導航:首頁 > 製冷設備 > 怎麼用巧妙辦法檢測到超聲波

怎麼用巧妙辦法檢測到超聲波

發布時間:2024-10-15 08:21:29

『壹』 刺耳的超聲波是如何形成的 有辦法製造這種超聲波么

超聲波是不刺耳的,因為你根本聽不到!
通常人們將20K以上的聲波稱為超聲波,在聲波的頻率從20Hz逐漸增加到20KHz的過程中,聲音越來越刺耳!
如果你有信號發生器,將其輸出的信號接到音箱的輸入口,逐漸調整輸出頻率(啥波形都行,關鍵是頻率),就可以聽到我上面描敘的過程。
網上好像也有這方面的軟體,能驅動電腦的喇叭發出各種頻段的聲音,具體叫什麼我忘記了,我同事找到過,你網路一下,好像是跟混音有關的。

『貳』 超聲波怎麼被發現

自19世紀末到20世紀初,在物理學上發現了壓電效應與反壓電效應之後,人們解決了利用電子學技術產生超聲波的辦法,從此迅速揭開了發展與推廣超聲技術的歷史篇章。
1922年,德國出現了首例超聲波治療的發明專利。
1939年發表了有關超聲波治療取得臨床效果的文獻報道。
40年代末期超聲治療在歐美興起,直到1949年召開的第一次國際醫學超聲波學術會議上,才有了超聲治療方面的論文交流,為超聲治療學的發展奠定了基礎。1956年第二屆國際超聲醫學學術會議上已有許多論文發表,超聲治療進入了實用成熟階段。

詳見:http://ke..com/view/32371.html?wtp=tt

『叄』 如何用萬用表檢測超聲波換能片的好壞

萬用表測壓電陶瓷片的電容量是可以的。通過檢測電容量的大小,來判斷陶瓷片的好壞。

『肆』 超聲波是指物體發出的聲音很小嗎不然我們怎麼聽不見呢

超聲波
我們知道,當物體振動時會發出聲音。科學家們將每秒鍾振動的次數稱為聲音的頻率,它的單位是赫茲。我們人類耳朵能聽到的聲波頻率為20~20,000赫茲。因此,當物體的振動超過一定的頻率,即高於人耳聽閾上限時,人們便聽不出來了,這樣的聲波稱為「超聲波」。通常用於醫學診斷的超聲波頻率為1~5兆赫。超聲波具有方向性好,穿透能力強,易於獲得較集中的聲能,在水中傳播距離遠等特點。可用於測距,測速,清洗,焊接,碎石等

雖然說人類聽不出超聲波,但不少動物卻有此本領。它們可以利用超聲波「導航」、追捕食物,或避開危險物。大家可能看到過夏天的夜晚有許多蝙蝠在庭院里來回飛翔,它們為什麼在沒有光亮的情況下飛翔而不會迷失方向呢?原因就是蝙蝠能發出2~10萬赫茲的超聲波,這好比是一座活動的「雷達站」。蝙蝠正是利用這種「雷達」判斷飛行前方是昆蟲,或是障礙物的。

我們人類直到第一次世界大戰才學會利用超聲波,這就是利用「聲納」的原理來探測水中目標及其狀態,如潛艇的位置等。此時人們向水中發出一系列不同頻率的超聲波,然後記錄與處理反射回聲,從回聲的特徵我們便可以估計出探測物的距離、形態及其動態改變。醫學上最早利用超聲波是在1942年,奧地利醫生杜西克首次用超聲技術掃描腦部結構;以後到了60年代醫生們開始將超聲波應用於腹部器官的探測。如今超聲波掃描技術已成為現代醫學診斷不可缺少的工具。

醫學超聲波檢查的工作原理與聲納有一定的相似性,即將超聲波發射到人體內,當它在體內遇到界面時會發生反射及折射,並且在人體組織中可能被吸收而衰減。因為人體各種組織的形態與結構是不相同的,因此其反射與折射以及吸收超聲波的程度也就不同,醫生們正是通過儀器所反映出的波型、曲線,或影象的特徵來辨別它們。此外再結合解剖學知識、正常與病理的改變,便可診斷所檢查的器官是否有病。

目前,醫生們應用的超聲診斷方法有不同的形式,可分為A型、B型、M型及D型四大類。

A型:是以波形來顯示組織特徵的方法,主要用於測量器官的徑線,以判定其大小。可用來鑒別病變組織的一些物理特性,如實質性、液體或是氣體是否存在等。

B型:用平面圖形的形式來顯示被探查組織的具體情況。檢查時,首先將人體界面的反射信號轉變為強弱不同的光點,這些光點可通過熒光屏顯現出來,這種方法直觀性好,重復性強,可供前後對比,所以廣泛用於婦產科、泌尿、消化及心血管等系統疾病的診斷。

M型:是用於觀察活動界面時間變化的一種方法。最適用於檢查心臟的活動情況,其曲線的動態改變稱為超聲心動圖,可以用來觀察心臟各層結構的位置、活動狀態、結構的狀況等,多用於輔助心臟及大血管疫病的診斷。

D型:是專門用來檢測血液流動和器官活動的一種超聲診斷方法,又稱為多普勒超聲診斷法。可確定血管是否通暢、管腔有否狹窄、閉塞以及病變部位。新一代的D型超聲波還能定量地測定管腔內血液的流量。近幾年來科學家又發展了彩色編碼多普勒系統,可在超聲心動圖解剖標志的指示下,以不同顏色顯示血流的方向,色澤的深淺代表血流的流速。現在還有立體超聲顯象、超聲CT、超聲內窺鏡等超聲技術不斷涌現出來,並且還可以與其他檢查儀器結合使用,使疾病的診斷准確率大大提高。超聲波技術正在醫學界發揮著巨大的作用,隨著科學的進步,它將更加完善,將更好地造福於人類。

頻率高於20000 Hz(赫茲)的聲波。研究超聲波的產生、傳播 、接收,以及各種超聲效應和應用的聲學分支叫超聲學。產生
超聲波的裝置有機械型超聲發生器(例如氣哨、汽笛和液哨等)、利用電磁感應和電磁作用原理製成的電動超聲發生器、
以及利用壓電晶體的電致伸縮效應和鐵磁物質的磁致伸縮效應製成的電聲換能器等。
超聲效應 當超聲波在介質中傳播時,由於超聲波與介質的相互作用,使介質發生物理的和化學的變化,從而產生
一系列力學的、熱的、電磁的和化學的超聲效應,包括以下4種效應:
①機械效應。超聲波的機械作用可促成液體的乳化、凝膠的液化和固體的分散。當超聲波流體介質中形成駐波時 ,懸浮在流體中的微小顆粒因受機械力的作用而凝聚在波節處,在空間形成周期性的堆積。超聲波在壓電材料和磁致伸縮材料中傳播時,由於超聲波的機械作用而引起的感生電極化和感生磁化(見電介質物理學和磁致伸縮)。
②空化作用。超聲波作用於液體時可產生大量小氣泡 。一個原因是液體內局部出現拉應力而形成負壓,壓強的降低使原來溶於液體的氣體過飽和,而從液體逸出,成為小氣泡。另一原因是強大的拉應力把液體「撕開」成一空洞,稱為空化。空洞內為液體蒸氣或溶於液體的另一種氣體,甚至可能是真空。因空化作用形成的小氣泡會隨周圍介質的振動而不斷運動、長大或突然破滅。破滅時周圍液體突然沖入氣泡而產生高溫、高壓,同時產生激波。與空化作用相伴隨的內摩擦可形成電荷,並在氣泡內因放電而產生發光現象。在液體中進行超聲處理的技術大多與空化作用有關。
③熱效應。由於超聲波頻率高,能量大,被介質吸收時能產生顯著的熱效應。
④化學效應。超聲波的作用可促使發生或加速某些化學反應。例如純的蒸餾水經超聲處理後產生過氧化氫;溶有氮氣的水經超聲處理後產生亞硝酸;染料的水溶液經超聲處理後會變色或退色。這些現象的發生總與空化作用相伴隨。超聲波還可加速許多化學物質的水解、分解和聚合過程。超聲波對光化學和電化學過程也有明顯影響。各種氨基酸和其他有機物質的水溶液經超聲處理後,特徵吸收光譜帶消失而呈均勻的一般吸收,這表明空化作用使分子結構發生了改變 。

超聲應用 超聲效應已廣泛用於實際,主要有如下幾方面:
①超聲檢驗。超聲波的波長比一般聲波要短,具有較好的方向性,而且能透過不透明物質,這一特性已被廣泛用於超聲波探傷、測厚、測距、遙控和超聲成像技術。超聲成像是利用超聲波呈現不透明物內部形象的技術 。把從換能器發出的超聲波經聲透鏡聚焦在不透明試樣上,從試樣透出的超聲波攜帶了被照部位的信息(如對聲波的反射、吸收和散射的能力),經聲透鏡匯聚在壓電接收器上,所得電信號輸入放大器,利用掃描系統可把不透明試樣的形象顯示在熒光屏上。上述裝置稱為超聲顯微鏡。超聲成像技術已在醫療檢查方面獲得普遍應用,在微電子器件製造業中用來對大規模集成電路進行檢查,在材料科學中用來顯示合金中不同組分的區域和晶粒間界等。聲全息術是利用超聲波的干涉原理記錄和重現不透明物的立體圖像的聲成像技術,其原理與光波的全息術基本相同,只是記錄手段不同而已(見全息術)。用同一超聲信號源激勵兩個放置在液體中的換能器,它們分別發射兩束相乾的超聲波:一束透過被研究的物體後成為物波,另一束作為參考波。物波和參考波在液面上相干疊加形成聲全息圖,用激光束照射聲全息圖,利用激光在聲全息圖上反射時產生的衍射效應而獲得物的重現像,通常用攝像機和電視機作實時觀察。
②超聲處理。利用超聲的機械作用、空化作用、熱效應和化學效應,可進行超聲焊接、鑽孔、固體的粉碎、乳化 、脫氣、除塵、去鍋垢、清洗、滅菌、促進化學反應和進行生物學研究等,在工礦業、農業、醫療等各個部門獲得了廣泛應用。
③基礎研究。超聲波作用於介質後,在介質中產生聲弛豫過程,聲弛豫過程伴隨著能量在分子各自電度間的輸運過程,並在宏觀上表現出對聲波的吸收(見聲波)。通過物質對超聲的吸收規律可探索物質的特性和結構,這方面的研究構成了分子聲學這一聲學分支。普通聲波的波長遠大於固體中的原子間距,在此條件下固體可當作連續介質 。但對頻率在1012赫以上的 特超聲波 ,波長可與固體中的原子間距相比擬,此時必須把固體當作是具有空間周期性的點陣結構。點陣振動的能量是量子化的 ,稱為聲子(見固體物理學)。特超聲對固體的作用可歸結為特超聲與熱聲子、電子、光子和各種准粒子的相互作用。對固體中特超聲的產生、檢測和傳播規律的研究,以及量子液體——液態氦中聲現象的研究構成了近代聲學的新領域——
聲波是屬於聲音的類別之一,屬於機械波,聲波是指人耳能感受到的一種縱波,其頻率范圍為16Hz-20KHz。當聲波的頻率低於16Hz時就叫做次聲波,高於20KHz則稱為超聲波聲波。
超聲波具有如下特性:
1) 超聲波可在氣體、液體、固體、固熔體等介質中有效傳播。
2) 超聲波可傳遞很強的能量。
3) 超聲波會產生反射、干涉、疊加和共振現象。
4) 超聲波在液體介質中傳播時,可在界面上產生強烈的沖擊和空化現象。
超聲波是聲波大家族中的一員。
聲波是物體機械振動狀態(或能量)的傳播形式。所謂振動是指物質的質點在其平衡位置附近進行的往返運動。譬如,鼓面經敲擊後,它就上下振動,這種振動狀態通過空氣媒質向四面八方傳播,這便是聲波。
超聲波是指振動頻率大於20KHz以上的,人在自然環境下無法聽到和感受到的聲波。
超聲波治療的概念:
超聲治療學是超聲醫學的重要組成部分。超聲治療時將超聲波能量作用於人體病變部位,以達到治療疾患和促進機體康復的目的。
在全球,超聲波廣泛運用於診斷學、治療學、工程學、生物學等領域。賽福瑞家用超聲治療機屬於超聲波治療學的運用范疇。
(一)工程學方面的應用:水下定位與通訊、地下資源勘查等
(二)生物學方面的應用:剪切大分子、生物工程及處理種子等
(三)診斷學方面的應用:A型、B型、M型、D型、雙功及彩超等
(四)治療學方面的應用:理療、治癌、外科、體外碎石、牙科等
超聲波的特點:
1、超聲波在傳播時,方向性強,能量易於集中。
2、超聲波能在各種不同媒質中傳播,且可傳播足夠遠的距離。
3、超聲與傳聲媒質的相互作用適中,易於攜帶有關傳聲媒質狀態的信息(診斷或對傳聲媒質產生效應。(治療)
超聲波是一種波動形式,它可以作為探測與負載信息的載體或媒介(如B超等用作診斷);超聲波同時又是一種能量形式,當其強度超過一定值時,它就可以通過與傳播超聲波的媒質的相互作用,去影響,改變以致破壞後者的狀態,性質及結構(用作治療)。
超聲波的發展史:
一、國際方面:
自19世紀末到20世紀初,在物理學上發現了壓電效應與反壓電效應之後,人們解決了利用電子學技術產生超聲波的辦法,從此迅速揭開了發展與推廣超聲技術的歷史篇章。
1922年,德國出現了首例超聲波治療的發明專利。
1939年發表了有關超聲波治療取得臨床效果的文獻報道。
40年代末期超聲治療在歐美興起,直到1949年召開的第一次國際醫學超聲波學術會議上,才有了超聲治療方面的論文交流,為超聲治療學的發展奠定了基礎。1956年第二屆國際超聲醫學學術會議上已有許多論文發表,超聲治療進入了實用成熟階段。
二、國內方面:
國內在超聲治療領域起步稍晚,於20世紀50年代初才只有少數醫院開展超聲治療工作,從1950年首先在北京開始用800KHz頻率的超聲治療機治療多種疾病,至50年代開始逐步推廣,並有了國產儀器。公開的文獻報道始見於1957年。到了70年代有了各型國產超聲治療儀,超聲療法普及到全國各大型醫院。
40多年來,全國各大醫院已積累了相當數量的資料和比較豐富的臨床經驗。特別是20世紀80年代初出現的超聲體外機械波碎石術和超聲外科,是結石症治療史上的重大突破。如今已在國際范圍內推廣應用。高強度聚焦超聲無創外科,已使超聲治療在當代醫療技術中占據重要位置。而在21世紀(HIFU)超聲聚焦外科已被譽為是21世紀治療腫瘤的最新技術。
超聲波治病機理:
1.機械效應:超聲在介質中前進時所產生的效應。(超聲在介質中傳播是由反射而產生的機械效應)它可引起機體若干反應。超聲振動可引起組織細胞內物質運動,由於超聲的細微按摩,使細胞漿流動、細胞震盪、旋轉、摩擦、從而產生細胞按摩的作用,也稱為「內按摩」這是超聲波治療所獨有的特性,可以改變細胞膜的通透性,刺激細胞半透膜的彌散過程,促進新陳代謝、加速血液和淋巴循環、改善細胞缺血缺氧狀態,改善組織營養、改變蛋白合成率、提高再生機能等。使細胞內部結構發生變化,導致細胞的功能變化,使堅硬的結締組織延伸,松軟。
超聲波的機械作用可軟化組織,增強滲透,提高代謝,促進血液循環,刺激神經系統和細胞功能,因此具有超聲波獨特的治療意義。
2.溫熱效應:人體組織對超聲能量有比較大的吸收本領,因此當超聲波在人體組織中傳播過程中,其能量不斷地被組織吸收而變成熱量,其結果是組織的自身溫度升高。
產熱過程既是機械能在介質中轉變成熱能的能量轉換過程。即內生熱。超聲溫熱效應可增加血液循環,加速代謝,改善局部組織營養,增強酶活力。一般情況下,超聲波的熱作用以骨和結締組織為顯著,脂肪與血液為最少。
3.理化效應:超聲的機械效應和溫熱效應均可促發若干物理化學變化。實踐證明一些理化效應往往是上述效應的繼發效應。TS-C型治療機通過理化效應繼發出下列五大作用:
A.彌散作用:超聲波可以提高生物膜的通透性,超聲波作用後,細胞膜對鉀,鈣離子的通透性發生較強的改變。從而增強生物膜彌散過程,促進物質交換,加速代謝,改善組織營養。
B.觸變作用:超聲作用下,可使凝膠轉化為溶膠狀態。對肌肉,肌腱的軟化作用,以及對一些與組織缺水有關的病理改變。如類風濕性關節炎病變和關節、肌腱、韌帶的退行性病變的治療。
C.空化作用:空化形成,或保持穩定的單向振動,或繼發膨脹以致崩潰,細胞功能改變,細胞內鈣水平增高。成纖維細胞受激活,蛋白合成增加,血管通透性增加,血管形成加速,膠原張力增加。
D.聚合作用與解聚作用:水分子聚合是將多個相同或相似的分子合成一個較大的分子過程。大分子解聚,是將大分子的化學物變成小分子的過程。可使關節內增加水解酶和原酶活性增加。
E.消炎,修復細胞和分子:超聲作用下,可使組織PH值向鹼性方面發展。緩解炎症所伴有的局部酸中毒。超聲可影響血流量,產生致炎症作用,抑制並起到抗炎作用。使白細胞移動,促進血管生成。膠原合成及成熟。促進或抑制損傷的修復和癒合過程。從而達到對受損細胞組織進行清理、激活、修復的過程。
量子聲學。
超聲波還可以進行雷達探測.清洗較為精細的物品,如鍾表,可以利用超聲波來擊碎病人體內膽結石,還可以利用超聲波測距.
超聲波檢測還用於電阻焊的焊點強度的檢測。

『伍』 我面前有個杯子和一堵牆,和如何保證超聲波測距測出的是到杯子的距離而不是到牆壁的距離

實話告訴你,這個無法准確的做出判斷。
1、杯子距離你遠近,反射的信號大小差異很大,遠遠超過牆面與杯子反射信號大小的差異;
2、杯子也許是方形的,那麼它與你若不垂直,而是有一定角度,那麼返回信號的差異將大於其它干擾的差異,例如地面反射干擾;
3、如果你的檢測方向不與牆面垂直,與垂直時相比,牆面反射信號的大小差異將超過牆面與杯子的區別。
不過具體情況有具體情況的解決辦法,如果你是固定的,與牆面的距離基本不變,是已知的;而杯子總是在牆的前面(更近一些),那麼你可以根據距離來判斷哪個是牆、哪個是杯。
或者,你用掃描,但那個技術恐怕不是能在這里解決的。

『陸』 初中階 段 物理題中 怎麼判斷超聲波 次聲波 電磁波

(1) 聲波
人們把能引起聽覺的機械波稱為聲波(音頻)。頻率在20~20000Hz之間。
(2) 次聲波
頻率低於20Hz的機械波稱為次聲波。
(3) 超聲波
頻率高於20000Hz的機械波稱為超聲波。

下面有詳細資料,有時間可以看一看。
=======================
聲波的類型
(1) 縱波
媒質中質點沿傳播方向運動的波。
(2) 橫波
媒質中的質點都垂直於傳播方向而運動的波。
(3) 表面波
沿媒質表面層傳播,幅值隨深度迅速減弱的波。
頻率、超聲波、次聲波

其他關於聲波的參考資料:
聲學是一門古老的學科,大約從17世紀初分析物體的振動開始,直到19世紀末,還只能用人耳接收聲波。1877年出版了瑞利的《聲學理論》,該書對經典聲學的內容進行了總結。20世紀初,貝爾發明了用於電話機的碳粒傳聲器,人們首次把聲波轉換為電信號,從而使聲學研究進入了一個新的階段。電子學的發展,大大地促進了聲學研究,從此,人們能夠精確測量、觀察和研究各種頻率、波形和強度的聲波,從而奠定了近代聲學的基礎。聲學與人們日常生活密切相關。例如,改進廳堂的音質和放聲系統的高保真度;測量並控制雜訊水平,以改善人們的生活環境等。由於數字技術和大規模集成電路的發展,微處理機進入了聲學研究與應用領域,使聲學研究手段和方法的准確性和速度都得到提高。隨之而出現一批新的聲學測量技術和相應的儀器設備。例如,實時頻率分析、聲強測量、聲源鑒別、快速傅里葉變換、相關分析等。
隨著科學技術的發展,近代聲學同時也得到了迅速發展,在工業、農業、國防、交通、衛生、教育、科學研究、文化生活以及社會等各個方面獲得了廣泛的應用,形成了許多新興的邊緣學科。
聲學是研究各種媒質中聲波的產生、傳播、接收和作用等問題的一門學科。傳播聲波的媒質有三種不同狀態,一般稱為氣體、液體和固體,因此形成相應的分支學科,分別稱為空氣聲學、水聲學和超聲學,其中空氣聲學涉及人們的聽覺,因此,與人們的文化生活和社會活動關系非常密切。由於聲學在不同的媒質及其不同狀態下傳播時,有著不同的傳播特性,利用這些特性可以研究和測量各種媒質的物理性質和狀態。例如,彈性模量、硬度、粘度、溫度、厚度、料位等。特別是頻率較高的超聲波與物質內部某些微觀結構有相互作用,如超聲波與金屬、半導體、超導體中的電子等相互作用,故可用於物質結構的研究。
由於超聲波在固體和液體中傳播時衰減小,因此傳播距離相應要遠些,一般稱為穿透性強;同時超聲波頻率高,波長短,因此固體中輻射的聲場具有方向性強,並且傳播過程中遇到障礙物時能夠反射等特點,可以用於探測金屬和非金屬材料內部的缺陷位置、大小和性質。這就是應用相當廣泛的無損檢測技術之一——超聲檢測。同樣原理推廣應用於人體上,可以從體外來檢查體內的某些疾病、器官動態或生理變化。
下面簡單介紹聲學中一般概念和傳播特性。
1.次聲波、聲波和超聲波
次聲波、聲波和超聲波都是在彈性媒質中傳播的機械波。它們的區別主要在於頻率不同。
(1) 聲波
人們把能引起聽覺的機械波稱為聲波(音頻)。頻率在20~20000Hz之間。
(2) 次聲波
頻率低於20Hz的機械波稱為次聲波。
(3) 超聲波
頻率高於20000Hz的機械波稱為超聲波。
2.聲波的類型
(1) 縱波
媒質中質點沿傳播方向運動的波。
(2) 橫波
媒質中的質點都垂直於傳播方向而運動的波。
(3) 表面波
沿媒質表面層傳播,幅值隨深度迅速減弱的波。
3.平面波、柱面波、球面波
(1) 平面波
波陣面為平面且與傳播方向垂直的波。
(2) 柱面波
波陣面為同軸柱面的波。
(3) 球面波
波陣面為同心球面的波。
定義
從科學的角度來說,電磁波是能量的一種,凡是高於絕對零度的物體,都會釋出電磁波。 正像人們一直生活在空氣中而眼睛卻看不見空氣一樣,除光波外,人們也看不見無處不在的電磁波。電磁波就是這樣一位人類素未謀面的「朋友」。
產生
電磁波是電磁場的一種運動形態。電與磁可說是一體兩面,變化的電場會產生磁場(即電流會產生磁場),變化的磁場則會產生電場。變化的電場和變化的磁場構成了一個不可分離的統一的場,這就是電磁場,而變化的電磁場在空間的傳播形成了電磁波,電磁的變動就如同微風輕拂水面產生水波一般,因此被稱為電磁波,也常稱為電波。
性質
電磁波頻率低時,主要藉由有形的導電體才能傳遞。原因是在低頻的電振盪中,磁電之間的相互變化比較緩慢,其能量幾乎全部返回原電路而沒有能量輻射出去;電磁波頻率高時即可以在自由空間內傳遞,也可以束縛在有形的導電體內傳遞。在自由空間內傳遞的原因是在高頻率的電振盪中,磁電互變甚快,能量不可能全部返回原振盪電路,於是電能、磁能隨著電場與磁場的周期變化以電磁波的形式向空間傳播出去,不需要介質也能向外傳遞能量,這就是一種輻射。舉例來說,太陽與地球之間的距離非常遙遠,但在戶外時,我們仍然能感受到和煦陽光的光與熱,這就好比是「電磁輻射藉由輻射現象傳遞能量」的原理一樣。
電磁波為橫波。電磁波的磁場、電場及其行進方向三者互相垂直。振幅沿傳播方向的垂直方向作周期性交變,其強度與距離的平方成反比,波本身帶動能量,任何位置之能量功率與振幅的平方成正比。
其速度等於光速c(每秒3×10八次方)。在空間傳播的電磁波,距離最近的電場(磁場)強度方向相同,其量值最大兩點之間的距離,就是電磁波的波長λ,電磁每秒鍾變動的次數便是頻率f。三者之間的關系可通過公式c=λf。
電磁波的傳播不需要介質,同頻率的電磁波,在不同介質中的速度不同。不同頻率的電磁波,在同一種介質中傳播時,頻率越大折射率越大,速度越小。且電磁波只有在同種均勻介質中才能沿直線傳播,若同一種介質是不均勻的,電磁波在其中的折射率是不一樣的,在這樣的介質中是沿曲線傳播的。通過不同介質時,會發生折射、反射、繞射、散射及吸收等等。電磁波的傳播有沿地面傳播的地面波,還有從空中傳播的空中波以及天波。波長越長其衰減也越少,電磁波的波長越長也越容易繞過障礙物繼續傳播。 機械波與電磁波都能發生折射、反射、衍射、干涉,因為所有的波都具有波粒兩象性.折射、反射屬於粒子性; 衍射、干涉為波動性。
能量
電磁波的能量大小由坡印廷矢量決定,即S=E×H,其中s為坡印庭矢量,E為電場強度,H為磁 場強度。E、H、S彼此垂直構成右手螺旋關系;即由S代表單位時間流過與之垂直的單位面積的電磁能,單位是W/m²。
電磁波具有能量,電磁波是一種物質。
編輯本段
電磁波的計算

c=λf
c:光速(這是一個常量,約等於3×10^8m/s) 單位:m/s
f:頻率(單位:Hz,1MHz=1000kHz=1×10^6Hz)
λ:波長(單位:m)
編輯本段
電磁波的發現

1864年,英國科學家麥克斯韋在總結前人研究電磁現象的基礎上,建立了完整的電磁波理論。他斷定電磁波的存在,推導出電磁波與光具有同樣的傳播速度。 1887年德國物理學家赫茲用實驗證實了電磁波的存在。之後,1898年, 馬可尼又進行了許多實驗,不僅證明光是一種電磁波,而且發現了更多形式的電磁波,它們的本質完全相同,只是波長和頻率有很大的差別。
編輯本段
電磁波譜

按照波長或頻率的順序把這些電磁波排列起來,就是電磁波譜。如果把每個波段的頻率由低至高依次排列的話,它們是工頻電磁波、無線電波、紅外線、可見光、紫外線、X射線及γ射線。以無線電的波長最長,宇宙射線的波長最短。
無線電波 3000米~0.3毫米。(微波 0.1~100厘米)
紅外線 0.3毫米~0.75微米。(其中:近紅外為0.76~3微米,中紅外為3~6微米,遠紅外為6~15微米,超遠紅外為15~300微米)
可見光 0.7微米~0.4微米。
紫外線 0.4微米~10毫微米
X射線 10毫微米~0.1毫微米
γ射線 0.1毫微米~0.001毫微米
高能射線 小於0.001毫微米
傳真(電視)用的波長是3~6米;雷達用的波長更短,3米到幾毫米。
編輯本段
電磁輻射

廣義的電磁輻射通常是指電磁波頻譜而言。狹義的電磁輻射是指電器設備所產生的輻射波,通常是指紅外線以下部分。
電磁輻射是傳遞能量的一種方式,輻射種類可分為三種:
游離輻射
有熱效應的非游離輻射
無熱效應的非游離輻射
基地台電磁波 絕非游離輻射波
編輯本段
電磁輻射對人體的傷害

電磁輻射危害人體的機理主要是熱效應、非熱效應和積累效應等。
熱效應:人體內70%以上是水,水分子受到電磁波輻射後相互摩擦,引起機體升溫,從而影響到身體其他器官的正常工作。
非熱效應:人體的器官和組織都存在微弱的電磁場,它們是穩定和有序的,一旦受到外界電磁波的干擾,處於平衡狀態的微弱電磁場即遭到破壞,人體正常循環機能會遭受破壞。
累積效應:熱效應和非熱效應作用於人體後,對人體的傷害尚未來得及自我修復之前再次受到電磁波輻射的話,其傷害程度就會發生累積,久之會成為永久性病態或危及生命。對於長期接觸電磁波輻射的群體,即使功率很小,頻率很低,也會誘發想不到的病變,應引起警惕!
各國科學家經過長期研究證明:長期接受電磁輻射會造成人體免疫力下降、新陳代謝紊亂、記憶力減退、提前衰老、心率失常、視力下降、聽力下降、血壓異常、皮膚產生斑痘、粗糙,甚至導致各類癌症等;男女生殖能力下降、婦女易患月經紊亂、流產、畸胎等症。但是暫時未經實驗證明,也無大規模的數據統計證實存在必然聯系
具有防電磁波輻射危害的食物有:綠茶、海帶、海藻、裙菜、Va、Vc、Vb1、卵磷脂、豬血、牛奶、甲魚、蟹等動物性優質蛋白等。
編輯本段
電磁波的降低

降低電磁波的不良影響,就必須養成自我防範的習慣。一般電器行都有販售「電磁波測試筆」,可以輕易測出電磁波的強度,只要超過標准就會發出警訊,使用者就應遠離被測物直至警訊消失為止。
要測知電氣產品是否有輻射或電磁波,也可以採取比較簡便的方式,就是利用家用、小型可接收AM(調幅)頻道的收音機,打開後將頻道調在沒有廣播的地方,並且靠近所要測量的 電視、冰箱、微波爐或電腦等家電用品,就會發現收音機所傳出的> 噪音突然變大,走出一段距離後,才會恢復原來較小的噪音量;如此即可測出「安全」距離來。
不同的電器也有不同的防範辦法,像電腦用過最好只關螢幕不關機,電腦螢幕改換成液晶螢幕;接聽手機時,手機最好不要放在腰間或褲子口袋中,而應該用手持或放置於距離人體五十公分處;購買住宅則在遠離變電設備及基地台設置地點。
1993 年瑞典北歐三國研究調查公布,受到2mG 以上電磁輻射影響,罹患白血病的機會是正常人的 2.1 倍,罹患腦腫瘍的機會是正常人的1.5 倍,以上資料摘自日本1996.3 出版SAPIO 雜志。
(4-1), 專家建議:

防止電磁波的10 大對策 原 因 說 明
1.盡量遠離電化製品 距離愈遠,受電磁波的影響愈小。
2.無法遠離時要盡量縮短使用時間 再強的電磁波,時間愈短,影響愈小。
3.選用電磁波小的製品 電燈泡比日光燈小,無線電話比行動電話小
4.與其選用大型,盡量選用小型 同種的家電製品,大型的不但耗電量高,電磁波也強。
5.年輕人要特別注意 細胞分裂正值旺盛的年輕人容易受影響,孕婦特別要注意。
6.要曉得測定出的安全距離 廠家的電磁波數字不準,要明確的測出才好。
7.注意後方及兩側 電視機與個人電腦的後方及兩側所釋出的電磁波極強。
8.插頭不用的時候要拔掉 插頭插著的時候,大多數的電磁波即會釋出。
9.睡覺時要特別注意 睡覺時間通常很長,即使微量的曝露其影響也會很大
10.改變非依賴電不可的心態 電化製品環繞著的生活,曝露於電磁波的機會乃大增。
編輯本段
電磁波的特性

與聲波和水波相似,電磁波具有波的性質。可以發生折射等現象。它的速度,波長,頻率之間滿足關系式:
傳播速度=波長×頻率。
電磁波在空氣中的傳播速度為光速,波長λ=300/頻率F(GHz)mm。從同步衛星到地球的傳播時間大約1/8秒。
編輯本段
電磁波的應用

電磁波為橫波,可用於探測、定位、通信等等。
電磁波譜(波長從長到短)是無線電波,微波,紅外線,可見光,紫外線,倫琴射線(X射線),伽瑪射線.
應用:
◆無線電波用於通信等
◆微波用於微波爐
◆紅外線用於遙控、熱成像儀、紅外製導導彈等
◆可見光是所有生物用來觀察事物的基礎
◆紫外線用於醫用消毒,驗證假鈔,測量距離,工程上的探傷等
◆X射線用於CT照相
◆伽瑪射線用於治療,使原子發生躍遷從而產生新的射線等.
◆無線電波。無線電廣播與電視都是利用電磁波來進行的。在無線電廣播中,人們先將聲音信號轉變為電信號,然後將這些信號由高頻振盪的電磁波帶著向周圍空間傳播。而在另一地點,人們利用接收機接收到這些電磁波後,又將其中的電信號還原成聲音信號,這就是無線廣播的大致過程。而在電視中,除了要像無線廣播中那樣處理聲音信號外,還要將圖像的光信號轉變為電信號,然後也將這兩種信號一起由高頻振盪的電磁波帶著向周圍空間傳播,而電視接收機接收到這些電磁波後又將其中的電信號還原成聲音信號和光信號,從而顯示出電視的畫面和喇叭里的聲音。
電磁波的電場(或磁場)隨時間變化,具有周期性。在一個振盪周期中傳播的距離叫波長。振盪周期的倒數,即每秒鍾振動(變化)的次數稱頻率。
很顯然,波長與頻率的乘積就是每秒鍾傳播的距離,即波速。令波長為λ,頻率為f,速度為V,得: λ=V/f波長入的單位是米(m),速度的單位是米/秒(m/sec),頻率的單位為赫茲(Hertz,Hz)。 整個電磁頻譜,包含從電波到宇宙射線的各種波、光、和射線的集合。不同頻率段落分別命名為無線電波(3KHz—3000GHz)、紅外線、可見光、紫外線、X射線、γ射線(伽馬射線)和宇宙射線。 在19世紀末,義大利人馬可尼和俄國人波波夫同在1895年進行了無線電通信試驗。在此後的100年間,從3KHz直到3000GHz頻譜被認識、開發和 逐步利用。根據不同的持播特性,不同的使用業務,對整個無線電頻譜進行劃分,共分9段:甚低頻(VLF)、低頻(LF)、中頻(MF),高頻(HF)、甚 高頻(VHF)\特高頻(uHF)\超高頻(sHF)\極高頻(EHF)和至高頻,對應的波段從甚(超)長波、長波、中波、短波、米波、分米波、厘米波、 毫米波和絲米波(後4種統稱為微波)。見下表。無線電頻譜和波段劃分
段號 頻段名稱 頻段范圍(含上限不含下限) 波段名稱 波長范圍(含上限不含下限)
1 甚低頻(VLF) 3~30千赫(KHz) 甚長波 100~10km
2 低頻(LF) 30~300千赫(KHz) 長波 10~1km
3 中頻(MF) 300~3000千赫(KHz) 中波 1000~100m
4 高頻(HF) 3~30兆赫(MHz) 短波 100~10m
5 甚高頻(VHF) 30~300兆赫(MHz) 米波 10~1m
6 特高頻(UHF) 300~3000兆赫(MHz) 分米波 微波 100~10cm
7 超高頻(SHF) 3~30吉赫(GHz) 厘米波 10~1cm
8 極高頻(EHF) 30~300吉赫(GHz) 毫米波 10~1mm
9 至高頻 300~3000吉赫(GHz) 絲米波 1~0.1mm
編輯本段
電磁波治療應用

「特定電磁波譜」(TDP)是由特定的加熱器對治療板產生的波長范圍在2-25μm,強度范圍(28-35mw/cm²)內分布的特定電磁波,當人體匹配接收後與體內細胞所含相同物質產生諧振,因而可增強微循環作用,促進新陳代謝,產生對人體病變的修復,使病患者能迅速康復,非病患者能提高自身的抵抗能力。
例如國仁TDP,在經大量臨床試驗的基礎上,確認特定電磁波譜的照射可應用於治療頸椎病,腰椎間盤突出、腰痛,腰飢勞損,風濕關節炎,坐骨神經痛,面神經麻痹,術後傷口癒合,外傷感染,凍瘡,胃炎、橫隔膜痙攣、神經性皮炎、濕疹,偏頭痛、頭痛、痛經,痔瘡等。被廣泛應用到外科、內科、婦科、兒科、神經科及其它疾病。同時經過國家計量科學院等權威機構的精確測定,證實對人體無任何副作用。
編輯本段
電磁波的傳導

電磁波為橫波。電磁波的磁場、電場及其行進方向三者互相垂直。振幅沿傳播方向的垂直方向作周期性交變,其強度與距離的平方成反比,波本身帶動能量,任何位置之能量功率與振幅的平方成正比。
其速度等於光速c(每秒3×10^8米)。在空間傳播的電磁波,距離最近的電場(磁場)強度方向相同,其量值最大兩點之間的距離,就是電磁波的波長λ,電磁每秒鍾變動的次數便是頻率f。三者之間的關系可通過公式c=λf。
通過不同介質時,會發生折射、反射、繞射、散射及吸收等等。電磁波的傳播有沿地面傳播的地面波,還有從空中傳播的空中波以及天波。波長越長其衰減也越少,電磁波的波長越長也越容易繞過障礙物繼續傳播。電磁波的應用。
電磁波為橫波,可用於探測、定位、通信等等。
編輯本段
電磁波譜

電磁波譜是無線電波,微波,紅外線,可見光,紫外線,倫琴射線(X射線),伽瑪射線.首先,無線電波用於通信等,微波用於微波爐,紅外線用於遙控,熱成像儀,紅外製導導彈等,可見光是所有生物用來觀察事物的基礎,紫外線用於醫用消毒,驗證假鈔,測量距離,工程上的探傷等,X射線用於CT照相,伽瑪射線用於治療,使原子發生躍遷從而產生新的射線等.
編輯本段
電磁波用途

無線電廣播與電視都是利用電磁波來進行的。在無線電廣播中,人們先將聲音信號轉變為電信號,然後將這些信號由高頻振盪的電磁波帶著向周圍空間傳播。而在另一地點,人們利用接收機接收到這些電磁波後,又將其中的電信號還原成聲音信號,這就是無線廣播的大致過程而在電視中,除了要像無線廣播中那樣處理聲音信號外,還要將圖象的光信號轉變為電信號,然後也將這兩種信號一起由高頻振盪的電磁波帶著向周圍空間傳播,而電視接收機接收到這些電磁波後又將其中的電信號還原成聲音信號和光信號,從而顯示出電視的畫面和喇叭里的聲音。
無線電廣播利用的電磁波的頻率很高,范圍也非常大,而電視所利用的電磁波的頻率則更高,范圍也更大。
編輯本段
電磁波穿透力

因為電磁波具有波粒二象性,波長與光子能量成反比關系,當波長越短光子能量越大,則穿透力越強。
編輯本段
電磁波對人體的副作用及防護

一、 電磁污染對人體的副作用
(1)電磁輻射是心血管疾病、糖尿病、癌突變的主要誘因之一;
(2)電磁輻射會對人體生殖系統、神經系統和免疫系統造成直接傷害;
(3)電磁輻射是造成孕婦流產、不育、畸胎等病變的誘發因素之一;
(4)過量的電磁輻射直接影響兒童身體組織、骨骼發育,導致視力、肝臟造血功能下降,嚴重者可導致視網膜脫落;
(5)電磁輻射可使男性性功能下降、女性內分泌紊亂。
二、電磁波的防護
1、電磁環境標准及相關規定。為控制現代生活中電磁波對環境的污染,保護人們身體健康,1989年12月22日我國衛生部頒布了《環境電磁波衛生標准》( GB9175-88),規定居住區環境電磁波強度限制值:長、中、短波應小於lOV/m,超短波應小於5V/m,微波應小於10μW/cm2。我國有關部門還制訂了《電視塔輻射衛生防護距離標准》,國家環保局也頒布了《電磁輻射環境保護管理辦法》。
針對移動通信發展狀況,北京市環保局於2000年2月17日頒布了全國首例對電磁污染進行規范管理的《北京市移動通訊建設項目環境保護管理規定》(試行),以規范移動通信台(站)的建設和運行,防止其對環境造成電磁污染。該規定中明確了能夠產生電磁輻射的移動通信台(站)在建設前均要履行環保審批手續,並要辦理環保驗收審批,經環保部門的監測,當地功率密度符合國家《電磁輻射防護規定》中的頻率在20 MHz~3000 MHz范圍內、照射導出限值的功率密度在40μW/cm2這一標准,才可正式投人使用,大於這一標準的必須停用或整改;建設蜂窩移動通訊基站前要預測用戶密度分布,採用最佳頻率復用方式,盡量減少基站個數;在居民樓上建設移動通信台(站),事前建築物產權單位或物業管理單位必須徵得所住居民意見;無線尋呼通信、集群通信天線最低允許高度不得低於40m,而蜂窩移動通信基站室外天線一般不得低於25m,發射天線主射方向50m范圍內、非主射方向30m范圍內,一般不得建高於天線的醫院、幼兒園、學校、住宅等建築;建設單位應在上述各類天線安裝地點設置電磁輻射警示牌。
2、 電磁波防護措施。根據電磁波隨距離衰減的特性,為減少電磁波對居民的危害,應使發射電磁功率較大、可能產生強電磁波的工作場所和設施,如電視台、廣播電台、雷達通信台站、微波傳送站等,盡量設在遠離居住區的遠郊區縣或地勢高的地區。必須設置在城市內、鄰近居住區域和居民經常活動場所范圍內的設施,如變電站等,應與居住區間保持一定安全防護距離,保證其邊界符合環境電磁波衛生標準的要求。同時,對電磁波輻射源需選用能屏蔽、反射或吸收電磁波的銅、鋁、鋼等金屬絲或高分子膜等材料製成的物品進行電磁屏蔽,將電磁輻射能量限制在規定的空間之內。
3、高壓特別是超高壓輸電線路應遠離住宅、學校、運動場等人群密集區。使用電腦時,應選用低輻射顯示器,並保持人體與顯示屏正面不少於75cm的距離,側面和背面不少於90cm,最好加裝屏蔽裝置。
4、應嚴格控制移動通信基站的密度,確保設置在市區內的各種移動通信發射基站天線高於周圍建築,在幼兒園、學校校舍、醫院等建築周圍一定范圍內不得建立發射天線。
5、為減輕家庭居室內電磁污染及其有害作用,應經常對居室通風換氣,保持室內空氣暢通。科學使用家用電器:例如,觀看電視或家庭影院、收聽組合音響時,應保持較遠距離,並避免各種電器同時開啟;使用電腦或電子游戲機持續時間不宜過長等。
6、使用手機電話時,盡量減少通話時間;手機天線頂端要盡可能偏離頭部,盡量把天線拉長;在手機電話上加裝耳機等。
7、另外,可每天服用一定量的維生素C或者多吃些富含維生素C的新鮮蔬菜,如辣椒、柿子椒、香椿、菜花、菠菜等;多食用新鮮水果如柑橘、棗等。飲食中也注意多吃一些富含維生素A、C和蛋白質的食物,如西紅柿、瘦肉、動物肝臟、豆芽等;經常喝綠茶。這些飲食措施,可在一定程度上起到積極預防和減輕電磁輻射對人體造成傷害的作用。
8、電磁波輻射是近三四十年才被人們認識的一種新的環境污染,現在人們對電磁輻射仍處於認識和研究階段。由於它看不見、摸不著、不易察覺,所以容易引起人們的疑慮。另外,有些關於電磁輻射的報道不太客觀、缺乏科學性,導致了不必要的誤解和恐慌。一般地說,判定電磁輻射是否對居住環境造成污染,應從電磁波輻射強度、主輻射方向、與輻射源的距離、持續時間等幾方面綜合考慮。所以,在加強電磁防護同時,對電磁波污染問題也應採取科學的態度,客觀分析、嚴肅對待,切不可人雲亦雲,不負責的盲目誇大,造成人們認識的混亂。當然,隨著科學技術水平的發展,人們對電磁波污染及其危害的認識會逐漸深人,許多謎底終將被揭開。

『柒』 超聲檢測原理

超聲就是頻率高於20kHz、超出人們耳朵辨別能力並且穿透性很強的聲波。超聲的應用有很多,比如用超聲的反射來測量距離,利用大功率超聲的振動來清除附著在鍋爐上面的水垢,利用高能超聲做成 "超聲刀"來消滅、擊碎人體內的癌變、結石等,而利用超聲的反射等效應和穿透力強、能夠直線傳播等的特性來進行檢測也是其中一個很大的應用領域。
超聲的檢測應用主要包括在工業上對各種材料的檢測和在醫療上對人體的檢測診斷,通過它人們可以探測出金屬等工業材料中有沒有氣泡、傷痕、裂縫等缺陷,可以檢測出人們身體的軟組織、血流等是否正常。
那麼人們是怎麼樣利用超聲來進行檢測的呢?現在通常是對被測物體(比如工業材料、人體)發射超聲,然後利用其反射、多普勒效應、透射等來獲取被測物體內部的信息並經過處理形成圖像。其中多普勒效應法是利用超聲在遇到運動的物體時發生的多普勒頻移效應來得出該物體的運動方向和速度等特性;透射法則是通過分析超聲穿透過被測物體之後的變化而得出物體的內部特性的,其應用目前還處於研製階段;這里主要介紹的是目前應用最多的通過反射法來獲取物體內部特性信息的方法。
反射法是基於超聲在通過不同聲阻抗組織界面時會發生較強反射的原理工作的,正如我們所知道,聲波在從一種介質傳播到另外一種介質的時候在兩者之間的界面處會發生反射,而且介質之間的差別越大反射就會越大,所以我們可以對一個物體發射出穿透力強、能夠直線傳播的超聲波,然後對反射回來的超聲波進行接收並根據這些反射回來的超聲波的先後、幅度等情況就可以判斷出這個組織中含有的各種介質的大小、分布情況以及各種介質之間的對比差別程度等信息(其中反射回來的超聲波的先後可以反映出反射界面離探測表面的距離,幅度則可以反映出介質的大小、對比差別程度等特性),從而判斷出該被測物體是否有異常。
在這個過程中就涉及到很多方面的內容,包括超聲波的產生、接收、信號轉換和處理等。其中產生超聲波的方法是通過電路產生激勵電信號傳給具有壓電效應的晶體(比如石英、硫酸鋰等),使其振動從而產生超聲波;而接收反射回來的超聲波的時候,這個壓電晶體又會受到反射回來的聲波的壓力而產生電信號並傳送給信號處理電路進行一系列的處理,最後形成圖像供人們觀察判斷。
這里根據圖像處理方法(也就是將得到的信號轉換成什麼形式的圖像)的種類又可以分為A型顯示、M型顯示、B型顯示、C型顯示、F型顯示等。其中A型顯示是將接收到的超聲信號處理成波形圖像,根據波形的形狀可以看出被測物體裡面是否有異常和缺陷在那裡、有多大等,主要用於工業檢測;M型顯示是將一條經過輝度處理的探測信息按時間順序展開形成一維的"空間多點運動時序圖",適於觀察內部處於運動狀態的物體,如運動的臟器、動脈血管等;B型顯示是將並排很多條經過輝度處理的探測信息組合成的二維的、反映出被測物體內部斷層切面的"解剖圖像"(醫院里使用的B超就是用這種原理做出來的),適於觀察內部處於靜態的物體;而C型顯示、F型顯示現在用得比較少。
超聲檢測不但可以做到非常准確,而且相對其他檢測方法來說更為方便、快捷,也不會對檢測對象和操作者產生危害,所以受到了人們越來越普遍的歡迎,有著非常廣闊的發展前景。

『捌』 超聲波測距 空間不夠 怎麼檢測比如房間距離只有5米,但我想檢測10米的距離有什麼好辦法呢

超聲波測距 空間不夠怎麼檢測?比如房間距離只有5米,但我想檢測10米的距離有什麼好辦法呢?你這個只能換個大功率檢測超聲波測距頭,如果普通的沒有隻能選用激光測距才能測距到十米,一般超聲波頭只能檢測到5m左右

閱讀全文

與怎麼用巧妙辦法檢測到超聲波相關的資料

熱點內容
連接製取氧氣的實驗裝置視頻 瀏覽:327
八頭小氣泡儀器瓶子怎麼取下來 瀏覽:108
超聲波介入門診是什麼 瀏覽:62
理正工具箱破解win10 瀏覽:386
怎麼用巧妙辦法檢測到超聲波 瀏覽:361
常熟市江南五金機電城 瀏覽:889
家裡天然氣閥門晚上需要關閉嗎 瀏覽:137
軸承油脂hp是什麼意思 瀏覽:122
整流系儀表的優缺點是什麼 瀏覽:831
1條485匯流排能帶多少設備 瀏覽:63
混凝土地面需要什麼設備 瀏覽:443
湖南冷庫製冷設備安裝公司怎麼樣 瀏覽:960
曰豐天然氣閥門 瀏覽:564
空調室內機管路有多少製冷劑 瀏覽:896
哪裡有非接觸高精度測量設備 瀏覽:774
汽車空調什麼情況下不製冷 瀏覽:504
新設備登錄微信簡訊驗證失敗怎麼辦 瀏覽:646
木料鋼筆要什麼設備 瀏覽:143
什麼超聲波潔牙好 瀏覽:24
oppo手機怎麼用機械音 瀏覽:38