導航:首頁 > 裝置知識 > 滾筒傳動裝置

滾筒傳動裝置

發布時間:2021-01-26 04:56:08

『壹』 垂直斗式提升機傳動裝置設計 C11二級展開式 滾筒圓周力6K 滾筒圓周速度1.3m/s 滾筒直徑370mm

垂直斗式提升機傳動裝置設計 C11二級展開式 滾筒圓周力6K 滾筒圓周速度1.3m/s 滾筒直徑370mm 俺幫你吧,

『貳』 求帶式輸送機傳動裝置課程設計F=2300 v=1.5,滾筒直徑D=400,哪位大神以前有的 你能不能發給我

一、傳動方案擬定
第二組第三個數據:設計帶式輸送機傳動裝置中的一級圓柱齒輪減速器
(1) 工作條件:使用年限10年,每年按300天計算,兩班制工作,載荷平穩。
(2) 原始數據:滾筒圓周力F=1.7KN;帶速V=1.4m/s;
滾筒直徑D=220mm。
運動簡圖
二、電動機的選擇
1、電動機類型和結構型式的選擇:按已知的工作要求和 條件,選用 Y系列三相非同步電動機。
2、確定電動機的功率:
(1)傳動裝置的總效率:
η總=η帶×η2軸承×η齒輪×η聯軸器×η滾筒
=0.96×0.992×0.97×0.99×0.95
=0.86
(2)電機所需的工作功率:
Pd=FV/1000η總
=1700×1.4/1000×0.86
=2.76KW
3、確定電動機轉速:
滾筒軸的工作轉速:
Nw=60×1000V/πD
=60×1000×1.4/π×220
=121.5r/min

根據【2】表2.2中推薦的合理傳動比范圍,取V帶傳動比Iv=2~4,單級圓柱齒輪傳動比范圍Ic=3~5,則合理總傳動比i的范圍為i=6~20,故電動機轉速的可選范圍為nd=i×nw=(6~20)×121.5=729~2430r/min
符合這一范圍的同步轉速有960 r/min和1420r/min。由【2】表8.1查出有三種適用的電動機型號、如下表
方案 電動機型號 額定功率 電動機轉速(r/min) 傳動裝置的傳動比
KW 同轉 滿轉 總傳動比 帶 齒輪
1 Y132s-6 3 1000 960 7.9 3 2.63
2 Y100l2-4 3 1500 1420 11.68 3 3.89

綜合考慮電動機和傳動裝置尺寸、重量、價格和帶傳動、減速器的傳動比,比較兩種方案可知:方案1因電動機轉速低,傳動裝置尺寸較大,價格較高。方案2適中。故選擇電動機型號Y100l2-4。
4、確定電動機型號
根據以上選用的電動機類型,所需的額定功率及同步轉速,選定電動機型號為
Y100l2-4。
其主要性能:額定功率:3KW,滿載轉速1420r/min,額定轉矩2.2。
三、計算總傳動比及分配各級的傳動比
1、總傳動比:i總=n電動/n筒=1420/121.5=11.68
2、分配各級傳動比
(1) 取i帶=3
(2) ∵i總=i齒×i 帶π
∴i齒=i總/i帶=11.68/3=3.89
四、運動參數及動力參數計算
1、計算各軸轉速(r/min)
nI=nm/i帶=1420/3=473.33(r/min)
nII=nI/i齒=473.33/3.89=121.67(r/min)
滾筒nw=nII=473.33/3.89=121.67(r/min)
2、 計算各軸的功率(KW)
PI=Pd×η帶=2.76×0.96=2.64KW
PII=PI×η軸承×η齒輪=2.64×0.99×0.97=2.53KW

3、 計算各軸轉矩
Td=9.55Pd/nm=9550×2.76/1420=18.56N?m
TI=9.55p2入/n1 =9550x2.64/473.33=53.26N?m

TII =9.55p2入/n2=9550x2.53/121.67=198.58N?m

五、傳動零件的設計計算
1、 皮帶輪傳動的設計計算
(1) 選擇普通V帶截型
由課本[1]P189表10-8得:kA=1.2 P=2.76KW
PC=KAP=1.2×2.76=3.3KW
據PC=3.3KW和n1=473.33r/min
由課本[1]P189圖10-12得:選用A型V帶
(2) 確定帶輪基準直徑,並驗算帶速
由[1]課本P190表10-9,取dd1=95mm>dmin=75
dd2=i帶dd1(1-ε)=3×95×(1-0.02)=279.30 mm
由課本[1]P190表10-9,取dd2=280
帶速V:V=πdd1n1/60×1000
=π×95×1420/60×1000
=7.06m/s
在5~25m/s范圍內,帶速合適。
(3) 確定帶長和中心距
初定中心距a0=500mm
Ld=2a0+π(dd1+dd2)/2+(dd2-dd1)2/4a0
=2×500+3.14(95+280)+(280-95)2/4×450
=1605.8mm
根據課本[1]表(10-6)選取相近的Ld=1600mm
確定中心距a≈a0+(Ld-Ld0)/2=500+(1600-1605.8)/2
=497mm
(4) 驗算小帶輪包角
α1=1800-57.30 ×(dd2-dd1)/a
=1800-57.30×(280-95)/497
=158.670>1200(適用)
(5) 確定帶的根數
單根V帶傳遞的額定功率.據dd1和n1,查課本圖10-9得 P1=1.4KW
i≠1時單根V帶的額定功率增量.據帶型及i查[1]表10-2得 △P1=0.17KW
查[1]表10-3,得Kα=0.94;查[1]表10-4得 KL=0.99
Z= PC/[(P1+△P1)KαKL]
=3.3/[(1.4+0.17) ×0.94×0.99]
=2.26 (取3根)
(6) 計算軸上壓力
由課本[1]表10-5查得q=0.1kg/m,由課本式(10-20)單根V帶的初拉力:
F0=500PC/ZV[(2.5/Kα)-1]+qV2=500x3.3/[3x7.06(2.5/0.94-1)]+0.10x7.062 =134.3kN
則作用在軸承的壓力FQ
FQ=2ZF0sin(α1/2)=2×3×134.3sin(158.67o/2)
=791.9N

2、齒輪傳動的設計計算
(1)選擇齒輪材料與熱處理:所設計齒輪傳動屬於閉式傳動,通常
齒輪採用軟齒面。查閱表[1] 表6-8,選用價格便宜便於製造的材料,小齒輪材料為45鋼,調質,齒面硬度260HBS;大齒輪材料也為45鋼,正火處理,硬度為215HBS;
精度等級:運輸機是一般機器,速度不高,故選8級精度。
(2)按齒面接觸疲勞強度設計
由d1≥ (6712×kT1(u+1)/φ[σH]2)1/3
確定有關參數如下:傳動比i齒=3.89
取小齒輪齒數Z1=20。則大齒輪齒數:Z2=iZ1= ×20=77.8取z2=78
由課本表6-12取φd=1.1
(3)轉矩T1
T1=9.55×106×P1/n1=9.55×106×2.61/473.33=52660N?mm
(4)載荷系數k : 取k=1.2
(5)許用接觸應力[σH]
[σH]= σHlim ZN/SHmin 由課本[1]圖6-37查得:
σHlim1=610Mpa σHlim2=500Mpa
接觸疲勞壽命系數Zn:按一年300個工作日,每天16h計算,由公式N=60njtn 計算
N1=60×473.33×10×300×18=1.36x109
N2=N/i=1.36x109 /3.89=3.4×108
查[1]課本圖6-38中曲線1,得 ZN1=1 ZN2=1.05
按一般可靠度要求選取安全系數SHmin=1.0
[σH]1=σHlim1ZN1/SHmin=610x1/1=610 Mpa
[σH]2=σHlim2ZN2/SHmin=500x1.05/1=525Mpa
故得:
d1≥ (6712×kT1(u+1)/φ[σH]2)1/3
=49.04mm
模數:m=d1/Z1=49.04/20=2.45mm
取課本[1]P79標准模數第一數列上的值,m=2.5
(6)校核齒根彎曲疲勞強度
σ bb=2KT1YFS/bmd1
確定有關參數和系數
分度圓直徑:d1=mZ1=2.5×20mm=50mm
d2=mZ2=2.5×78mm=195mm
齒寬:b=φdd1=1.1×50mm=55mm
取b2=55mm b1=60mm
(7)復合齒形因數YFs 由課本[1]圖6-40得:YFS1=4.35,YFS2=3.95
(8)許用彎曲應力[σbb]
根據課本[1]P116:
[σbb]= σbblim YN/SFmin
由課本[1]圖6-41得彎曲疲勞極限σbblim應為: σbblim1=490Mpa σbblim2 =410Mpa
由課本[1]圖6-42得彎曲疲勞壽命系數YN:YN1=1 YN2=1
彎曲疲勞的最小安全系數SFmin :按一般可靠性要求,取SFmin =1
計算得彎曲疲勞許用應力為
[σbb1]=σbblim1 YN1/SFmin=490×1/1=490Mpa
[σbb2]= σbblim2 YN2/SFmin =410×1/1=410Mpa
校核計算
σbb1=2kT1YFS1/ b1md1=71.86pa< [σbb1]
σbb2=2kT1YFS2/ b2md1=72.61Mpa< [σbb2]
故輪齒齒根彎曲疲勞強度足夠
(9)計算齒輪傳動的中心矩a
a=(d1+d2)/2= (50+195)/2=122.5mm
(10)計算齒輪的圓周速度V
計算圓周速度V=πn1d1/60×1000=3.14×473.33×50/60×1000=1.23m/s
因為V<6m/s,故取8級精度合適.

六、軸的設計計算
從動軸設計
1、選擇軸的材料 確定許用應力
選軸的材料為45號鋼,調質處理。查[2]表13-1可知:
σb=650Mpa,σs=360Mpa,查[2]表13-6可知:[σb+1]bb=215Mpa
[σ0]bb=102Mpa,[σ-1]bb=60Mpa
2、按扭轉強度估算軸的最小直徑
單級齒輪減速器的低速軸為轉軸,輸出端與聯軸器相接,
從結構要求考慮,輸出端軸徑應最小,最小直徑為:
d≥C
查[2]表13-5可得,45鋼取C=118
則d≥118×(2.53/121.67)1/3mm=32.44mm
考慮鍵槽的影響以及聯軸器孔徑系列標准,取d=35mm
3、齒輪上作用力的計算
齒輪所受的轉矩:T=9.55×106P/n=9.55×106×2.53/121.67=198582 N
齒輪作用力:
圓周力:Ft=2T/d=2×198582/195N=2036N
徑向力:Fr=Fttan200=2036×tan200=741N
4、軸的結構設計
軸結構設計時,需要考慮軸系中相配零件的尺寸以及軸上零件的固定方式,按比例繪制軸系結構草圖。
(1)、聯軸器的選擇
可採用彈性柱銷聯軸器,查[2]表9.4可得聯軸器的型號為HL3聯軸器:35×82 GB5014-85
(2)、確定軸上零件的位置與固定方式
單級減速器中,可以將齒輪安排在箱體中央,軸承對稱布置
在齒輪兩邊。軸外伸端安裝聯軸器,齒輪靠油環和套筒實現
軸向定位和固定,靠平鍵和過盈配合實現周向固定,兩端軸
承靠套筒實現軸向定位,靠過盈配合實現周向固定 ,軸通
過兩端軸承蓋實現軸向定位,聯軸器靠軸肩平鍵和過盈配合
分別實現軸向定位和周向定位
(3)、確定各段軸的直徑
將估算軸d=35mm作為外伸端直徑d1與聯軸器相配(如圖),
考慮聯軸器用軸肩實現軸向定位,取第二段直徑為d2=40mm
齒輪和左端軸承從左側裝入,考慮裝拆方便以及零件固定的要求,裝軸處d3應大於d2,取d3=4 5mm,為便於齒輪裝拆與齒輪配合處軸徑d4應大於d3,取d4=50mm。齒輪左端用用套筒固定,右端用軸環定位,軸環直徑d5
滿足齒輪定位的同時,還應滿足右側軸承的安裝要求,根據選定軸承型號確定.右端軸承型號與左端軸承相同,取d6=45mm.
(4)選擇軸承型號.由[1]P270初選深溝球軸承,代號為6209,查手冊可得:軸承寬度B=19,安裝尺寸D=52,故軸環直徑d5=52mm.
(5)確定軸各段直徑和長度
Ⅰ段:d1=35mm 長度取L1=50mm

II段:d2=40mm
初選用6209深溝球軸承,其內徑為45mm,
寬度為19mm.考慮齒輪端面和箱體內壁,軸承端面和箱體內壁應有一定距離。取套筒長為20mm,通過密封蓋軸段長應根據密封蓋的寬度,並考慮聯軸器和箱體外壁應有一定矩離而定,為此,取該段長為55mm,安裝齒輪段長度應比輪轂寬度小2mm,故II段長:
L2=(2+20+19+55)=96mm
III段直徑d3=45mm
L3=L1-L=50-2=48mm
Ⅳ段直徑d4=50mm
長度與右面的套筒相同,即L4=20mm
Ⅴ段直徑d5=52mm. 長度L5=19mm
由上述軸各段長度可算得軸支承跨距L=96mm
(6)按彎矩復合強度計算
①求分度圓直徑:已知d1=195mm
②求轉矩:已知T2=198.58N?m
③求圓周力:Ft
根據課本P127(6-34)式得
Ft=2T2/d2=2×198.58/195=2.03N
④求徑向力Fr
根據課本P127(6-35)式得
Fr=Ft?tanα=2.03×tan200=0.741N
⑤因為該軸兩軸承對稱,所以:LA=LB=48mm

(1)繪制軸受力簡圖(如圖a)
(2)繪制垂直面彎矩圖(如圖b)
軸承支反力:
FAY=FBY=Fr/2=0.74/2=0.37N
FAZ=FBZ=Ft/2=2.03/2=1.01N
由兩邊對稱,知截面C的彎矩也對稱。截面C在垂直面彎矩為
MC1=FAyL/2=0.37×96÷2=17.76N?m
截面C在水平面上彎矩為:
MC2=FAZL/2=1.01×96÷2=48.48N?m
(4)繪制合彎矩圖(如圖d)
MC=(MC12+MC22)1/2=(17.762+48.482)1/2=51.63N?m
(5)繪制扭矩圖(如圖e)
轉矩:T=9.55×(P2/n2)×106=198.58N?m
(6)繪制當量彎矩圖(如圖f)
轉矩產生的扭剪文治武功力按脈動循環變化,取α=0.2,截面C處的當量彎矩:
Mec=[MC2+(αT)2]1/2
=[51.632+(0.2×198.58)2]1/2=65.13N?m
(7)校核危險截面C的強度
由式(6-3)

σe=65.13/0.1d33=65.13x1000/0.1×453
=7.14MPa< [σ-1]b=60MPa
∴該軸強度足夠。

主動軸的設計
1、選擇軸的材料 確定許用應力
選軸的材料為45號鋼,調質處理。查[2]表13-1可知:
σb=650Mpa,σs=360Mpa,查[2]表13-6可知:[σb+1]bb=215Mpa
[σ0]bb=102Mpa,[σ-1]bb=60Mpa
2、按扭轉強度估算軸的最小直徑
單級齒輪減速器的低速軸為轉軸,輸出端與聯軸器相接,
從結構要求考慮,輸出端軸徑應最小,最小直徑為:
d≥C
查[2]表13-5可得,45鋼取C=118
則d≥118×(2.64/473.33)1/3mm=20.92mm
考慮鍵槽的影響以系列標准,取d=22mm
3、齒輪上作用力的計算
齒輪所受的轉矩:T=9.55×106P/n=9.55×106×2.64/473.33=53265 N
齒輪作用力:
圓周力:Ft=2T/d=2×53265/50N=2130N
徑向力:Fr=Fttan200=2130×tan200=775N
確定軸上零件的位置與固定方式
單級減速器中,可以將齒輪安排在箱體中央,軸承對稱布置
在齒輪兩邊。齒輪靠油環和套筒實現 軸向定位和固定
,靠平鍵和過盈配合實現周向固定,兩端軸
承靠套筒實現軸向定位,靠過盈配合實現周向固定 ,軸通
過兩端軸承蓋實現軸向定位,
4 確定軸的各段直徑和長度
初選用6206深溝球軸承,其內徑為30mm,
寬度為16mm.。考慮齒輪端面和箱體內壁,軸承端面與箱體內壁應有一定矩離,則取套筒長為20mm,則該段長36mm,安裝齒輪段長度為輪轂寬度為2mm。
(2)按彎扭復合強度計算
①求分度圓直徑:已知d2=50mm
②求轉矩:已知T=53.26N?m
③求圓周力Ft:根據課本P127(6-34)式得
Ft=2T3/d2=2×53.26/50=2.13N
④求徑向力Fr根據課本P127(6-35)式得
Fr=Ft?tanα=2.13×0.36379=0.76N
⑤∵兩軸承對稱
∴LA=LB=50mm
(1)求支反力FAX、FBY、FAZ、FBZ
FAX=FBY=Fr/2=0.76/2=0.38N
FAZ=FBZ=Ft/2=2.13/2=1.065N
(2) 截面C在垂直面彎矩為
MC1=FAxL/2=0.38×100/2=19N?m
(3)截面C在水平面彎矩為
MC2=FAZL/2=1.065×100/2=52.5N?m
(4)計算合成彎矩
MC=(MC12+MC22)1/2
=(192+52.52)1/2
=55.83N?m
(5)計算當量彎矩:根據課本P235得α=0.4
Mec=[MC2+(αT)2]1/2=[55.832+(0.4×53.26)2]1/2
=59.74N?m
(6)校核危險截面C的強度
由式(10-3)
σe=Mec/(0.1d3)=59.74x1000/(0.1×303)
=22.12Mpa<[σ-1]b=60Mpa
∴此軸強度足夠

(7) 滾動軸承的選擇及校核計算
一從動軸上的軸承
根據根據條件,軸承預計壽命
L'h=10×300×16=48000h
(1)由初選的軸承的型號為: 6209,
查[1]表14-19可知:d=55mm,外徑D=85mm,寬度B=19mm,基本額定動載荷C=31.5KN, 基本靜載荷CO=20.5KN,
查[2]表10.1可知極限轉速9000r/min

(1)已知nII=121.67(r/min)

兩軸承徑向反力:FR1=FR2=1083N
根據課本P265(11-12)得軸承內部軸向力
FS=0.63FR 則FS1=FS2=0.63FR1=0.63x1083=682N
(2) ∵FS1+Fa=FS2 Fa=0
故任意取一端為壓緊端,現取1端為壓緊端
FA1=FS1=682N FA2=FS2=682N
(3)求系數x、y
FA1/FR1=682N/1038N =0.63
FA2/FR2=682N/1038N =0.63
根據課本P265表(14-14)得e=0.68
FA1/FR1<e x1=1 FA2/FR2<e x2=1
y1=0 y2=0
(4)計算當量載荷P1、P2
根據課本P264表(14-12)取f P=1.5
根據課本P264(14-7)式得
P1=fP(x1FR1+y1FA1)=1.5×(1×1083+0)=1624N
P2=fp(x2FR1+y2FA2)= 1.5×(1×1083+0)=1624N
(5)軸承壽命計算
∵P1=P2 故取P=1624N
∵深溝球軸承ε=3
根據手冊得6209型的Cr=31500N
由課本P264(14-5)式得
LH=106(ftCr/P)ε/60n
=106(1×31500/1624)3/60X121.67=998953h>48000h
∴預期壽命足夠

二.主動軸上的軸承:
(1)由初選的軸承的型號為:6206
查[1]表14-19可知:d=30mm,外徑D=62mm,寬度B=16mm,
基本額定動載荷C=19.5KN,基本靜載荷CO=111.5KN,
查[2]表10.1可知極限轉速13000r/min
根據根據條件,軸承預計壽命
L'h=10×300×16=48000h
(1)已知nI=473.33(r/min)
兩軸承徑向反力:FR1=FR2=1129N
根據課本P265(11-12)得軸承內部軸向力
FS=0.63FR 則FS1=FS2=0.63FR1=0.63x1129=711.8N
(2) ∵FS1+Fa=FS2 Fa=0
故任意取一端為壓緊端,現取1端為壓緊端
FA1=FS1=711.8N FA2=FS2=711.8N
(3)求系數x、y
FA1/FR1=711.8N/711.8N =0.63
FA2/FR2=711.8N/711.8N =0.63
根據課本P265表(14-14)得e=0.68
FA1/FR1<e x1=1 FA2/FR2<e x2=1
y1=0 y2=0
(4)計算當量載荷P1、P2
根據課本P264表(14-12)取f P=1.5
根據課本P264(14-7)式得
P1=fP(x1FR1+y1FA1)=1.5×(1×1129+0)=1693.5N
P2=fp(x2FR1+y2FA2)=1.5×(1×1129+0)= 1693.5N
(5)軸承壽命計算
∵P1=P2 故取P=1693.5N
∵深溝球軸承ε=3
根據手冊得6206型的Cr=19500N
由課本P264(14-5)式得
LH=106(ftCr/P)ε/60n
=106(1×19500/1693.5)3/60X473.33=53713h>48000h
∴預期壽命足夠

七、鍵聯接的選擇及校核計算
1.根據軸徑的尺寸,由[1]中表12-6
高速軸(主動軸)與V帶輪聯接的鍵為:鍵8×36 GB1096-79
大齒輪與軸連接的鍵為:鍵 14×45 GB1096-79
軸與聯軸器的鍵為:鍵10×40 GB1096-79
2.鍵的強度校核
大齒輪與軸上的鍵 :鍵14×45 GB1096-79
b×h=14×9,L=45,則Ls=L-b=31mm
圓周力:Fr=2TII/d=2×198580/50=7943.2N
擠壓強度: =56.93<125~150MPa=[σp]
因此擠壓強度足夠
剪切強度: =36.60<120MPa=[ ]
因此剪切強度足夠
鍵8×36 GB1096-79和鍵10×40 GB1096-79根據上面的步驟校核,並且符合要求。

『叄』 設計帶式輸送機傳動裝置F=3200N,V=1.7m/s 滾筒直徑D=400mm

這個我可以幫你做
也有類似成品 可以給你做參考
不會的地方 免費咨詢

『肆』 試設計一滾筒帶式輸送機的普通v帶傳動裝置。已知其電機額定功率p=5kw,轉速n1=960r/min

(1)確定計算功率,得工況系數KA=1.2,故有Pca=KAP=1.2×7kW=8.4kW
(2)選擇V帶型號,根據=8.4kW,n1=960r/min,選用B型。
(3)確定帶輪直徑並驗算帶速,初選小帶輪基準直徑dd1180mm。驗算帶速:v=m/s=9.05m/s,在5m/s~30m/s之間,故帶速合適。取滑動率ε=0.02,可得大帶輪的直徑:dd2=mm=513.2mm故圓整dd2=500mm。減速器實際轉速:n2=r/min=338.7r/min誤差:δ=×100%=2.6%<5%故dd1=180mm,dd2=500mm合適。
(4)確定中心距和基準長度根據0.7(dd1+dd2)≤a0≤2(dd1+dd2),初定中心距a0=550mm。計算帶的基準長度:Ld0=2a0+mm=2214.2mm取基準長度Ld=2240mm。實際中心距為:a=a0+mm=562.9mm圓整中心距為:a=560mm。
(5)驗算小帶輪包角α1=180°-×57.3°=147.3°>120°,合適。
(6)計算V帶根數由dd1=180mm,則單根V帶的額定功率:Pr=(P0+△P0)?Kα?KL=(3.25+0.30)×0.914×1.00kW=3.245kW故根數z==2.6,取3根。
(7)計算單根V帶上的初拉力最小值:B型帶的單位長度質量q=0.18ks/m,則有:
(8)計算壓軸力:(Fp)min=2z(F0)minsin=2×3×283×sinN=1628N。

『伍』 誰能告訴我什麼是帶式輸送機傳動裝置 具體指的是哪部分

可伸縮膠帶輸送機與普通膠帶輸送機的工作原理一樣,是以膠帶作為牽引承載機的連續運輸設備,它與普通膠帶輸送機相比增加了儲帶裝置和收放膠帶裝置等,當游動小車向機尾一端移動時,膠帶進入儲帶裝置內,機尾回縮;反之則機尾延伸,因而使輸送機具有可伸縮的性能。
結構概述

伸縮膠帶輸送機分為固定部分和非固定部分兩大部分。固定部分由機頭傳動裝置、儲帶裝置、收放膠帶裝置等組成;非固定部分由無螺栓連接的快速可拆支架、機尾等組成。

1、 機頭傳動裝置由傳動捲筒、減速器、液力聯軸器、機架、卸載滾筒、清掃器組成。

n 機頭傳動裝置是整個輸送機的驅動部分,兩台電機通過液力聯軸器、減速器分別傳遞轉距給兩個傳動滾筒(也可以用兩個齒輪串聯起來傳動)。用齒輪傳動時,應卸下一組電機、液力聯軸器和減速器。

n 液力聯軸器為YL-400型,它由泵輪、透平輪、外殼、從動軸等構成,其特點是泵輪側有一輔助室,電機啟動後,液流透過小孔進入工作室,因而能使負載比較平衡地啟動而電機則按近於堅載啟動,工作時殼體內加20號機械油,充油量為14m3,減速器採用上級齒輪減速,第一級為圓弧錐齒輪,第二、第三級為斜齒和直齒圓柱齒輪,總傳動比為25.564,與SGW-620/40T型刮板輸送機可通用互換,減速器用螺栓直接與機架連接。

n 傳動捲筒為焊接結構,外徑為Φ500毫米,捲筒表面有特製的硫化膠層,因此對提高膠帶與滾筒的eua值,防止打滑、減少初張力,具有較好的效果。

n 卸載端和頭部清掃器,帶式逆止器,便於卸載,機頭最前部有外伸的卸載臂,由卸載滾筒和伸出架組成,滾筒安裝在伸出架上,其軸線位置可通過軸承兩側的螺栓進行調節,以調整膠帶在機頭部的跑偏,在卸載滾筒的下部裝有兩道清掃器,由於清掃器刮板緊壓在膠帶上,故可除去粘附著的碎煤,帶式逆止器以防止停車時膠帶倒轉。

n 機架為焊接結構,用螺栓組裝,機頭傳動裝置所有的零部件均安裝在機架上。電動機和減速器可根據具體情況安裝在機架的左側或右側。

2、 儲帶裝置包括儲帶轉向架、儲帶倉架、換向滾筒、托輥小車、游動小車、張緊裝置、張緊絞車等。

n 儲帶裝置的骨架由框架和支架用螺栓連接而成,在機頭傳動裝置兩具轉框架上裝有三個固定換向滾筒與游動小車上的兩個換向滾筒一起供膠帶在儲帶裝置中往復導向,架子上面安裝固定槽形托輥和平托輥,以支撐膠帶,架子內側有軌道,供托輥不畫和游動小車行走。

n 固定換向滾筒為定軸式,用於儲帶裝置進行儲帶時,用以主承膠帶,使其懸垂度不致過大,托輥小車隨游動小車位置的變動,需要用人力拉出或退回。

n 游動小車由車架、換向滾筒、滑輪組、車輪等組成,滑輪組裝在車身後都與另一滑輪組相適應,其位置可保證受力時車身不被抬起,這樣,對保持車身穩定,防止換向滾筒上的膠帶跑偏效果較好,車身下部還裝著止爬鉤,用以防止車輪脫軌掉道。

n 游動小車向左側移動時,膠帶放出,機身伸長,游動小車向右側移動時,膠帶儲存,機身縮短,通過鋼絲繩拉緊游動小車可使膠帶得到適當的張緊度。

n 在儲帶裝置的後部,設有張緊絞車,膠帶張力指示器和張力緩沖器,張力緩沖器的作用是使輸送機(在起動時讓膠帶始終保持一定的張力,以減少空載膠帶的不適度和膠帶層間的拍打)。

3、 收放膠帶裝置位於張緊絞車的後部,它由機架、調心托輥、減速器、電動機、旋桿等組成,其作用是將膠帶增補到輸送機機身上或從輸送機機身取下,機架的兩端和後端,各裝一旋桿,當增加或減少膠帶時用以夾緊主膠帶,調心托輥組供捲筒收放膠帶時導向,工作時將捲筒推進機架的一端用尾架頂起,另一端頂在減速器出軸的頂尖上,開動電動機通過減速器出軸的撥盤帶動捲筒,收卷膠帶,放出膠帶,放出膠帶時不開電機由外拖動捲筒反轉,在不工作時活動軌可用插銷掛在機架上,以縮小寬度,在活動軌上方應設置起重裝置懸弔捲筒,巷道寬度可視具體情況適當拓寬,以利膠帶收入時操作。

4、 中間架由無螺栓連接的快速可拆支架,由H型支架、鋼管、平托輥和掛鉤式槽形托輥、「V」型托輥等組成,是機器的非固定部分,鋼管可作為拆卸的機身,用柱銷固裝在鋼管上,用小錘可以打動,掛鉤式槽形托輥膠接式,槽形角30°,用掛鉤掛在鋼管的柱銷上,掛鉤上制動的圓弧齒槽,托輥就是通過齒槽掛在柱銷上的,可向前向後移動,以調節托輥位置控制膠帶跑偏。

5、 上料裝置、下料裝置;上料裝置安裝在收放裝置後邊,由轉向轉導向接上料段,運送的物料從此段裝上運至下料段,下料裝置由下料段一組斜托輥將物料卸下,下料段直接極為,機尾由導軌(Ⅰ、Ⅱ、Ⅲ)和機尾滾筒座組成,導軌一端用螺栓固定在中支座上,並與另一導軌的前端用柱銷膠接,藉以適應底板的不平,機尾滾筒與儲帶裝置中的滾筒結構相同,能互換,其軸線位置可用螺栓調節,以調整膠帶中在機尾的跑偏,機尾滾筒前端設有刮煤板,可使滾筒表面的碎煤或粉煤刮下,並收集泥槽中,用特製的拉泥板取出,機尾加上裝有緩沖托輥組,受料時,可降低塊煤對膠帶的沖擊,有利於提高膠帶壽命

『陸』 有一傳動裝置,液壓馬達加減速機。驅動15噸重量滾筒旋轉,需要多大扭矩,如何計算。

這個就是 混凝土攪拌車用的減速機 可以問問 傳菱精密

『柒』 試設計一滾筒帶式輸送機的普通v帶傳動裝置。已知其電機額定功率p=5kw,轉速n1=960r/min

如果需要減速機的話,可以提供相關的類似圖紙

『捌』 帶式輸送機傳動裝置設計工作拉力2100N 滾筒轉速1.75M/S 滾筒直徑390

有類似的,要改數據,要麼,有圖有設計,很全

『玖』 設計膠帶輸送機的傳動裝置

一、摩擦傳動理論
帶式輸送機所需的牽引力是通過驅動裝置中的驅動滾筒與輸送帶間的摩擦作用而傳遞的,因而稱為摩擦傳動。為確保作用力的傳遞和牽引構件不在驅動輪上打滑,必須滿足下列條件:
(1)牽引構件具有足夠的張力;
(2)牽引帶與驅動滾筒的接觸表面有一定的粗糙度;
(3)牽引帶在驅動輪上有足夠大的圍包角。
圖l—22為一台帶式輸送機的簡圖。當驅動滾筒按順時針方向轉動時,通過它與輸送帶間的摩擦力驅動輸送帶沿箭頭方向運動。

在輸送帶不工作時,帶子上各點張力是相等的。當輸送帶運動時,各點張力就不等了。其大小取決於張緊力P0、運輸機的生產率、輸送帶的速度、寬度、輸送機長度、傾角、托輥結構性能等等。故輸送帶的張力由l點到4點逐漸增加,而在繞經驅動滾筒的主動段,由4點到l點張力逐漸減小。必須使輸送帶在驅動滾筒上的趨入點張力Sn大於奔離點張力S1,方能克服運行阻力,使輸送帶運動。此兩點張力之差,即為驅動滾筒傳遞給輸送帶的牽引力W0。在數值上它等於輸送帶沿驅動滾筒圍包弧上摩擦力的總和,即
W0=Sn-S1 (1—1)
趨入點張力Sn隨輸送帶上負載的增加而增大,當負載過大時,致使(Sn-S1)之差值大於摩擦力,此時輸送帶在驅動滾筒上打滑而不能正常工作。該現象在選煤廠中可經常遇到。
Sn與S1應保持何種關系方能防止打滑,保證輸送帶正常工作,這是將要研究的問題。
在討論前,先作如下假設:
(1)假設輸送帶是理想的撓性體,可以任意彎曲,不受彎曲應力影響;
(2)假設繞經驅動滾筒上的輸送帶的重力和所受的離心力忽略不計(因與輸送帶上張力和摩擦力相比數值很小)。
如圖l—22b所示,在驅動滾筒上取一單元長為dl的輸送帶,對應的中心角即圍包角為dα。當滾筒回轉時,作用在這小段輸送帶兩端張力分別為S及S+dS。在極限狀態下,即摩擦力達到最大靜摩擦力時,dS應為正壓力dN與摩擦系數μ的乘積,即
dS=μdN
dN為滾筒給輸送帶以上的作用力總和。
列出該單元長度輸送帶受力平衡方程式為

由於dα很小,故sin(dα/2)≈(dα/2),cos(dα/2)≈1,上述方程組可簡化為

略去二次微量:dSdα,解上述方程組得 .
通過在這段單元長度上輸送帶的受力分析,可以得到,當摩擦力達到最大極限值時,欲保持輸送帶不打滑,各參數間的關系應滿足dS/S=μdα。以定積分方法解之,即可得出輸送帶在整個驅動滾筒圍包弧上,在不打滑的極限平衡狀態下,趨入點的Sn與奔離點的Sk之間的關系

解上式,得
式中 e——自然對數的底,e=2.718;
μ——驅動滾筒與輸送帶之間的摩擦系數;
——輸送帶在驅動滾筒上趨入點的最大張力;
S1一一輸送帶在驅動滾筒奔離點的張力;
α——輸送帶在驅動滾筒上的圍包角,弧度。
上式)即撓性體摩擦驅動的歐拉公式。根據歐拉公式可以繪出在驅動滾筒圍包弧上輸送帶張力變化的曲線,見圖l—23中的bca'。

從上述分析可知,歐拉公式只是表達了趨入點張力為最大極限值時的平衡狀態。而實際生產中載荷往往是不均衡的;而且,在歐拉公式討論中,將輸送帶看作是不變形的撓性體,實際上輸送帶(如橡膠帶)是一個彈性體,在張力作用下,要產生彈性伸長,其伸長量與張力值大小成正比。因此,輸送帶沿驅動滾筒圓周上的分布規律見圖1—23中bca曲線變化(而不是bca』)。在BC弧內,輸送帶張力按歐拉公式之規律變化;到c點後,張力達到Sn值,在CA弧內,Sn值保持不變。也就是說為了防止輸送帶在驅動滾筒上打滑,應使趨入點的實際張力Sn小於極限狀態下的最大張力值,即

既然輸送帶是彈性體,那麼,在受力後就要產生彈性伸長變形。這是彈性體與剛性體最本質的區別。受力愈大,變形也愈大,而輸送帶張力是由趨入點向奔離點逐漸減小,即在趨入點輸送帶被拉長的部分,在向奔離點運動過程中,隨著張力的減小而逐漸收縮,從而使輸送帶與滾筒問產生相對滑動,這種滑動稱為彈性滑動或彈性蠕動(它與打滑現象不同)。顯然,彈性滑動只發生於輸送帶在驅動滾筒圍包弧上有張力變化的一段弧內。產生彈性滑動的這一段圍包弧,稱為滑動弧,即圖l-23中的BC弧,滑動弧所對應的中心角稱為滑動角,即λ角;不產生彈性滑動的圍包弧,稱為靜止弧(圖中的CA弧),靜止弧所對應的中心角,稱為靜止角,即圖中γ角。滑動弧兩端的張力差,即為驅動滾筒傳遞給輸送帶的牽引力。由此可見,只有存在滑動弧,驅動滾筒才能通過摩擦將牽引力傳遞給輸送帶;在靜止弧內不傳遞牽引力,但它保證驅動裝置具有一定的備用牽引力。
當輸送機上負載增加時,趨入點張力Sn增大,滑動弧及對應的滑動角也相應均要增大,而靜止弧及靜止角則隨之減小。圖1—23中的C點向A點靠攏,當趨入點張力Sn增大至極限值Snmax時,則整個圍包弧BA弧都變成了滑動弧,即C點與A點重合,整個圍包角都變成了滑動角(λ=α,γ=0)。這時驅動滾筒上傳送的牽引力達到最大值的極限摩擦力:
(1—4)
若輸送機上的負荷再增加,即 ,這時.輸送帶將在驅動滾筒上打滑,輸送機則不能正常工作。
二、提高牽引力的途徑
根據庫擦傳動的理論及式(1—4)均可以看出,提高帶式輸送機的牽引力可以採用以下三種方法:
(1)增加奔離點的張力S1,以提高牽引力。具體的措施是通過張緊輸送機的拉緊裝置來實現。隨著S1的增大,輸送帶上的最大張力也相應增大,就要求提高輸送帶的強度,這種做法是不經濟的,在技術上也不合理。
(2)改善驅動滾筒表面的狀況,以得到較大的摩擦系數μ,由表1—29可知,膠面滾筒的摩擦系數比光面滾筒大,環境乾燥時比潮濕時大,所以,可以採用包膠、鑄塑,或者採用在膠面上壓制花紋的方法來提高摩擦系數。
(3)採用增加輸送帶在驅動滾筒上的圍包角來提高牽引力。其具體措施是增設改向滾筒(即增面輪)可使包角由180°增至210°-240°必要時採用雙滾筒驅動。
三、剛性聯系雙滾筒驅動牽引力及其分配比朗確定
剛性聯系雙滾筒和單滾筒相比,增加一個主動滾筒:當兩個滾筒的直徑相等時其角度是相同的(圖1—24)。從圖l—24中可以看出,輸送帶由滾筒②的C點到滾筒①的B點時,這兩點之間除了一小段(BC段)膠帶的臼重外,張力沒有任何變化,故B點可看作C點的繼續。因而剛性聯系的雙滾筒與單滾筒實質上是相同的,因為滑動弧隨著張力增大而增大這一規律對它同樣適用的。

S1及μ值在一定的情況下,而且μl=μ2,只有當滾筒②傳遞的牽引力達到極限值時,滾筒①才開始傳遞牽引力。設λ1、λ2、γ1、γ2、α1、α2分別為第①及第②滾筒的滑動角,靜止角及圍包角、則在λ2=α2,λ1=0的情況下,靜止弧僅存在於滾筒①上。當λ2=α2時,λ1=α1-γ1時,輸送帶在兩個主動滾筒上張力變化曲線如圖1—24所示。
滾筒②可能傳遞的最大牽引力為

滾筒①可能傳遞的最大牽引力為

式中 S』——兩滾筒間輸送帶上的張力。
驅動裝置可能傳遞總的最大牽引力為

式中 α——總圍包角
兩滾筒可能傳遞的最大牽引力之比為

在一般情況下: 因而
(1-5)
顯然,當第①滾筒上傳遞的牽引力未達到極限時,即 時,則兩驅動滾筒傳遞的牽引力之比為

由上式可知,當總的牽引力W0和張力S1一定時,若μ值增加,則第⑧個驅動滾筒傳遞的牽引力WII增大,而WI減小。反之,若μ值減小時,則WI增大(因W0=WI+WII為一定值)。
由此可以看出:剛性聯系的雙滾筒驅動裝置,其滾筒牽引力的分配比值隨摩擦系數的變化而改變。但由式(1-5)可知,驅動滾筒①可能傳遞的最大牽引力等於滾筒⑨的 倍這一比值是不變的。
剛性聯系的雙驅動滾筒缺點是已設計的牽引力分配比值,只適用於一定的荷載和一定的摩擦系數。當荷載變化,其比例也就被破壞了。此外,還由於大氣潮濕程度的變化,兩滾筒的表面清潔程度的不同,摩擦系數也發生了變化,其分配比實際上不可能保持定值。

『拾』 帶式輸送機傳動裝置的結構組成

伸縮膠帶輸送機分為固定部分和非固定部分兩大部分。 固定部分由機頭傳動裝置、儲帶裝置、收放膠帶裝置等組成;非固定部分由無螺栓連接的快速可拆支架、機尾等組成。
1、 機頭傳動裝置
機頭傳動裝置由傳動捲筒、減速器、液力聯軸器、機架、卸載滾筒、清掃器組成。
機頭傳動裝置是整個輸送機的驅動部分,兩台電機通過液力聯軸器、減速器分別傳遞轉距給兩個傳動滾筒(也可以用兩個齒輪串聯起來傳動)。用齒輪傳動時,應卸下一組電機、液力聯軸器和減速器。
液力聯軸器為YL-400型,它由泵輪、透平輪、外殼、從動軸等構成,其特點是泵輪側有一輔助室,電機啟動後,液流透過小孔進入工作室,因而能使負載比較平衡地啟動而電機則按近於堅載啟動,工作時殼體內加20號機械油,充油量為14m3,減速器採用上級齒輪減速,第一級為圓弧錐齒輪,第二、第三級為斜齒和直齒圓柱齒輪,總傳動比為25.564,與SGW-620/40T型刮板輸送機可通用互換,減速器用螺栓直接與機架連接。
傳動捲筒為焊接結構,外徑為Φ500毫米,捲筒表面有特製的硫化膠層,因此對提高膠帶與滾筒的eua值,防止打滑、減少初張力,具有較好的效果。
卸載端、頭部清掃器和帶式逆止器,便於卸載,機頭最前部有外伸的卸載臂,由卸載滾筒和伸出架組成,滾筒安裝在伸出架上,其軸線位置可通過軸承兩側的螺栓進行調節,以調整膠帶在機頭部的跑偏,在卸載滾筒的下部裝有兩道清掃器,由於清掃器刮板緊壓在膠帶上,故可除去粘附著的碎煤,帶式逆止器以防止停車時膠帶倒轉。
機架為焊接結構,用螺栓組裝,機頭傳動裝置所有的零部件均安裝在機架上。電動機和減速器可根據具體情況安裝在機架的左側或右側。
2、 儲帶裝置
儲帶裝置包括儲帶轉向架、儲帶倉架、換向滾筒、托輥小車、游動小車、張緊裝置、張緊絞車等。
儲帶裝置的骨架由框架和支架用螺栓連接而成,在機頭傳動裝置兩具轉框架上裝有三個固定換向滾筒與游動小車上的兩個換向滾筒一起供膠帶在儲帶裝置中往復導向,架子上面安裝固定槽形托輥和平托輥,以支撐膠帶,架子內側有軌道,供托輥小車和游動小車行走。
固定換向滾筒為定軸式,用於儲帶裝置進行儲帶時,用以主承膠帶,使其懸垂度不致過大,托輥小車隨游動小車位置的變動,需要用人力拉出或退回。
游動小車由車架、換向滾筒、滑輪組、車輪等組成,滑輪組裝在車身後都與另一滑輪組相適應,其位置可保證受力時車身不被抬起,這樣,對保持車身穩定,防止換向滾筒上的膠帶跑偏效果較好,車身下部還裝著止爬鉤,用以防止車輪脫軌掉道。
游動小車向左側移動時,膠帶放出,機身伸長,游動小車向右側移動時,膠帶儲存,機身縮短,通過鋼絲繩拉緊游動小車可使膠帶得到適當的張緊度。
在儲帶裝置的後部,設有張緊絞車,膠帶張力指示器和張力緩沖器,張力緩沖器的作用是使輸送機(在起動時讓膠帶始終保持一定的張力,以減少空載膠帶的不適度和膠帶層間的拍打)。
3、 收放膠帶裝置
收放膠帶裝置位於張緊絞車的後部,它由機架、調心托輥、減速器、電動機、旋桿等組成,其作用是將膠帶增補到輸送機機身上或從輸送機機身取下,機架的兩端和後端,各裝一旋桿,當增加或減少膠帶時用以夾緊主膠帶,調心托輥組供捲筒收放膠帶時導向。工作時將捲筒推進機架的一端用尾架頂起,另一端頂在減速器出軸的頂尖上,開動電動機通過減速器出軸的撥盤帶動捲筒,收卷膠帶,放出膠帶,放出膠帶時不開電機由外拖動捲筒反轉,在不工作時活動軌可用插銷掛在機架上,以縮小寬度,在活動軌上方應設置起重裝置懸弔捲筒,巷道寬度可視具體情況適當拓寬,以利膠帶收入時操作。 中間架:是無螺栓連接的快速可拆支架,由H型支架、鋼管、平托輥和掛鉤式槽形托輥、「V」型托輥等組成,是機器的非固定部分,鋼管可作為拆卸的機身,用柱銷固裝在鋼管上,用小錘可以打動,掛鉤式槽形托輥膠接式,槽形角30°,用掛鉤掛在鋼管的柱銷上,掛鉤上制動的圓弧齒槽,托輥就是通過齒槽掛在柱銷上的,可向前向後移動,以調節托輥位置控制膠帶跑偏。
上料裝置、下料裝置;上料裝置安裝在收放裝置後邊,由轉向轉導向接上料段,運送的物料從此段裝上運至下料段,下料裝置由下料段一組斜托輥將物料卸下,下料段直接機尾,機尾由導軌(Ⅰ、Ⅱ、Ⅲ)和機尾滾筒座組成,導軌一端用螺栓固定在中支座上,並與另一導軌的前端用柱銷膠接,藉以適應底板的不平,機尾滾筒與儲帶裝置中的滾筒結構相同,能互換,其軸線位置可用螺栓調節,以調整膠帶中在機尾的跑偏,機尾滾筒前端設有刮煤板,可使滾筒表面的碎煤或粉煤刮下,並收集泥槽中,用特製的拉泥板取出,機尾加上裝有緩沖托輥組,受料時,可降低塊煤對膠帶的沖擊,有利於提高膠帶壽命。

閱讀全文

與滾筒傳動裝置相關的資料

熱點內容
去國外調試設備怎麼報價 瀏覽:759
查血糖儀器上顯示h1是什麼意思 瀏覽:950
PMU屬不屬於安全自動裝置 瀏覽:817
五菱榮光工具箱在哪裡 瀏覽:405
vs工具箱怎麼停靠在左側 瀏覽:185
工地防塵網設備多少錢一套 瀏覽:932
鑄造混合爐的配料怎麼算 瀏覽:16
運通免維護軸承用什麼黃油 瀏覽:132
蠟式節溫器中使閥門開閉的部件是什麼 瀏覽:397
排塵設備怎麼安裝 瀏覽:206
大運貨車空調製冷不行怎麼回事 瀏覽:725
沈陽軸承磨削砂輪多少錢 瀏覽:311
健身房的器材分別怎麼練 瀏覽:121
眾泰組合儀表多少錢 瀏覽:212
鋼瓶為什麼不能猛開閥門 瀏覽:448
廈門upvc塑膠閥門廠 瀏覽:812
中國有多少自動化設備企業 瀏覽:197
一點五匹的製冷用多少電 瀏覽:577
我的世界中怎樣用紅石製作自動裝置 瀏覽:593
荒野行東被封設備了怎麼辦 瀏覽:878