A. 超聲成像的物理原理是什麼
超聲成像是利用超聲聲束掃描人體,通過對反射信號的接收、處理,以獲得體內器官的圖象。常用的超聲儀器有多種:A型(幅度調制型)是以波幅的高低表示反射信號的強弱,顯示的是一種「回聲圖」。
B型超聲是發射超聲波給物體,將回聲信號顯示為光點,回聲的強弱以點的灰(亮)度顯示,記錄物體的回波,根據回波的變化,判斷物體的存在變化情況。
它將從人體反射回來的回波信號以光點形式組成切面圖像。此種圖像與人體的解剖結構極其相似,故能直觀地顯示臟器的大小、形態、內部結構,並可將實質性、液性或含氣性組織區分開來。
聲波的頻率
聲源振動產生聲波,聲波有縱波、橫波和表面波三種形式。而縱波是一種疏密波,就像一根彈簧上產生的波。用於人體診斷的超聲波是聲源振動在彈性介質中產生的縱波。聲波在介質中傳播,介質中質點在平衡位置來回振動一次,就完成一次全振動,一次全振動所需要的時間稱振動周期(T)。
在單位時間內全振動的次數稱為頻率(f),頻率的單位是赫茲(HZ)。f=1/T,聲波在介質中以一定速度傳播,質點振動一周,波動就前進一個波長(λ)。波速(C)=λ/T或C=f·λ。
以上內容參考:網路-超聲成像
B. 超聲波是怎麼成像的
簡單說,通過發射定向超聲波,超聲波接觸物體被反射,通過儀器接收這種反射波,再進行
速率損耗等數據的運算,得到由點到面的反饋數據再由坐標數據構築圖像,從而成像。
C. 醫學超聲成像原理
我總結一下醫學超聲成像的原理
超聲波成像需要三個步驟:發射聲波,接受反射聲波,以及信號分析處理得到圖像。
超聲波探頭是通過壓電陶瓷換能器發射超聲波,不同的探頭能夠發射的聲波頻率不同。醫學超聲波頻率一般是2-13MHz,聲波頻率越高,衍射越弱,成像分別率越高;但與此同時,頻率越高,聲波衰減也越快,穿透深度就小。因此,我們在探測心臟的時候,只能用頻率較低的聲波,否則探測的深度不夠,雖然成像效果差一些;而在探測頸動脈、股動脈等表皮下方的血管時,就用頻率高的聲波,成像好清晰許多。實驗中,我們採用的心臟探頭為2-4MHz,血管探頭為10MHz。
接收反射波的依舊是同一個超聲波探頭,壓電陶瓷換能器將聲波信號轉換成電信號,之後電腦上的系統進行信號處理成像。
B型超聲波顯示的是探頭面向的組織切面的二維灰度圖。我們知道確定二維灰度圖上的每個點需要3個信息,橫坐標、縱坐標和灰度。這些是怎麼得到的呢?由於超聲波在人體內接觸到組織會反射,不同的組織聲阻抗不同,根據接收到的回波反射率計算得到聲阻抗,對應於圖上的灰度(如血管壁的組織聲阻抗差不多,在圖像上的灰度就差不多,就能看出來是血管的形狀)。假設探頭是一維的,那麼探頭上每一個探針的位置就對應一個橫坐標。縱坐標是由發射和接收聲波的時間差決定的,假設聲波在人體中傳播速度相同,那麼時間越長表示反射組織的位置越深。最後由得到的灰度圖,可以看到組織輪廓,並可以進行測量,如血管直徑,面積等等。
當然,具體的成像過程遠遠比這個復雜,因為B超是實時的,如何區分發射波、反射波、如何去除噪音,放大信號,信號處理非常復雜,我也不清楚。但以上簡單的描述,已經足夠我們大致了解成像的過程。
多普勒效應我們中學物理都學過,無論是發射者還是接收者相對聲波傳播介質運動,都會引起觀察到的聲波頻率的變化。
利用多普勒效應測量血流速度如下圖,探頭發射聲波的方向和血流方向的夾角為 \theta,發射聲波頻率為 f_0,反射聲波頻率為 f',多普勒頻率也就是頻移為f_D,聲波在人體組織中傳播速度為c,血流速度為v
則由多普勒頻率可以計算得到血流速度,公式如下
它的推導過程主要就是套兩次多普勒效應公式,發射時認為接收者(血液)相對聲波介質(人體組織)運動,而回收時認為發射者(血液反射聲波)相對介質運動。然後相加項近似兩個頻率不變得到分母的2f_0。
之前做彩超檢查子宮,我就問給我檢查的護士姐姐啥是彩色超聲波,因為我發現無論是檢查結果還是他們的顯示屏都是黑乎乎的,完全不知道彩色在哪裡。
彩超相比於B超,通過多普勒效應測量血流的速度,並在圖像中通過著色來表出來。所以這個彩色並不是直接反應人體組織顏色的,頗令人失望。一般來講,圖像中紅色表示血流方向是迎面而來,而藍色表示血流方向是離你而去。同時,顏色越深表示血流速度越快。
脈沖多普勒的原理不太懂,網上查了一下彩色多普勒和脈沖多普勒的區別,大概是方法不太一樣,也有各自的優缺點。實驗時,我們通過脈沖多普勒得到血流速度的頻譜,也就是血路速度隨時間的變化圖(波形圖),不是人體組織的成像圖。通過測量兩個血流速度脈沖之間的水平距離(時間差),就可以計算得到心率,如果在彩色多普勒圖像(B型超聲圖像也行)測量血管的直徑,進而計算出血管的面積,再乘以血流速度的波形圖一個周期內曲線下方的面積(積分),就可以得到血流量(一分鍾內流過的血流體積)
下圖就是我的頸動脈彩色多普勒成像(上部分),和脈沖多普勒成像(下部分),並且測量了血流速度的峰值、心率(2倍心率)、血管直徑和血流量(VolFlow)等信息
總結起來,醫學超聲儀器的物理原理:用壓電換能器發射和接收超聲波,通過反射率、接收時間、探針位置得到組織輪廓成像,通過多普勒效應測量血流速度。B超成像是二維的灰度圖,反應組織輪廓,彩超是二維灰度圖上加了血流速度的信息,脈沖多普勒得到的是血流速度隨時間的變化波形。
想起來一個有趣的地方,用脈沖多普勒的時候,儀器會發出跳動的聲音,無論是測量血管還是心臟。我不知道這個聲音,是我心跳或者血流脈沖聲音的放大,還是儀器自帶的聲音,配合我心跳的跳動而播放。
一些自問自答 :
1.血流速度怎麼測量:多普勒效應
2.血流量怎麼得到:血管面積乘以血流速度的積分
3.心率怎麼得到:脈沖多普勒中,兩次血流量最大值的之間間隔為周期
4.心臟容積怎麼得到:描跡自動求面積
5.血管面積怎麼得到:描跡或者測量血管半徑
6.心功能怎麼得到:心收縮和心舒張的左心室心臟容量的比值
7.彩色多普勒和脈沖多普勒的區別:一個是二維成像圖、一個是頻譜
參考資料:
1. 維基網路:醫學超聲檢查
相關文章
我寫了幾篇博客來介紹和記錄我們的四級物理實驗: 用醫學超聲儀器研究運動對人體血流分布的影響
① 為什麼在校醫院做大物四級實驗
② 醫學超聲成像原理
③ 運動對血流分布的影響 實驗設計
④ 運動對人體血流分布的影響 實驗結果