1. 超聲波指紋識別是什麼
問題一:超聲波指紋識別什麼意思? 也就是利用超聲波的透射、反射的特性 讓指紋解鎖更准確 即使手上有水也能輕松識別
問題二:超聲波指紋識別是什麼意思? 用超聲的方法來做指紋識別吧,很多年前有聽說過,不過好像很困難。
問題三:超聲波指紋識別和普通的指紋識別什麼不同 10分 光學指紋容易破解 電容指紋不容易 超聲波最難 最好的好還是虹膜解鎖
問題四:超聲波指紋識別技術是個什麼鬼 9月27日下午,小米秋季新品發布會正式召開。本次發布會的最大亮點莫過於萬眾期待的旗艦手機――小米5s發布,該機除了使用頂尖的配置,還加入了超聲波指紋識別、超感光相機等黑科技,售價方面是1999元起。同場發布的還有2299元起的小米5s Plus。
從設計上來看,小米5s看上去就像是一台經過了金屬拉絲的iPhone 6s。小米5s提供四種配色,提供玫瑰金、金色、銀色、深灰色四種配色,正面使用2.5d弧面玻璃,背面均使用金屬機身打造。雷軍特別提到和小米5最大的不同是,小米5s又重新回歸了金屬機身是因為陶瓷機身工藝難度太大。
先看看配置總覽,小米5s配備了5.15英寸1080p屏幕,內核搭載高通驍龍821處理器,3GB/4GB內存,存儲空間有64GB、128GB版本;提供1200萬後置攝像頭,400萬前置攝像頭,電池容量為3200mAh(支持快充),具備Type-C介面、雙卡雙待,新一代UFS2.0高速快閃記憶體,支持4G+,全功能NFC等功能。
除了這些常規配置,雷軍這次為小米5s著重介紹了兩項新的黑科技
首先是無孔式超聲波指紋識別。這種指紋技術無需在前面板玻璃上開孔,採用完整的一體化無縫式面板。通過超聲波掃描,識別指紋獨特3D特徵,特有10000個微震感測器探測。因此用戶在使用時,直接按在玻璃即可進行識別。而為了讓用戶找到指紋識別的位置,小米5s還是做了一個類似home鍵的凹槽。
第二項是拍照方面的超感光相機。雷軍解釋了因為相機感光元件面積越大,成像質量越好。小米5s採用1/2.3英寸的感光元件,尺寸堪比卡片相機。感測器是索尼IMX378,單像素進光量比iPhone 6s Plus 大61%。因為進光量的提升,即使在逆光和暗光下,表現依然出色。
售價方面,雷軍笑說小米維持了優良傳統,3GB+64GB版本1999元,4GB+128GB版本2299元。另外,同場還有5.7英寸1080p屏幕的小米5s Plus亮相。配置方面,同樣搭載高通驍龍821處理器,電池提升為3800mAh(支持快充)。而攝像頭更升級到雙1300萬像素攝像頭,兩個鏡頭可以單獨使用,也可以同時工作。
用的黑白感測器,拍出更高品質的黑白照片。特別注意的是,指紋識別還是後置,並沒有採用最新的超聲波指紋。4GB+64GB版本售價2299元,6GB+128GB版本售價2599元。
兩款產品會在9月29日在小米官網、線下的小米之家都會同步發售。另外小米還和京東合作,過去一個月的小米新品,都會在29日
問題五:超聲波指紋識別的有哪些? 用超聲的方法來做指紋識別吧,很多年前有聽說過,不過好像很困難。
問題六:超聲波指紋識別感測器是什麼原理 超聲波指紋採集,其原理是利用超聲波具有穿透材料的能力,且隨材料的不同產生大小不同的回波(超聲波到達不同材質表面時,被吸收、穿透與反射的程度不同)。因此,利用皮膚與空氣對於聲波阻抗的差異,就可以區分指紋嵴與峪所在的位置。
超聲波是一種頻率高於20000赫茲的聲波,它的方向性好,穿透能力強,易於獲得較集中的聲能,在水中傳播距離遠,可用於測距、測速、清洗、焊接、碎石、殺菌消毒等。
向某一方向發射超聲波,檢測聲波從發射到反射回來的時間,可以計算出發射點距反射點的距離。對物體進行多點掃描,可由多點匯集出物體的表面形狀。依據這一原理採集指紋信息的感測器,即超聲波指紋感測器
指紋,是人體的基本特徵之一。是表皮上突起的紋線,凸起的部分叫紋峭,凹的部分紋峪。指紋有三種基本形狀:螺旋形,環形,弓形;總體特徵的區域特徵模式有:核心點,三角點,式樣線;指紋的局部特徵(指指紋上的節點):終結點,分叉點,孤立點,中心點等。
指紋識別,即指通過比較不同指紋的細節特徵點來進行鑒別。指紋識別技術涉及圖像處理、模式識別、計算機視覺、數學形態學、小波分析等眾多學科。由於每個人的指紋不同,就是同一人的十指之間,指紋也有明顯區別,因此指紋可用於身份鑒定。由於每次捺印的方位不完全一樣,著力點不同會帶來不同程度的變形,又存在大量模糊指紋,如何正確提取特徵和實現正確匹配,是指紋識別技術的關鍵。
傳統的指紋識別,是對指紋與物體接觸的表面進行分析,按手印,光學掃描等得到的是二維(2D)指紋圖像。而超聲波掃描可以對指紋進行更深入的分析采樣,甚至能滲透到皮膚表面之下識別出指紋獨特的3D特徵。
由於超聲波具有一定穿透性,所以在手指有少量污垢或潮濕的情況下仍能工作,可以穿透玻璃、鋁、不銹鋼、藍寶石、塑料等設備進行識別。因此可以將感測器裝在設備內部和設備融為一體,而不必將指紋識別單元單獨做成一個外露的表面部件。
問題七:手機指紋識別和超聲波指紋識別的區別 指紋識別,應該所是有用光電,也有用超聲。
問題八:超聲波指紋識別的優勢 超聲波指紋技術與基於電容式觸摸屏的指紋技術相比具有諸多獨特優勢,包括能夠穿透由玻璃、鋁、不銹鋼、藍寶石或塑料製成的智能手機外殼進行掃描。這種獨一無二的優勢為Qualm Technologies的OEM客戶設計新一代優雅、創新和差異化的終端提供了靈活性。此外,用戶體驗的提升體現在掃描能夠不受手指上可能存在的污物影響,例如汗水、護手霜或凝露等,從而提供一種更穩定、更精確的認證方法。此外,QTI基於超聲波的解決方案利用聲波直接穿過皮膚表層,識別出當前基於電容式觸摸屏的指紋技術無法識別出的三維細節和獨特指紋特徵,包括指紋脊線和汗毛孔等。這樣能夠產生細節豐富,難於仿製的指紋表面圖。
問題九:超聲波指紋識別感測器是什麼原理 超聲波指紋識別技術(亦稱超聲波Sense ID)
其原理是利用超聲波具有穿透材料的能力,且隨材料的不同產生大小不同的回波(超聲波到達不同材質表面時,被吸收、穿透與反射的程度不同)。因此,利用皮膚與空氣對於聲波阻抗的差異,就可以區分指紋嵴與峪所在的位置。 超聲波技術所使用的超聲波頻率為1 x 104Hz-1?09Hz,能量被控制在對人體無損的程度(與醫學診斷的強度相同)。
超聲波指紋識別的優勢在於可以識別指紋的3D紋路,採集更精細的指紋數據,而電容式的識別是2D圖像。另外一點優勢是可以置於塑料、金屬、玻璃等多種材料之下,不對機身外觀造成影響,減少開孔,不受汗水、油污的影響。
常規指紋識別的原理是電容式信號感測,核心是電信號。手指(人體)的微電場與電容感測器之間形成微電流,指紋嵴與峪(波峰與波谷)間會有高低電容差,這也是描繪指紋圖像的基礎。但是由於人體自帶的電流很小,指紋識別晶元檢測到的信號偏弱,也就需要增強電流信號。iPhone以及多數Android手機的指紋識別模組的四周的金屬圓環就起到增強電流的作用,同時也用來檢測是否有放置手指,然後指紋識別檢測電容陣列通電(長期通電的話,電容元器件會有損耗)。
問題十:超聲波指紋識別和3d touch功能有什麼用 對於 3D Touch 功能而言,當然自家的應用肯定都是率先支持這個功能的。只要用力按下屏幕上應用圖標,就可以看到額外的功能選項,就好比在電腦上右鍵的選項功能。
值得注意的是,在剛拿到6S手機時,對於平時習慣了輕點屏幕,所以對於壓力感應可能需要一點時間去適應它。如果在按了屏幕上的圖標以後,沒有彈出功能選項的話,說明按壓的力度不夠。
當然對於6S 上的 3D Touch 在系統中是有設置選項的,可以先打開手機上的【設置】應用。接下來在設置列表裡,請點擊【通用】一欄,在通用列表中,找到【輔助功能】一欄,點擊進入。接著在輔助功能中,點擊 3D Touch 一欄選項,便可以看到它的設置界面了。在這里可看到有一個 3D Touch 靈敏度的設置選項,分別有弱、中和強三個檔次。
此時可以通過按壓下方的提供的圖片,來找到適合自己的按壓力度。每個人對輕重按壓的程度都不一樣,在這里可以調整它的靈敏度。
當然 3D Touch 除了可以用在主屏上的圖標以外,還可以用在應用內,比如郵件中也可以通過按壓來打開郵件預覽等。另外對於當前有一些第三方軟體也更新了版本,用於支持 6S 中的 3D Touch 功能。如下圖所中的微信就可以支持 3D Touch 功能,當然日後還會有越來越多的第三方應用軟體會支持 3D Touch 功能。
2. 如何測超聲波的共振頻率
用接收頭把機械能轉變成電能,然後用頻率計采樣,或者直接接到示波器,就能看到頻率。
3. 超聲波用於哪兒
1.超聲波簡介
聲波是一種機械波。聲的發生是由於發聲體的機械振動,引起周圍彈性介質中質點的振動由近及遠的傳播,這就是聲波。人耳所能聽聞的聲波其頻率在20~20000Hz之間,頻率在20~20000Hz以外的聲波不能引起聲音的感覺。頻率超過20000Hz的叫做超聲波,頻率低於20Hz的叫做次聲波。超聲波的頻率可以高達911Hz,而次聲波的頻率可以低達9-8Hz。
2.超聲波感測器
一般超聲波感測器運用壓電效應原理。
(1)發生器:壓電式超聲波發生器是利用壓電晶體的電致伸縮現象製成的。常用的壓電材料為石英晶體、壓電陶瓷鋯鈦酸鉛等。在壓電材料切片上施加交變電壓,使它產生電致伸縮振動,而產生超聲波。
(1)接收器: 當超聲波作用到壓電晶體片上時,使晶片伸縮,則在晶片的兩個界面上產生交變電荷。這種電荷先被轉換成電壓,經過放大後送到測量電路,最後記錄或顯示出結果。它的結構和超聲波發生器基本相同,有時就用同一個超聲波發生器兼做超聲波接收器。
3.應用於彈性模量測量
在各向同性的固體材料中,根據應力和應變滿足的虎克定律,可以求得超聲波傳播的特徵方程。(當介質中質點振動方向與超聲波的傳播方向一致時,稱為縱波;當介質中質點振動方向與超聲波的傳播方向垂直時,稱為橫波。在氣體介質中,聲波只是縱波。在固體介質內部,超聲波可以按縱波或橫波兩種波型傳播。)
對於同一種材料,其縱波波速和橫波波速的大小一般不同,但它們都由彈性介質的密度、楊氏模量和泊松比等彈性參數決定。相反,利用超聲波速度可以測量材料有關的彈性常數。(固體在外力作用下,其長度沿力的方向產生變形,變形時的應力與應變之比就定義為楊氏模量,一般用E表示。 固體在應力作用下,沿縱向有一正應變(伸長),沿橫向就將有一個負應變(縮短),橫向應變與縱向應變之比被定義為泊松比。)
4.超聲波探傷
對高頻超聲波,由於它的波長短,不易產生繞射,碰到雜質或分界面就會有明顯的反射,而且方向性好,能成為射線而定向傳播;在液體、固體中衰減小,穿透本領大。這些特性使得超聲波成為無損探傷方面的重要工具。
(1)穿透法探傷 穿透法探傷是根據超聲波穿透工件後的能量變化狀況,來判別工件內部質量的方法。穿透法用兩個探頭,置於工件相對面,一個發射超聲波,一個接收超聲波。發射波可以是連續波,也可以是脈沖。在探測中,當工件內無缺陷時,接收能量大,儀表指示值大;當工件內有缺陷時,因部分能量被反射,接收能量小,儀表指示值小。根據這個變化,就可以把工件內部缺陷檢測出來。
(2) 反射法探傷 反射法探傷是以超聲波在工件中反射情況的不同,來探測缺陷的方法。以一次底波為依據進行探傷的方法。高頻脈沖發生器產生的脈沖(發射波)加在探頭上,激勵壓電晶體振盪,使之產生超聲波。超聲波以一定的速度向工件內部傳播。一部分超聲波遇到缺陷F時反射回來;另一部分超聲波繼續傳至工件底面,也反射回來。由缺陷及底面反射回來的超聲波被探頭接收時,又變為電脈沖。 通過分析計算得到損傷情況。
5.超聲波測液位
超聲波測液位是利用回聲原理進行工作的,當超聲波探頭向液面發射短促的超聲脈沖,探頭接收到從液面反射回來的迴音脈沖。只要知道超聲波的速度,通過精確測量時間的方法,就可以測量出距離。
超聲波速度在各種不同的液體中是不同的;即使在同一種液體中,由於溫度和壓力的不同,其值也是不同的。因為液體中有其他成分的存在及溫度的不均勻都會使超聲波速度發生變化,引起測量的誤差,故在精密測量時,要考慮採取補償措施。利用這種方法也可以測量料位。
6.超聲波測厚度
在超聲波測厚技術中,應用較為廣泛的是脈沖回波法。
脈沖回波法測量工件厚度原理,主要是測量超聲波脈沖通過工件所需的時間間隔,然後根據超聲波脈沖在工件中傳播的速度求出工件的厚度。超聲波發生器產生的超聲脈沖進入工件後,被底面反射回來,並由一個超聲波發生器接收。測出發射脈沖和接受脈沖的時間間隔,已知波速的情況下可以算出試件的厚度。
超聲波檢測技術在混凝土結構檢測中的應用
前 言
超聲法測強採用單一聲速參數推定混凝土強度。當影響因素控制不嚴時,精度不如多因素綜合法,但在某些無法測量回彈值及其他參數的結構或構件(如基樁、鋼管混凝土等)中,超聲法仍有其特殊的適應性。
1 超聲波檢測技術分析
聲波的指向性比較好,其頻率越高,指向性越好。超聲波傳播能量大,對各種材料的穿透力較強。超聲波的聲速、衰減、阻抗和散射等特性,為超聲波的應用提供了豐富的信息。 超聲檢測具有適應性強、檢測靈敏度高、對人體無害、設備輕巧、成本低廉,可即時得到探傷結果,適合在實驗室及野外等各種環境下工作,並能對正在運行的裝置和設備實行在線檢查。超聲法檢測過程無損於材料、結構的組織和使用性能;直接在構築物上測試驗並推定其實際的強度;重復或復核檢測方便,重復性良好[1];超聲法具有檢測混凝土質地均勻性的功能,有利於測強測缺的結合,保證檢測混凝土強度建立在無缺陷、均勻的基礎上合理地評定混凝土的強度。
應用超聲來進行無損檢測也有其相應的缺點[2]。對於平面狀的缺陷,例如裂紋,只要波束與裂紋平面垂直,就可以獲得很高的缺陷回波信號。但是對於球面狀的缺陷,例如空洞,假如空洞不是很大或分布不是較密集的話,就難以得到足夠的回波信號或是其時間變化不明顯;另外,對於各向非同性的材料,例如混凝土,相應會存在材料的離析,使得材料密度不均勻,這使得人們把離析誤判為是內部的空洞而導致決策上的失誤;對於表面缺陷的檢測,超聲波法的靈敏度要低得多,但超聲無損檢測方法可以較為精確的確定混凝土表面的裂縫深度。
2 測量參數
混凝土超聲檢測目前主要是採用所謂「穿透法」,即用發射換能器重復發射超聲脈沖波,讓超聲波在所檢測的混凝土中傳播,然後由接收換能器接收。被接收到的超聲波轉化為電信號後再經超聲儀放大顯示在示波屏上,用超聲儀測量直接收到的超聲信號的聲學參數。當超聲波經混凝土中傳播後,它將攜帶有關混凝土材料性能、內部結構及其組成的信息。准確測定這些聲學參數的大小及變化,可以推斷混凝土的性能內部結構及其組成情況。
2.1聲速
聲速即超聲波在混凝土中傳播的速度。它是混凝土超聲檢測中一個主要參數。混凝土的聲速與混凝土的彈性性質有關,也與混凝土內部結構(孔隙、材料組成)有關。不同組成的混凝土,其聲速各不相同。一般說來,彈性模量越高,內部越是緻密,其聲速也越高。而混凝土的強度也與它的彈性模量、它的孔隙率(密實性)有密切關系。因此,對於同種材料與配合比的混凝土,強度越高,其聲速也越高。若混凝土內部有缺陷(孔洞、蜂窩體),則該處混凝土的聲速將比正常部位低。當超聲波穿過裂縫而傳播時,所測得的聲速也將比無裂縫處聲速有所降低。總之,混凝土聲速值能反映混凝土的性能及其內部情況。
2.2振幅
接收波振幅通常指首波,即第一個波前半周的幅值,接收波的振幅與接收換能器處被測介質超聲聲壓成正比,所以接收波振幅值反映了接收到的聲波的強弱。在發射出的超聲波強度一定的情況下,振幅值的大小反映了超聲波在混凝土中衰弱的情況。而超聲波的衰減情況又反映了混凝土粘塑性能。混凝土是彈粘塑性體,其強度不僅和彈性性能有關,也和其粘塑性能有關,因此,衰減大小,即振幅高低也能在一定程度反映混凝土的強度。對於內部有缺陷或裂縫的混凝土,由於缺陷、裂縫使超聲波反向或繞射,振幅也將明顯減小,因此,振幅值也是判斷缺陷與裂縫的重要指標。由於振幅值的大小還取決於儀器設備性能、所處的狀態,耦合狀況以及測距的大小,所以很難有統一的度量標准,目前只是作為同條件(同一儀器、同一狀態、同一測距)下相對比較用[3]。
2.3頻率
如前所述,在超聲檢測中,由電脈沖激發出的聲脈沖信號是復頻超聲脈沖波。它包含了一系列不同頻率成分的餘弦波分量。這種含有各種頻率成分的超聲波在傳播過程中,高頻成分首先衰減(被吸收、散射)。因此,可以把混凝土看作是一種類似高頻濾器的介質。超聲波愈往前傳播,其所包含的高頻分量愈少,則主頻率也逐漸下降。這已為不同測距的試驗及頻譜分析結果充分證實。主頻率下降的多少除與傳播距離有關外,主要取決於混凝土本身的性質(質量、強度)和內部是否存在缺陷、裂縫等。因此,測量超聲波通過混凝土後頻率的變化可以判斷混凝土質量和內部缺陷、裂縫等情況。
要准確細致地測量和分析接收波各頻率成分變化,須採用頻譜分析的途徑,這需要對波形采樣後送入計算機,進行快速傅利葉變換(FFT),獲得頻譜圖。目前的數字式超聲儀具有這一功能。下面將提出用超聲儀直接測量接收波主頻率的簡易有效的方法。
和振幅一樣,接收波主頻率的絕對值大小不僅取決於被測混凝土的性質的內部情況,也和所用儀器設備、傳播距離有關,目前也只能用同於同條件下的相對比較用。
2.4波形
這里指的波形第指在顯示屏上顯示的接收波波形。當超聲波在傳播過程中碰到混凝土內部缺陷、裂縫或異物時,由於超聲波的繞射、反射和傳播路徑的復雜化,直達波、反射波、繞射波等各類波相繼到達接收換能器,它們的頻率和相位各不相同。這些波的疊加有時會使波形畸變。因此,對接收波波形的分析、研究有助於對混凝土內部質量及缺陷的判斷。鑒於波形的變化受各種因素的影響,目前對波形的研究只能作一般的觀察,記錄。
這里還要說明的是,通常所用的縱波換能器所發射的超聲脈沖波不僅有縱波成分也有橫波成分,即便是較純的縱波,在通過混凝土內各聲學界面後也有部分轉化為橫波。因此,接收到的一串波形中,既有縱波也有橫波。若鄰近表面測量時,還有表面波。但是由於橫波與表面波傳播速度較縱波慢,所以在首波之後一定時刻才出現並和縱波的後續波疊加在一起。如果波形分析與研究也包括了這一部分,那麼情況將更為復雜,所以,通常的波形分析與研究大多集中於波前部的縱波,而且最好是不受邊界影響的直達縱波。
3 超聲檢測混凝土強度的主要影響因素
超聲法檢測混凝土強度,主要是通過測量在測距內超聲傳播的平均聲速來推定混凝土的強度。可見,「測強」精度 高低與超聲聲速讀取值的准確與否是密切相關的,換句話說,正確運用超聲聲速推定混凝土強度和評價混凝土質量, 從事檢測工作的技術人員必須熟悉影響聲速測量的因素,在檢測中自覺地排除這些影響。
3.1橫向尺寸效應
關於試件橫向尺寸的影響,在測量聲速時必須注意。通常,縱波速度是指在無限大介質中測得,隨著試件橫向尺寸減小,縱波速度可能向桿、板的聲速或表面波速度轉變,即聲速比無限大介質中縱波聲速為小。
當橫向最小尺寸d≥2λ(λ為波長)時,傳播速度與大塊體中縱波速度值相當。
當λ<d<2λ時,可使傳播速度降低2.5%~3%
當0.2<λd<λ時,傳播速度變化較大,約降低6%~7%,在這個區間里測量時,估計強度的誤差可能達30%~40%,這是不允許的。
3.2溫度和濕度的影響
混凝土處於環境溫度為5℃~30℃情況下,因溫度升高引起的速度減小值不大;當環境在40℃~60℃范圍內,脈沖速度值約降低5%,這可能是由於混凝土內部的微裂縫增多所致。
溫度在0℃以下時,由於混凝土中的自由水結冰,使脈沖速度增加(自由水的V=1.45㎞/s,冰的 V=3.50km/s)。
混凝土的抗壓強度隨其含水率的增加而降低,而超聲波傳播速度v隨孔隙被水填滿面逐漸增高。飽水混凝土的含水率增高4%,傳播速度V相應增大6%。速度的變化特性取決於混凝土的結構,隨著混凝土孔隙率的增大,干混凝土中超聲波傳播速度的差異也增大。水中養護的混凝土具有較高的水化度並形成大量的水化產物,超聲波傳播速度對此產物的反映大於空氣中硬化的混凝土;水中養護的混凝土,水分滲透並填充了混凝土的孔隙,由於超聲在水裡傳播速度為1.45km/s,在空氣中僅0.34km/s,因此,水中養護的混凝土具有比在空氣中養護的混凝土大得多的超聲波傳播速度,甚至掩蓋了隨著混凝土強度增長而提高的聲速的影響。
3.3構混凝土中鋼筋的影響
鋼筋中超聲傳播速度比普通混凝土的高1.2~1.9倍。因此測量鋼筋混凝土的聲速,在超聲波通過的路徑上存在鋼筋,測讀的「聲時」可能是部分或全部通過鋼筋的傳播「聲時」,使混凝土聲速計算偏高,這在推算混凝土的實際強度時可能出現較大的偏差。
鋼筋的影響分兩種情況:一是鋼筋配置的軸向垂直於超聲傳播方向;二是鋼筋軸向平等於超聲傳播的方向。對第一種情況央一般配筋的鋼筋混凝土構件中,鋼筋斷面所佔整個聲通路徑的比例較小,所以影響較小(對於高標號混凝土影響更小)。鋼筋軸向平行超聲傳播的方向,在作超聲「聲時」測量時,可能影響較大,應設法加以避免或修正。
3.4粗骨料品種、粒徑和含量的影響
表1:粗骨料與回歸方程
粗集料種類 回歸方程 Sr %
卵石 R=2.671×10-5V10.827 1.8
碎石 R=4.039×10-2V8.033 26.1
表2:細骨料與回歸方程
細集料種類 回歸方程 Sr %
中砂 R=1.422×10-5V11.1093 24.0
特細砂 R=1.022×10-5V11.838 16.7
每立方米混凝土中骨料用量的變化、顆粒組成的改變對混凝土強度的影響要比水灰比、水泥用量及標號的影響小得多,但是,粗骨料的數量、品種及顆粒組成對超聲波傳播速度的影響卻十分顯著,甚至稍微增加一些碎石的用量或採用較高彈性模量的骨料,敏感性最強的是超聲脈沖的聲速。比較水泥石、砂漿和混凝土三種試體的超聲檢測,在強度值相同的情況下,混凝土的超聲脈沖聲速最高,砂漿次之,水泥石最低。差異的原因主要是超聲脈沖在骨料中傳播的速度比混凝土中傳播速度快。聲通路上粗骨料多,聲速則高;反之,通路上粗骨料少,聲速則低。
4 超聲波在混凝土結構無損檢測中的應用
房屋和橋梁等建築物的質量無論是對人民的生命財產,還是對國民經濟來說,都是十分重要的。對建築物的所有要求中,安全性是第一位的。近年來,一系列災難性的橋梁倒塌事故主要也是由於在設計施工中出了問題,加上對成橋的維修保養不力,出現了諸如混凝土內部空洞、離析,鋼筋銹蝕,預應力鋼筋失效,梁體受力部位開裂等病害,無損檢測是防止這類惡性事件發生的重要手段。另一方面,對現有舊建築物的維修和保養要耗費大量資金。無損檢測技術的應用可使維修保養大大減少盲目性,從而可大大節約這項開支。土木工程無損檢測技術有助於評估新舊建築物的穩定性和整體性,能夠對新舊建築物整體或部分作質量狀態監視,能夠用來估計建築材料和結構的性質和性能[4]。
4.1 超聲波對混凝土裂縫深度的檢測
由於施工不慎混凝土未搗實、施工中因溫度變形和乾燥收縮、早期施工過載以及混凝土承載後產生的受力損傷等都會形成裂縫,利用超聲儀可以檢測出上述裂縫的開展深度及以後的開展情況,其所用的方法主要包括雙面檢測法和單面檢測法。
4.1.1 雙面檢測法
雙面檢測法是當構件截面不大,而構件的兩個側面都能安放探頭(發射探頭、接收探頭)時,直接探測裂縫的一種方法。如圖1所示,探頭分別置於1、2、3
4、5、6各對跨縫點。當發射、接收探頭在構件兩側面相對位置移動時,測出不同位置的聲波傳播時間,量得聲路的長度(各測點到裂縫截面邊緣的水平距離),從b-t關系曲線的突然轉折處,即時間從變化轉為平穩的過渡點,就是所要測的裂縫深度A。然而在通常的工程結構中很少有滿足上述條件的,因而此種方法雖簡單,但具體操作時卻不一定可行。
圖1:雙面檢測示意圖
4.1.2 單面檢測法
單面檢測法是當構件的截面很大或只有開裂的一個表面能夠安放探頭時沿面檢測裂縫的一種方法。公路橋樑上的主梁裂縫由於條件的限制,其探測基本上也以單面法為多。對於單面檢測法,最常用的方法要算tc—to法和BS4408標准方法,另外的方法還包括表面波的傳播聲時測量裂縫深度、利用超聲波首波相位變化的方法檢測裂縫深度、沖擊回波法檢測裂縫深度等,這里主要介紹一下tc—to法。如圖2所示,首先在裂縫附近完好的表面,選擇一定的長度工作為校準距離,設這段距離為2a,在這段距離的兩端安放探頭,測出聲波通過2a的時間為tc,再將發射與接收探頭安放在裂縫兩側,並使兩個探頭至裂縫的距離都為a,測得通過裂縫處聲波的傳播時間:tc,如果裂縫與表面正交,以聲波通過前後兩處混凝土所傳播的速度相等為條件,很容易推導出混凝土裂縫深度的計算公式:
d = a[(tc/to)2–1 ]0.5
圖2:單面檢測示意圖
在《超聲法檢測混凝土缺陷技術規程》(CECS21:2000)中對上述的tc—to法加以了改進,即在不跨縫進行聲時測量時,將T和R換能器置於裂縫附近同一側,使其內邊距分別等於50mm、100mm、150mm、200mm、250mm、300mm共6個點,讀取這時的聲時值(to)i,由此可以畫出相應的時-距坐標圖。然後在跨縫進行聲時測量時,取同樣距離的6個點,相應讀出這時的聲時值(t)i,再根據相應的公式求出每個測點所對應的裂縫深度值,最後取其平均值,這樣做主要是因為探頭聲源並不是在探頭中心點位置,通過上述方法可以求出聲源的確切位置。
需要指出的是,如果各測距小於dk和大於3dM應剔除出該組數據,然後取餘下數的平均值,作為該裂縫的深度值dc;另外一點值得注意的是,檢測時裂縫內不得留有水或是其它的異物,這主要是因為在其它材料堵塞裂縫的情況下,聲波就不會從裂縫底端繞過,從而導致所計算出的裂縫深度與實際不符。同時,混凝土表面要有一定的光潔度,以保證聲時讀數的穩定性,這方面也應該重視。此外,對應不同的裂縫其測試方法也應有所不同,在裂縫深度和探頭跨縫寬度相差不多的情況下,計算得到的結果與實際會吻合的更好一些,對於過淺或是過深裂縫,應該對此種方法加以靈活的改進,比如跨縫斜測、跨縫不對稱測量等等。
4.2 超聲波對混凝土的不密實區及其空洞的檢測
超聲波檢測混凝土內部不密實區及其空洞的原理就是當發射探頭發射的超聲波遇到空洞時,聲波就產生反射使一部分能量衰減,另一部分將繞過空洞沿著孔壁傳播,並最終將被安放在另一頭的接收探頭所接收,從而從超聲儀上讀出的時間與同類材料相同距離下的正常溫凝土會有所差別。通過各測點時間讀數的變化情況以及超聲振幅、波形的變化,就可以推測混凝土內部空洞的大致尺寸,通常以該空洞的最大內徑來表示。這里要注意的一點就是首先要用其它方法判斷該混凝土內部是空洞還是缺陷,然後再進行下一步操作。在具體對混凝土空洞檢測過程中需要布置大量的測點,如果該混凝土結構材料有兩對平行測試面,用對測法即可;如果只有一對互相平行的測試面,應在對測的基礎上還要進行交叉斜測,同時對可疑數據點區段內應加密測點。
目前在我國橋梁基樁的低應變檢測中也相應列人了超聲波無損檢測技術,在灌注樁澆築前預先在其兩側預埋聲測管,根據樁的直徑埋置兩到三個聲測管,管的直徑比探頭略大,其下端封閉,測試時在管內注滿清水,使兩探頭水平相對放置,通過探頭在樁身的上下移動讀出各測點的聲時值,從而確定出缺陷異常點的位置和范圍。另外,超聲波無損檢測技術也可以用來檢測鋼管混凝土中鋼管內部的混凝土注漿密實度,以供施工單位及時採取相應的補救措施,將損失減小到最低.
5.結語
用超聲法來評定混凝土結構的缺陷,是一種行之有效的方法,但在有些方面還需要進一步完善和發展,比如檢測方法還需要一定的改進、數據採集精度有待提高、儀器所檢測的聲學參數也應多樣化。可以說用超聲法對混凝土材料進行無損評定是一種非常有潛力的檢測手段,有著廣闊的發展全間,它需要許多的科學工作者去不斷的加以完善和創新,以更好的服務於工程事業。
4. 超聲波成孔檢測儀采樣長度
超聲波成孔采樣長度是選取值,對應的是測量范圍。
不銹鋼超聲波成孔成槽質量檢測儀
5. 單片機問題,我要采樣出一列超聲波(假設200000hz)的包絡線,AD轉換晶元用微秒級的可以嗎
上dsp或fpga吧,像51這種搞不了的,采樣是200khz,需要1m左右的采樣速率,然後濾波其實可以達到2m效果會更好
6. 做B超前塗的那層黏黏的、涼涼的液體是什麼做完要馬上洗掉嗎
大部分朋友都應該有過做B超的經驗,這大夏天塗上一層涼絲絲的液體還挺舒服的,但這大冬天可有點受不了,這B超做就做吧,為什麼得要塗一層黏糊糊的東西?
因為產生強大磁場的磁鐵需要超導,它需要液氦來冷卻,氦盡管是宇宙中最豐富的元素,但它不可再生,全球能大量供應氦的國家屈指可數,如果不實現液氮替代(核磁共振的磁場建立需要超導線圈,而現在的液氮級別超導材料不適合做線圈),檢查費用會越來越高。
7. 超聲波檢測混凝土缺陷實測過程中應注意什麼問題
對於既有混凝土構件,由於施工質量問題或者後期荷載過大等問題,可能會造成混凝土內部存在一些缺陷,嚴重影響著結構的安全與耐久性。下面就其超聲波檢測混凝土內部缺陷的主要注意事項進行簡要論述。
一、檢測范圍
超聲波檢測混凝土內部缺陷的檢測主要為房屋建築、市政工程和一般構築物中混凝土結構的現場檢測,不適用於輕骨料混凝土結構的現場檢測。
二、 檢測內容
混凝土內部孔洞或不密實
三、檢測標准
《混凝土結構現場檢測技術標准》GB/T50784-2013
四、儀器的操作
檢測混凝土內部缺陷可採用混凝土超聲波檢測儀,也可以採用雷達等,本次主要介紹超聲波的檢測方法的注意事項。
(1) 對懷疑存在內部缺陷的構件或區域宜進行全數檢測,當不具備全數檢測條件時,可根據約定抽樣原則選擇下列構件或部位進行檢測例如重要的構件或部位和外觀缺陷嚴重的構件或部位;
(2)混凝土構件內部缺陷宜採用超聲法進行雙面對測,當僅有一個可測面時,可採用沖擊回波法和電磁波反射法進行檢測對於判別困難的區域應進行鑽芯驗證或剔鑿驗證;
(3)應根據檢測要求和現場操作條件,確定缺陷測試部位(簡稱測位);
(4 )測位混凝土表面應清潔、平整,必要時可用砂輪磨平或用高強度快凝砂漿磨平;磨平砂漿應與待測混凝土良好粘結;
(5)在滿足首波幅度測讀精度的條件下,應選擇高頻率的換能器;
(6)換能器應通過耦合劑與混凝土測試表面保持緊密結合,耦合層內不應夾雜泥沙或空氣;
(7 )檢測應避免超聲傳播路徑與內部鋼筋軸線平行,當無法避免時,應使測線與該鋼筋的最小距離不小於超聲測距的1/6;
(8)應根據測距大小和混凝土外觀質量,設置儀器發射電壓采樣頻率等參數, 檢測同一測位時,儀器參數宜保持不變;
(9)應讀取記錄時、波幅和主頻值,必要時存取波形;
(10)超聲波檢測混凝土構件內部不密實區可按本標准附錄D的有關規定進行;
(11)超聲法檢測混凝土構件裂縫深度可按本標准附錄E的有關規定進行;
(12)混凝土構件內部缺陷檢測應提供有關測位的選擇方式、位置、外觀質量描述以及缺陷的性質和分布特徵等信息;
超聲波檢測混凝土因其無損特點被廣泛應用,在檢測前應注意注意事項,避免檢測數據的不準確或無效。