⑴ 圖示離心泵操作裝置中,有哪些錯誤
1.船舶輔機包括那些主要設備?
答:輔機是船舶上除主機以外的動力機械,主要有:
①船用泵②氣體壓送機械③甲板機械④輔助鍋爐⑤油凈化裝置⑥防污染裝置⑦海水淡化裝置⑧製冷和空調裝置
2.為什麼說輔機在船上非常重要?(此題答案不確定)
答:①為船舶推進裝置服務②為船舶航行與安全服③為貨運服務④為改善船員勞動和生活條件服務⑤為防污染服務
1.什麼叫泵。答:提高液體機械能的設備,將機械能轉變成液體能的機械稱之為泵。
2. 船用泵按工作原理和結構分,有那些類型?
答:按工作原理的不同分三類①.容積式泵: 依靠泵內工作部件的運動造成工作容積周期性地增大和縮小而吸排液體,並靠工作部件的擠壓而直接使液體的壓力能增加的泵。②.葉輪式泵:依靠葉輪帶動液體高速回轉而把機械能傳遞給所輸送的液體。 ③.噴射式泵: 依靠工作流體產生的高速射流引射流體,然後再通過動量交換而使被引射流體的能量增加。
按結構可分為單級泵和多級泵
3. 泵有那些主要性能參數?各參數的定義如何?量綱如何?
答:①流量:指泵在單位時間內所排送的液體量。a.體積流量:用體積來度量所送液體量,用Q表示,單位是m3/s,或m3/h、L/min。b.質量流量: 用質量來度量,用G表示,單位是kg/s,或t/h、kg/min。如用ρ表示液體的密度(kg/m3),G=ρQ
②壓頭 (揚程):指單位重量液體通過泵後所增加的機械能。即泵傳給單位重量液體的能量。常用米(m)表示,單位是Nm/N =m。單位重量液體的機械能又稱水頭。
③轉速:指泵軸每分鍾的回轉數,用n表示,單位是 r/min。
④功率:a.有效功率 (輸出功率):單位時間泵傳給液體的能量; b.軸功率P(輸入功率):原動機傳給泵的功率;c.水力功率Ph:按理論流量和理論壓頭計算的功率。
⑤效率: 泵效率η:輸出功率與輸入功率之比。容積效率ηv :實際流量與理論流量之比。
水力效率ηh:實際壓頭與理論壓頭之比。機械效率ηm:水力功率與輸入功率之比。
⑥允許吸上真空度 Hs:證泵在凈正吸入高度情況下,正常吸入而不發生氣蝕的最大允許吸上真空度。
4.怎樣改變泵的吸入性能?⑴盡可能的減小泵的吸入壓力 ⑵入口處的真空度不大於允許吸入真空度
5.對往復時活塞泵吸、排閥有何要求?
除了希望機構簡單、工藝性好和檢修方便以外,還希望閥「嚴、輕、快、小」即:
1)關閉嚴密;2)關閉時撞擊要輕,工作平穩無聲;無聲工作條件3) 啟閉迅速及時;
4)阻力小。
6.影響活塞泵容積效率的因素有那些?
(1) 泵吸入的液體可能含有氣泡;(2) 活塞換向時,由於泵閥關閉遲滯造成液體流失;
(3) 活塞環、活塞桿填料等處由於存在一定的間隙以及泵閥關閉不嚴等會產生漏泄。
7.為什麼說齒輪泵的流量是連續的,但存在脈動?
原動機驅動主動齒輪,從動齒輪隨而旋轉。因嚙合點的嚙合半徑小於齒頂圓半徑,輪齒進入嚙合的一側密閉容積減小,經壓油口排油,退出嚙合的一側密閉容積增大,經吸油口吸油.吸油腔所吸入的油液隨著齒輪的旋轉被齒穴空間轉移到壓油腔,齒輪連續旋轉,泵連續不斷吸油和壓油.所以泵的流量是連續的 。但是由於嚙合點半徑小於齒頂圓半徑,而齒輪在嚙合轉動時,嚙合點的半徑是隨齒輪轉角而周期變化的.故產生了較大的流量脈動.
8.齒輪泵的主要泄漏途徑有哪幾條?
齒輪泵存在著三個產生泄漏的部位:(1)齒輪端面和端蓋間;(2)齒頂和殼體內側間隙;
(3)齒輪的嚙合處。其中齒輪端面和端蓋間泄漏量最大,占總泄漏量的75~80%。
9單作用葉片泵是怎樣實現變數變向的?
答當轉子中心與定子中心重合時,葉片3既不伸出也不縮進,故葉片間容積不發生變化,這時泵處於零流量的工作狀態。當定子中心相對於轉子中心向左產生一個偏心距+e時,上半周為吸油過程,下半周為排油過程。當定子中心相對於轉子中心向右產生一個偏心距-e時,下半周為吸油過程,上半周為排油過程。由此可見,要改變定子中心相對於轉子中心的偏心方向,即可改變泵的吸排油方向,且偏心距的大小決定泵排量的大小。
10.離心泵有那些特點?
答1.結構簡單,易操作;2.流量大,流量均勻;3.重量輕,運動部件少,轉速高;4.泵送的液體粘度范圍廣;5.無自吸能力。
11.什麼是離心泵的工況點?有那些方法調節離心泵的工況點?
答 所謂離心泵的工作點是指離心泵的性能曲線(H~Q曲線)與管路特性曲線的交點,即在H~Q坐標上,分別描點作出兩曲線的交點M點
離心泵工況調節的方法 1.節流調節法2.迴流調節法3.變速調節法4.氣蝕調節法
12.理想離心泵的能量方程有什麼指導意義
指導能量轉換裝置以最小的能量損失匯集葉輪流出的液體,並送至排出管或引向下一級葉輪;使液體的動能平穩地轉變壓力能
13.離心泵的軸向力是如何產生的?有那些平衡方法?
答軸向力的產生1液體壓力的分布沿徑向呈拋物線規律2葉輪兩側壓力不對稱 3軸向力方向由葉輪後蓋指向葉輪進口端
軸向力的平衡方法 1止推軸承2平衡孔或平衡管3雙吸葉輪或葉輪對稱布置4平衡盤
三、空壓機
1、空壓機的實際排量與哪些因素有關 答①余隙容積影響;②壓力系數 的影響;③熱交換的影響;④氣密系數的影響;⑤排氣系數的影響。
2、余隙容積對空壓機有哪些影響 答 壓縮機氣缸中留有餘隙容積對壓縮機的裝備、操作和安全都有好處。這可以防止空氣中的水蒸氣在氣缸內凝結集聚後產生的「水擊」現象及活塞與汽缸蓋的碰撞;有利於活塞的反向運行,同時減少了對閥片的沖擊,是氣閥關閉平穩。
3、.造成空壓機運行中排氣量下降的因素有哪些 ①由於余隙容積的存在;②吸氣過程中的壓力損失;③氣體與氣缸、氣缸蓋的熱交換;④外泄漏使壓縮機的排氣量減小;⑤少量水蒸氣在壓縮機級間冷卻器中會由於溫度的降低而有部分的水蒸汽凝結析出。
4、船用空壓機為什麼要採用兩級壓縮和中間冷卻 ①級間冷卻是在每級之間設置一個冷卻器,使前一級排出的氣體經級間冷卻器後進入下一個氣缸,這樣壓縮過程線就比較趨近於等溫線;②對於多級壓縮而言,每級的壓力比相同時壓縮機的功率最省;③為了減少壓縮過程的功耗和提高排氣系數,往往採用分級壓縮、壓縮機冷卻及級間冷卻方法。
6.對空壓機氣閥有哪些主要要求?
答:氣閥是靠閥片上下的壓差作用而自動啟閉的,氣閥組性能的優劣直接影響到壓縮機的性能,因此要求氣閥具有壽命長、阻力小、 關閉嚴密、啟閉迅速、通用性強等特點。
7.活塞式空壓機的冷卻有哪些? 各有何作用?
答 活塞式空壓機的冷卻包括(1)級間冷卻:可降低排氣溫度,減少功耗。(2)氣缸冷卻:減少壓縮功,降低排氣溫度和避免滑油溫度過高。 (3)後冷卻:可減少排氣比容,提高氣瓶儲量。(4)滑油冷卻:可是滑油保持良好的潤滑性能,冷卻摩擦表面和減緩油氧化變質的速度。
8.船用壓縮空氣系統有哪些主要附件?
答:主要包括冷卻器、液氣分離器、濾清器、安全閥、注油器及各種管路系統。
9.CZ60/30型空壓機在結構上有哪些特點?
答:1基本部分:包括機身、曲軸箱、曲軸連桿等部件,其作用是傳遞功力,連接氣缸和基礎部分2氣缸部分:包括氣缸、氣閥、活塞以及裝在缸上的排量調節等部分,其作用是構成工作空積和防止氣體泄漏3輔助部分:抱愧冷卻器、液體分離器、濾清器、安全閥、注油器及各種管路系統
2.什麼叫轉舵力矩?答:轉舵力矩是操舵裝置對舵桿施加的力矩。
3.什麼叫轉船力矩?答:轉船力矩是水作用力 F 對船舶重心所產生的力矩。
4.船規對舵機有那些主要要求?(1) 工作可靠 在任何航行條件下,都能保證正常的工作,且主操舵裝置需要有足夠的強度和能力,保證在船舶處於最深航海吃水並以最大的營運航速前進時,將舵從任何一舷35°轉至另一舷35°,其時間不超過30s。而從一舷35°轉至另一舷30°,其所需時間不超過28s。在船舶以最大速度倒航時,操舵裝置應能正常工作。(2)生命力強 必須具有一套主操舵裝置和一套輔操舵裝置;或主操舵裝置有兩套以上的動力設備。當其中之一失效時,另一套應能迅速投入工作。輔操舵裝置應滿足船舶在最深航海吃水,並以最大營運航速的一半前進時,能在不超過60s內將舵自一舷15°轉至另一舷15°。
(3)操作靈敏 在任何舵角下都能迅速地、准確地將舵轉至給定舵角,並由舵角指示器示出。
此外,舵機還應滿足工作平穩、結構緊湊、便於維修管理等要求。
6.液壓舵機有哪三個基本部分組成?答:液壓舵機的三個組成部分是操舵控制系統、液壓系統和推舵機構。
7、所謂泵控型即用變數變向泵作為主油泵以改變油液流向,通常為變數泵閉式系統;而閥控型是依靠換向閥來完成變向變數,通常為定量泵開式系統。與泵控型液壓舵機比較,閥控型液壓舵機尺寸小、重量輕、管理方便。
8、根據其作用方式的不同,可分為往復式和轉葉式兩大類
10.液壓控制閥主要類型有:(1)方向控制閥;包括單向閥 換向閥(電磁 液動 電液動換向閥)(2)壓力控制閥;(溢流閥 減壓閥 順序閥)(3)流量控制閥(節流閥 調速閥單向節流閥)
11壓力控制閥按其用途分為:溢流閥、減壓閥和順序閥等。
溢流閥職能:在液壓系統中壓力高於某調定值時,將部分或全部油液泄回油箱。根據它在系統中的工作特性,可分為常閉和常開兩種,前者是系統油壓超過調定值時才開啟,即作安全閥使用;後者是在系統工作時保持常開以穩定閥前系統油壓,即作定壓閥使用。
減壓閥職能:可使高壓油經過閥的節流作用後,使油壓降低,以便從系統中分出油壓較低的支路。順序閥職能:以油壓為信號自動控制油缸或油馬達順序動作的閥。
12泵控型液壓舵機的輔助油路有那些作用答:輔助油路的作用:(1)經減壓閥後壓力降為0.78,再經單向閥進入油路系統為主油路補油;(2)通過單向閥進入主油泵變數機構,用以控制變數機構動作;(3)經溢流閥和主油泵殼體,對主油泵進行冷卻和潤滑後流回油箱。,
13試述電液式三位四通換向閥的動作過程 答:如圖8-27(p73)p與a相通,b與o相通,執行機構便向另一方向運行。當左右電磁鐵都斷電時,則閥芯在左右彈簧的作用下而居中,此時p,a,b,o互不相通。故a,b油路無油通過,與其相通的執行機構亦不會發生動作。
1.蒸氣壓縮式製冷裝置由哪些基本部件組成,各有何作用?
答:基本組成部件:壓縮機,膨脹閥,冷凝器,蒸發器 壓縮機:起著壓縮和輸送製冷劑蒸氣並造成蒸發器中低壓力、冷凝器中高壓力的作用 膨脹閥:對製冷劑起節流降壓作用並調節進入蒸發器的製冷劑流量; 蒸發器:輸出冷量的設備,製冷劑在蒸發器中吸收被冷卻物體的熱量,從而達到製取冷量的目的; 冷凝器:輸出熱量的設備,從蒸發器中吸取的熱量連同壓縮機消耗的功所轉化的熱量的冷凝器中被冷卻介質帶走。
2.蒸氣壓縮式製冷裝置的實際循環與理論循環有何區別?
答:理論循環假設; (1)壓縮過程不存在換熱和流阻等不可逆損失,即等熵過程;(2)製冷劑流過熱交換器和管路時沒有阻力損失,即等壓過程;(3)製冷系統中除熱交換器外,與外界無任何熱交換,流過膨脹閥時未作功,又無熱交換,即等焓過程。 實際循環(1)壓縮過程是熵值增加的多變過程;(2)節流過程有吸熱,焓值也略有增加;(3)製冷劑在管道、熱交換器和壓縮機中流動時存在阻力損失和熱交換。
3.為什麼要採用過冷和過熱?
答:循環過冷度增加意味著:1)過冷溫度由t4降到t4』;2)製冷量Q0則會因單位製冷量q0增加而增加;3)壓縮機軸功率P不變,ε提高。
合適的過熱度:1)可以防止壓縮機吸入液體而發生液擊;2)過熱度提高,單位壓縮功增加,單位製冷量q0增加,製冷劑比容v1也增大, 使質量流量qm減少。
4.蒸發溫度、冷凝溫度對製冷循環有何影響?
答:蒸發溫度:對應於蒸發壓力的飽和溫度。蒸發溫度低,單位製冷量減小,單位壓縮功增大。冷凝溫度:對應於冷凝壓力的飽和溫度。冷凝溫度高,單位製冷量減小,單位壓縮功增大。
5.製冷裝置對製冷劑有哪些主要要求?
答:1.臨界溫度要高,凝固溫度要低。2.在大氣壓力下的蒸發溫度要低。3.壓力要適中。4.單位容積製冷量qv要大。5.導熱系數要高,粘度和密度要小。6.絕熱指數k要小。7 .具有化學穩定性。8.價格便宜,易於購得。
6.船舶空調系統有哪些常用類型?
答:集中式和半集中式船舶空調裝置根據其調節方法的不同主要有以下幾種形式。 集中式單風管系統、區域再熱式單風管系統、末端再處理式單風管系統、雙風管
系統
⑵ 為什麼離心泵要有引水裝置
離心泵啟動前要灌滿水,要做引水裝置,這是大家都知道的常識,而離心泵專為什麼要灌水呢?
多級離屬心泵只有在灌滿水的條件下,葉輪旋轉時,才能將離心力作用至水體,水體通過離心力獲得能量,具有流速和揚程,離心泵才能發揮作用。以往,在離心泵設計和安裝時,總是習慣將水泵安裝在水池水面以上,當然,如果是從河裡、湖裡、水渠里、水坑裡抽水的話,那就很自然的將水泵安裝在水面以上了。但是,這樣做的結果,就是在離心泵啟動前要給水泵泵殼以及吸水管路灌滿水,才能啟動水泵。因此,離心泵設計和安裝時都
要安裝底閥,底閥就是個逆止閥,灌水時能自動關閉,保證灌水成功。實踐中經常出現底閥關閉不嚴的時候,灌水相當困難,時間長,漏水多,使用很不方便。還有的大型泵站設計了專門的真空泵引水系統,保證離心泵泵能正常啟動。
離心泵引水裝置出現以後,大量的用離心泵的地方,都普遍採用引水裝置代替原始的灌水程序,避免了繁重的體力勞動,保證離心泵能及時、正常啟動,而且便於實現自動化。
⑶ 離心泵常用軸封裝置有幾種
離心泵常用軸封裝置有填料密封和機械密封兩種。
作用:軸封裝置保證離心泵正常、高專效運轉。離心泵在工作屬是泵軸旋轉而殼不動,其間的環隙如果不加以密封或密封不好,則外界的空氣會滲入葉輪中心的低壓區,使泵的流量、效率下降。嚴重時流量為零氣縛。通常,可以採用機械密封或填料密封來實現軸與殼之間的密封。
⑷ 離心泵的主要部件有哪些各有什麼作用
離心泵的主要部件有葉輪、泵殼、軸封裝置。
葉輪的作用:將原動機的機械能傳給液體、使液體的動能和靜壓能均得到提高。
泵殼的作用:具有匯集液體和將部分動能轉為靜壓能的作用。
軸封裝置的作用:防止泵內高壓液體外漏及外界大氣漏入泵內。
⑸ 什麼叫離心泵裝置的工況點
你可以認為是泵實際使用時的 流量揚程對應點
⑹ 離心泵抽水裝置閘閥的作用是
閘閥就是接通關斷管路,具體管什麼看系統需要了
⑺ 離心泵的平衡盤裝置的構造和工作原理如何
多級離心泵在正常工作運行的過程中,一般都會產生多種性質的軸向力,這些軸向力按照其形成方式的不同可以分為以下幾類。
其一,由於多級離心泵在進行工作時,其葉輪會根據設定發生不同程度的旋轉,這就導致其驅動埠和自由埠的壓力不相等,因此相應的就會產生一種指向離心泵驅動端的力,這個力就被劃為軸向力的范疇內;
其二,當液體從離心泵的吸入口到排出口需要改變運行方向時,也會產生一個作用在葉片上的作用力;
其三,離心泵內的轉子本身也具有一定的重力勢能,因此也會產生一個向下的軸向力;
其四,由於多級離心泵在運行的過程中,其內在的壓強與外界大氣壓強相比,會存在很大的差異,這就使得其內部軸端上會產生一定的壓力,這也是離心泵軸向力的一種表現形式。
由於現代多級離心泵在正常工作運行的過程中,會存在多種形式的軸向力,這就需要相關操作工作者需要為離心泵配置一定的軸向力平衡裝置,將相關軸向力進行平衡處理,以減少軸向力對離心泵設備的損耗,增加設備的使用周期和壽命。對於軸向力平衡裝置的使用,需要相關部門在安裝前進行充分的設計工作,將實際運行和工作過程中的一切影響因素考慮全面,並根據生產使用者的使用要求,做好相關軸向力平衡裝置的設計工作,在確保多級離心泵能夠正常穩定運行的同時,將企業的經濟效益保持在最高的狀態。
⑻ 離心泵常用軸封裝置有幾種
離心泵常用軸封裝置有填料密封和機械密封兩種。 作用:軸封裝置保證內離心泵正常、高效容運轉。離心泵在工作是泵軸旋轉而殼不動,其間的環隙如果不加以密封或密封不好,則外界的空氣會滲入葉輪中心的低壓區,使泵的流量、效率下降。嚴重時流量為零氣縛。通常,可以採用機械密封或填料密封來實現軸與殼之間的密封。
⑼ 離心泵軸向力的平衡裝置有哪些
多級離心泵軸向力平衡裝置的設計理念
離心泵在運行的過程中產生的軸向力會造成轉子軸的上下竄動,造成離心泵內零件之間的摩擦作用,長期下去勢必會對離心泵的零件造成損耗,影響多級離心泵設備的正常運行,影響生產效率。然而,軸向力平衡裝置的配置,會在兩端產生一定的壓力差,其中的液體會在流動的過程中產生一個與軸向力相反的平衡力,而平衡力的大小會隨平衡盤移動而發生一定的變化,直到與離心泵的軸向力相互抵消,但是由於慣性的存在,離心泵的轉子不會立即停止竄動,因此離心泵的轉子始終處於一種動態平衡狀態下,保證多級離心泵的正常運行。
軸向力平衡裝置的設計工作是整個多級離心泵配置和設計工作中的重要組成部分,因此相關設計工作人員在確保多級離心泵正常運行的前提下,應該充分考慮到工業生產的實際運行環境,結合多種設計方法和理念,將設備在運行過程中的使用狀態保持在一個較為穩定、安全的狀態下。下面就簡要介紹幾種多級離心泵軸向力平衡裝置在設計工作過程中的設計理念和方法。
2.1葉輪對稱分布法
在現代離心泵軸向力平衡裝置的設計工作中,一般都將葉輪級數選擇為偶數,因為當葉輪級數為偶數時,可以使用葉輪對稱分布法來平衡設備軸向力,對稱分布的葉輪在運行過程中產生的軸向力大小相等,方向相反,在宏觀上則會表現出一種平衡狀態。在進行設計的過程中,應該注意反向葉輪入口前的密封節流尺寸與葉輪的直徑大小相一致,保證良好的密封性。
2.2平衡盤法
平衡盤法作為現代多級離心泵軸向力平衡裝置設計過程中比較常見的設計方法,其結構可以根據生產需求進行適度的調整,其平衡力一部分主要是由盤徑向間隙與軸向間隙之間的截面產生,另一部分主要是由平衡盤軸向間隙與外半徑截面產生,這兩種平衡力起著平衡軸向力的作用。與其他方式相比,平衡盤法的優勢在於其平衡盤的直徑較大,靈敏度較高,有效地提升了設備裝置的運行穩定性。
2.3平衡盤鼓法
與平衡盤法相比,平衡盤鼓法的不同之處在於其節流軸套部分的尺寸要比葉輪輪轂尺寸大,而平衡盤要求節流軸套的尺寸與葉輪輪轂的尺寸相對應。一般來講,在平衡盤鼓的設計方法中,由平衡盤產生的平衡力佔到總軸向力的一半以上,最大可以達到總軸向力的90%,其他部分主要是由平衡鼓來提供。與此同時,適度增加平衡鼓的平衡力,會相應減低平衡盤的平衡力,相應地會使平衡盤的尺寸減低,從而減小平衡盤的磨損程度,提高設備零件的使用周期,保證多級離心泵的正常運行。
2.4雙平衡鼓法
雙平衡鼓法其實就是在平衡盤鼓法的基礎上進行強化生成的,與平衡盤鼓法相比,這種方法是在平衡盤的外徑上多增加了- -道徑向間隙,這樣就使得平衡盤發揮的作用與平衡鼓相當,不僅使得軸向間隙進- - 步增加,」而且也會減少平衡盤與設備之間的磨損程度,同時也會使平衡室的壓力相對降低,減少大鼓的平衡力大小,提高設備運行的穩定性.保證多級離心泵軸向力平衡裝置能夠發揮出應有的作用。
⑽ 哪位高手,請詳細講解一下離心泵自吸裝置原理!!謝謝啦~~
不需在吸入管路內充滿水就能自動地把水抽上來的離心泵稱為自吸泵。
自吸泵的工作原理是什麼?普通離心泵,若吸入液面在葉輪之下,啟動時應預先灌水,很不方便。為了在泵內存
水,
吸入管進口需要裝底閥,泵工作時,底閥造成很大的水力損失。所謂自吸泵,就是在啟動前不需灌水(安裝後第一次啟動仍然需灌水),經過短時間運轉,靠泵本身的作用,即可以把水吸上來,投入正常工作。自吸泵按作用原理分為以下幾類:
1.氣液混合式(包括內混式和外混式);
2.水環輪式;
3.射流式(包括液體射流和氣體射流)。氣液混合式自吸泵的工作過程:由於自吸泵泵體的特殊結構,水泵停轉後,泵體內存有一定量的水,泵再次啟動後由於葉輪旋轉作用,吸入管路的空氣和水充分混合,並被排到氣水分離室,氣水分離室上部的氣體溢出,下部的水返回葉輪,重新和吸入管路的剩餘空氣混合,直到把泵及吸入管內的氣體全部排出,完成自吸,並正常抽水。水環輪式自吸泵是將水環輪和水泵葉輪組合在一個殼體內,藉助水環輪將氣體排出,實現自吸。當泵正常工作後,可通過閥截斷水環輪和水泵葉輪的通道,並且放掉水環輪內的液體。射流式自吸泵,由離心泵和射流泵(或噴射器)組合而成,依靠噴射裝置,在噴嘴處造成真空實現抽吸。
*型號意義*
50
ZX
12.5-50
P
B
|
|
|
|
|
|_防爆電機
|
|
|
|
|___不銹鋼材質
|
|
|
|_____揚程
|
|
|_________流量
|
|_____________自吸泵
|________________吸入口徑