可以達到28000次/秒,幾乎可以說是在不斷的進行,在液體中所產生的空化作用所產生的氣泡數量眾多且無所不在,因此對於工件清洗可以非常徹底,即使是形狀復雜的工件內部,只要能夠接觸到溶液,就可以得到徹底的清洗,又因為每個氣泡的體積非常的微小,因此雖然它們破裂的能量很高,但對於工件和液體來說,不會產生機械性破壞和質地上的改變。
由於超音波的頻率高決定了效應很高,一般被清洗工件的清洗時間為數十秒至幾分鍾,既可達到理想的效果。超音波清洗是在傳統清洗原理的基礎上,採用清洗的高新技術手段,去除物件表面的附著物。對於那些不規則表面、多孔、狹縫、細孔、盲孔、多溝槽的物件,要求表面高質潔凈時,採用超音波清洗特別有效。
⑶ 超聲波發生器的分類
可分為頻率可調超聲波發生器、100W/300W超聲波發生器、小功率超聲波發生器、高頻超聲波發生器、大
功能超聲波發生器、數字顯示超聲波發生器。 新式,功率從0~3000瓦功率可調,頻率從20KHZ~40KHZ可調的超聲波發生器。
使用換能器不同,超聲波發生器都可共用。
結構合理,做到防潮、防沖擊、防燒管、操作簡單。從沒有使用過超聲波清洗機,對頻率功率不了解的人
,只要有點電工常識的人都一看就會。 隨著現代電子技術,特別是微處理器(uP)及信號處理器(DSP)的發展,超聲波發生器的功能越來越強大,但
不管如何變化,其核心功能應該是如下所述的內容,只是每部分在實現時技術不同而已。
超聲波發生器來產生一個特定頻率的信號,這個信號可以是正弦信號,也可以是脈沖信號,這個特定頻率就是超聲波換能器的頻率,一般在超聲波設備中使用到的超聲波頻率為25KHz、28KHz、35KHz、40KHz;100KHz
相信使用面會逐步擴大.比較完善的超聲波發生器還應有反饋環節,主要提供二個方面的反饋信號:
第一個是提供輸出功率信號,我們知道當超聲波發生器的供電電源(電壓)發生變化時.超聲波發生器的輸
出功率也會發生變化,這時反映在超聲波換能器上就是機械振動忽大忽小,導致清洗效果不穩定.因此需要穩定
輸出功率,通過功率反饋信號相應調整功率放大器,使得功率放大穩定。
第二個是提供頻率跟蹤信號.當超聲波換能器工作在諧振頻率點時其效率最高,工作最穩定,而超聲波換能
器的諧振頻率點會由於裝配原因和工作老化後改變,當然這種改變的頻率只是漂移,變化不是很大,頻率跟蹤信
號可以控制信號超聲波發生器,使信號超聲波發生器的頻率在一定范圍內跟蹤超聲波換能器的諧振頻率點.讓超
聲波發生器工作在最佳狀態。 超聲波內置發生器,一體式超聲波發生器。
一.性能簡小功率超聲波發生器介:控制箱採用微電腦控制下的它激式線路,頻率自動跟蹤及掃頻工作方式
等先進技術。與傳統控制箱相比,具有工作穩定可靠、超聲功率連續可調,能最大限度地發揮換能器的潛能。工
作頻率自動跟蹤,使輸出匹配更佳,功率更加強勁,效率更高。獨特的掃頻工作方式,使清洗液在掃頻的作用下
形成一股細小的迴流,及時把超聲剝離下來的污垢帶離工件表面,從而達到更快速、更徹底的清洗效果,超聲清
洗效率更高。同時,具有完善的保護功能:過熱保護和過流保護,工作更加可靠。
小功率超聲波發生器配合數碼功率調整可適應各種不同的清洗要求。
二.主要技術指標:工作電壓: 220V 10% 額定功率 100W 200W 300W 工作頻率:28 KHz 40KHZ 時間
控制: 0--59分59秒 功率控制范圍:0-100%
適用於:小功率超聲波清洗機,家用清洗機,內置發生器型超聲波機。 一.性能簡介:
控制箱採用 微電腦控制下的它激式線路,頻率自動跟蹤及掃頻工作方式等先進技術。與傳統控制箱相比,具
有工作穩定可靠、超聲功率連續可調,能最大限度地發揮換能器的潛能。工作頻率自動跟蹤,使輸出匹配更佳,
功率更加強勁,效率更高。獨特的掃頻工作方式,使清洗液在掃頻的作用下形成一股細小的迴流,及時把超聲剝
離下來的污垢帶離工件表面,從而達到更快速、更徹底的清洗效果,超聲清洗效率更高。同時,具有完善的保護
功能:過熱保護和過流保護,工作更加可靠。
工作電壓: 220V 10% 額定功率 600W 900W 1200W 1500W 1800W 2400W 2700W 工作電流 2.5A 3.5A
4.5A 5A 工作電流: 請注意,設備不能在長時間在大於額定電流的狀態下運行環境溫度: 0-40C° 相對濕度:
40%--90%
工作頻率:25KHZ 28KHz 40KHZ 35KHZ 68KHZ 120KHZ 時間控制: 0--59分59秒 功率控制范圍:0-100%
16級數控調節機內過熱保護:65 C° 外型尺寸: L x W x H =300 x 360 x 150 。 由超聲波發生器產生的高於28KHZ音頻電信號,通過換能器的壓電逆效應轉換成同頻率的機械振盪,並以超
音頻縱波的形式在清洗液中輻射。由於超音頻縱波傳播的正壓和負壓交替作用,產生無數超過1000個大氣壓的微
小氣泡並隨時爆破,形成對清洗物表面的細微局部高壓轟擊,使物體表面及縫隙之中的污垢迅速剝落,這就是超
聲波清洗所特有的「空化效應」。 推挽式D類功率放大器如圖1.35所示,輸入激勵信號使一管導通時另一管截止,導通截止時 間各占交流半周期。這種放大器有兩種組態,一種是電壓開關放大器圖1,35(a);另一種是電流開關放大器(圖1.35(b))。在電壓開關組態中,晶體管作為電壓開關工作,集電極電壓為方波,串聯調諧電路只讓基波電流通過。因此輸出電壓為集電極電壓的基波分量,集電極電流為半個正弦波。在電流開關組態中,晶體管起電流開關作用。扼流圈L、,維持恆定的直流饋電電流,集電極電流為方波,而集電極電壓為半個正弦波。
這里著重介紹電壓開關型放大器。在功率超聲中電壓型開關放大器用得較多,其原因:
一是從飽和損耗來看.電壓開關放大器通常比電流開關放大器小,因為電壓開關放大器中晶體管電流僅在180。飽和期間是大的,而在電流開關放大器中,整個導通角內保持峰值集電極電流;另外方波電流時的飽和電壓往往要大於正弦電流下的飽和電壓;
二是電流開關型的效率比電壓開關型放大器低。但電流開關放大器取得功率的能力要強些;
三是在電流開關電路中,當負載R突然斷開時所出現的瞬態效應,會使開關承受較高的浪涌電壓,因此降低了開關元件伏安容量的利用率。同時給設計者帶來一定的麻煩。
四是用相同開關元件,電流開關電路比電壓開關電路的選用電源電壓要低n倍,電源供出的電流大x倍。
五是負載失調時,通過電壓開關的電流變小,通過電流開關的電流變大。如果設計要求發生器能在一定的失調范圍內工作,則電流開關電路對晶體管伏安容量的利用率又要降低好多。
然而以上兩種開關放大器其基本形式的輸出特性都是恆壓源性質,同時在固定負載下,伏安容量利用率相等。用相同的開關元件可以得到相同的輸出功率。
電壓型開關放大器還可分成並聯型電壓開關放大器,如圖1-35(a)所示和串聯型電壓開關放大器,如圖1.36所示。
必須注意的是,無論開關如何連接,只要它們「開關出來的」是電壓源,即只要它們是用作 電壓開關的,那麼,它們的負載只能是一個串聯諧振電路。這是因為電容在這里不允許作為「開關出來的」方波電壓源的負載。否則,由於電容對高次諧波的短路作用.會給開關帶來危害。
串聯開關電路和並聯開關電路的原理是完全一樣的。因此設計也是類同的,僅有的區別在於電源電壓的選擇方面。如果開關元件所能承受的電流和電壓是一定的,那麼並聯接法比串聯接法所選 用的電源電壓應低一倍,而電源供出的電流應大一倍,舉例來說,如果用串聯開關選220V電壓消耗4A電流,那麼改用並聯開關時應選110V電壓消耗8A電流。 我們以串聯電壓開關型D類功率放大器為例,如圖1. 37所示,該圖與圖1.36實際是等效的,所不同的是圖1.36中的負載Rl可看作變壓器次級換能器在諧振時的純阻反映到變壓器初級的電阻。BG1與BG2為兩個參數基本相同的晶體管,LC串聯迴路對工作頻率fo諧振。
假如激勵信號是頻率為fo的正弦波,在正半周時,BG1飽和導通,BG2截止;負半周時BG1截止,BG2飽和導通。圖1.38為其電壓、電流波形。
當BG1飽和導通時,p點電壓為電源電壓vcc減去BG1的飽和壓降vcs。當BG2飽和導通時,p點電壓則為BG2的飽和壓降vcs,兩管參數基本相同,故vcs1=vcs2=vcs且Up為矩形波。
經過LC串聯諧振迴路選頻濾波後.在負載電阻Rl.上就可得到頻率為fo的正弦波電壓ul,完成其放大功能。
由於兩管輪流導通處於開關工作狀態,up為矩形波,故稱為電壓開關型,且輸出的最低諧波是三次,所以輸出波形較好。
根據周期性對稱方波諧波表示式:
式中Upm是方波振幅,ωo是基波角頻率,在D類開關電路中
當LC迴路諧振於fo時,在RL上的基波電壓幅度為
所以RL上的有效值電壓為
放大器的輸出功率:
又因
這里IA為基波電流的有效值,其峰值為
所以流過晶體管的直流分量ICO為
電源輸入功率為:
放大器的效率η為:
可見,當晶體管的飽和壓降vcS愈小,則放大器的效率愈高,若VCS→0則η→100%。以上是在 電感、電容、晶體管都不計損耗的理想情況下得到的結果,實際上是有損耗的。其損耗主要存在著兩類,在高頻運用時,其晶體管內部損耗更不容忽視的。
(1)閉態飽和損耗
由(1.101)式可知.晶體管飽和壓降愈大則效率越低。理論和實驗可以說明,隨著頻率的升高和功率加大,飽和壓降將迅速增大,為了減小飽和損耗,必須選用fT高的晶體管。一般來說,對小功率管(<10W),f≥0.1fT,對於大功率管(>10W) f ≥0.01fT時才需考慮飽和壓降的影響。
因為這時飽和壓降隨頻率急劇增大,在大功率時由於電流的增加飽和壓降也大大上升,因此D類放大器的效率在這些頻率和電流下將急劇下降。
(2)開關過程引起的過渡損耗。
過渡損耗是由過渡瞬變過程的時間來確定,它取決於晶體管電流或電壓的上升和下降時間及基極和集電極的電荷存儲效應。在晶體管電流或電壓上升和下降時間內,晶體管處於有源狀態,要消耗一定功率。此外接通延遲時間td(由晶體管基極電容和其他電路電容的充電時間決定)和晶體管開關從飽和進入有源狀態時,從基區和集電極抽出過量電荷的存儲時間ts也要增大過渡損耗。延遲時間td和存儲時間ts,不僅延長晶體管的開關過渡過程,而且要產生電流和電壓瞬變,會使晶體管由於二次擊穿或雪崩效應而損壞。
如果晶體管存儲時間大於接通延遲時間,兩個晶體管將同時處於閉態。大的瞬間集電極電流將通過低阻通路從集電極電源到地。不僅要降低放大器的效率,而且要使器件的可靠性降低,因為在高的集一射電壓下,過大的集電極電流要使器件由於二次擊穿而損壞。這種瞬態的集電極電流尖峰可以用附加基一射間的電容,增大器件接通延遲時間,限止兩個晶體管都處於「閉態」的時間間隔來減弱。
ib的負脈沖愈大,持續時間愈長,ts愈長,td主要取決於集電極電荷的存儲。隨著工作頻率的上升,晶體管的電荷存儲效應愈顯著,嚴重時可使兩管同時導通,出現危險的雪崩,使晶體管損壞。集電極電荷存儲時間是隨著集電極電流的增加而增大,集電極電流又隨基極電流增加而增大,基極電流又隨激勵信號的加大而增大。因此選擇開關特性好,ft高且功率滿足要求的晶體管,設計最佳激勵,對於提高D類功率放大器的效率是完全必要的。
迴路參數對p點電壓有相當影響程度,圖1.41為激勵信號對P點波 形的影響。
基極加速電容CP對p點波形的影響,CP使p點電壓 波形的上升沿更徒,波形有所改善,略有提高。LC串聯諧振迴路對p點電壓波形的影響是表演為電感上,它是放大器重要元件,要求Q值愈高愈好,若LC迴路調諧不準時,尤其迴路呈感性時,p點也會出現激勵過大那樣的波形,對影響頗大。
激勵信號對p點電壓波形的影響
a信號小,功率小
b信號過大,功率大,效率低
c信號適當,功率大,效率高 開關模式功率放大器除了上面講到的串聯,並聯式開關放大器外,還有橋式功率放大器,下面我們分析這種電路。
橋式功率放大器可分成半橋功率放大和全橋功率放大兩種形式。半橋式的原理圖如圖1.42所示
R1,R2為橋平衡電阻;C1、C2為橋臂電容,R3,R4,C3、C4為橋開關管吸收電路元件,其值可通過實驗調整。橋與負載兩者,通過變壓器B連接。
工作原理如下;當t1時刻,U1電平觸發BG1導通,i1通過BG1至變壓器初級1、2向電容C2充電,同時C1上的電荷向BG1和變壓器B1初級放電。從而在輸出變壓器B1次級感應一個正半周脈沖電壓;當在t2時刻.BG2,被觸發導通,i2通過電容c1,變壓器初級2,1向BG2充電,而C2的電荷也經由變壓器初級2,1向BG2放電。在變壓器次級感應一個負半周脈沖電壓,從而完成一個工作頻率的周期波形。
橋式開關功率放大器其設計原理同串聯電壓開關放大器,它主要適合在大功率的超聲源中。
輸出功率的調整
一般採用以下兩種方法
1 改變激勵信號導通角
一個電路應用的實例如圖所示
2 改變電源電壓
可以採用可控硅調整直流電源電壓或者採用開關控制切換電源變壓器繞組方式。
功率放大器的保護
⑷ 跪求一個超聲波霧化片的驅動電路的原理圖!輸入一個12v或24v直流電壓,通過什麼電路使1.7MHZ的霧化片工作
這是一個分離元件的超聲霧化器原理圖。包括三個主要部分:電源(AC-DC)部分、水位檢測與保護部分、超聲振盪與換能部分。
如果採用12V或者24V直流電源供電,第一個部分可以不用看。
水位檢測與保護部分的工作原理:
水位高於探針A和B時,AB之間呈現一定的電阻,BG3導通,BG2也導通,BG2射極輸出4V左右的電壓,經R3和L3送到BG1基極,為BG1提供並偏置,BG1及外圍元件構成的振盪電路工作。若水位低於探針A和B時,AB之間呈現很高的電阻,BG3截止,BG2也截止,BG1因無偏置而停振。從而防止換能器因缺水而損壞。如果不需要保護電路,只需要將R3接Vcc,並合理選擇其阻值。
振盪與換能部分工作原理:
電路中的振盪器是一種由高頻壓電陶瓷片TD(超聲換能器)組成的工作振盪器,其振盪頻率為1.65MHz(決定於選定的TD)。晶體三極體BG1和電容器C1、C2等構成電容三點式振盪器電路。
C1和電感L1等效並聯的諧振頻率比工作頻率低,其作用是決定工作振盪器的振盪幅度;C2 和電感L2等效串聯的諧振頻率比工作頻率高,其作用是決定工作振盪器的反饋量,以保證振盪器起振和維持電路的可靠振盪。壓電陶瓷片TD具有很大的等效電感,它除決定電路的工作頻率外,同時又是霧化器的工作負載。
若更換壓電陶瓷片TD,無需調整電路其他參數,其振盪器頻率也能自動跟蹤新的壓電陶瓷片的頻率而工作。
⑸ 超聲波發生器工作原理
超聲波
超聲波是指頻率為20千赫~50兆赫左右的電磁波,它是一種機械波,需要能量載體—介質—來進行傳播。超聲波在傳遞過程中存在著的正負壓強交變周期,在正相位時,對介質分子產生擠壓,增加介質原來的密度;負相位時,介質分子稀疏、離散,介質密度減小。也就是說,超聲波並不能使樣品內的分子產生極化,而是在溶劑和樣品之間產生聲波空化作用,導致溶液內氣泡的形成、增長和爆破壓縮,從而使固體樣品分散,增大樣品與萃取溶劑之間的接觸面積,提高目標物從固相轉移到液相的傳質速率。
超聲波是聲波大家族中的一員。
聲波是物體機械振動狀態(或能量)的傳播形式。所謂振動是指物質的質點在其平衡位置附近進行的往返運動。譬如,鼓面經敲擊後,它就上下振動,這種振動狀態通過空氣媒質向四面八方傳播,這便是聲波。
超聲波是指振動頻率大於20KHz以上的,其每秒的振動次數(頻率)甚高,超出了人耳聽覺的上限(20000Hz),人們將這種聽不見的聲波叫做超聲波。超聲和可聞聲本質上是一致的,它們的共同點都是一種機械振動,通常以縱波的方式在彈性介質內會傳播,是一種能量的傳播形式,其不同點是超聲頻率高,波長短,在一定距離內沿直線傳播具有良好的束射性和方向性,目前腹部超聲成象所用的頻率范圍在 2∽5MHz之間,常用為3∽3.5MHz(每秒振動1次為1Hz,1MHz=106Hz,即每秒振動100萬次,可聞波的頻率在16-20,000HZ 之間)。
⑹ 超聲波的應用原理
一、
超聲原理概述
超聲波清洗的原理是發生器產的高頻振盪電信號。通過換能器轉換成高頻的機械振動,傳播到清洗液中,對工件實施高效的清洗。
其工作機理是運用空化作用成倍或十幾售地提高清洗效果。當把液體放入清洗機內,施加超聲波後,由於超聲波在清洗液中是一種疏密相間,輻射傳播的高頻波,從而使液體高速往復振動。在振動的負壓區由於周圍的液體來不及補充,形成無數的微小真空氣泡,而在正壓區,微小氣泡在壓力下突然閉合,在閉合過程中由於液體間相互碰撞產生強大的沖擊波形成最高可達幾千個大氣壓的瞬時高壓,作用在被清洗的工件上。吸附在工件上的油膩、雜質在連續不斷的瞬時高壓作用下迅速脫離工件。從而達到清潔的目的。
超聲波的兩個主要參數
超聲波的兩個主要參數:
頻率:F≥20KHz;
功率密度:p=發射功率(W)/發射面積(cm2);通常p≥0.3w/cm2;
在液體中傳播的超聲波能對物體表面的污物進行清洗,其原理可用「空化」現象來解釋:超聲波振動在液體中傳播的音波壓強達到一個大氣壓時,其功率密度為0.35w/cm2,這時超聲波的音波壓強峰值就可達到真空或負壓,但實際上無負壓存在,因此在液體中產生一個很大的壓力,將液體分子拉裂成空洞一空化核。此空洞非常接近真空,它在超聲波壓強反向達到最大時破裂,由於破裂而產生的強烈沖擊將物體表面的污物撞擊下來。這種由無數細小的空化氣泡破裂而產生的沖擊波現象稱為「空化」現象。
太小的聲強無法產生空化效應。
超聲波清洗機由三個主要部分組成:
(1)裝載清洗液的不銹鋼清洗缸
(2)超聲波發生器
(3)超聲波換能器
超聲波清洗機具有清潔度高,機器噪音小、設備壽命長等優點。並能對幾何形狀比較復雜,例如有各種盲孔、微孔、深孔等用其他清洗方法難以清洗的零件進行高效清洗。由於具有以上獨特的性能,所以越來越被人們認識和接受。
二、
設備特點
當超聲波清洗機注滿水接通電源後,電路把50赫茲的交流電轉換成超聲波頻率的交流電、產生振盪,這種振盪的形成就是通過電感及換能器電容組成諧振電路,並將振盪信號通過反饋持繼不斷地進行下去。經晶體管進行放大後再送給串聯諧振電路。這個諧振頻率在機器出廠前精確地調整在換能器固有諧振頻率上,以發揮換能器最佳效果。
換能器是通過螺柱和強力粘合劑粘結在不銹鋼清洗槽底面上的,換能器將超聲波機械能通過槽底傳施給槽內液體,然後作用於液體中的被清洗工件,從而實現了超聲波清洗的功能。
大功率晶體管是工作在開關飽和工作狀態,所以其輸出波形為方形。
當方波進入諧振電路後,經電感和電容的濾波後,就成為正弦波,所以實際上作用在換能器上的電流波形,已成為正弦波。
超聲波清洗機的超聲波電源發生器有兩種,一種是自激電路,另一種是他激電路。自激電路結構簡單、實用、經濟性好;他激電路功率大,具有頻率跟蹤和限流,發熱等多種保護,兩種電路分別適合不同層次企業和更廣泛的客戶需要。
三、
使用方法
1.
將發生器與清洗槽連接電纜接好。
2.
將槽內注入選用的清洗液。
3.
將發生器接入220V±10%
50赫茲交流電源。
4.
打開發生器電源開關,電源指示燈亮(此時槽內液體開始振動空化)。
四、
注意事項
1.
為了延長使用壽命,建議將設備放在通風、乾燥的區域,發生器後側的風扇孔應定期清潔。發生器四面留有通風口,以使氣流暢通無阻。
2.
(1)清洗槽必須放入液體後才能開機工作,最低水位高度>100mm(底振式)且水平放置,換能器在側面時,為清洗槽槽沿100mm處,如在空氣狀態開機會損壞機器。
(2)當清洗缸體溫度為常溫時,切勿將高溫液體直接注入缸內,以免導致換能器松動而影響機器正常使用
。
(3)當清洗液因污染而需要更換時,切勿將低溫液體直接注入高溫缸體內,這同樣可導致換能器脫落,同時應當關閉加熱器開關,以免加熱器因槽內無液體而損壞。
(4)定期檢查換能器,切勿使其變潮及撞擊,以免造成不必要的損失。
3.
使用完畢後,應關閉總電源。
4.
關機後不要立刻重新開機,間隙時間應在1分鍾以上。
⑺ 關於三極體,超聲波功率管
[sān jí guǎn]
三極體 編輯
三極體,全稱應為半導體三極體,也稱雙極型晶體管、晶體三極體,是一種控制電流的半導體器件其作用是把微弱信號放大成幅度值較大的電信號, 也用作無觸點開關。晶體三極體,是半導體基本元器件之一,具有電流放大作用,是電子電路的核心元件。三極體是在一塊半導體基片上製作兩個相距很近的PN結,兩個PN結把整塊半導體分成三部分,中間部分是基區,兩側部分是發射區和集電區,排列方式有PNP和NPN兩種。