㈠ 索八能不能安裝機械增壓裝置
你好
可以的
如果 改裝店家 技術夠好的話
記住 改裝店家技術要好
以上
㈡ 速度與激情里唐老大開得道奇戰馬機蓋上的裝置是什麼是渦輪增壓嗎
是把空氣吸入發動機來增壓的美國經典肌肉車是不用渦輪增壓的
㈢ 渦輪增壓和機械增壓有什麼不同
機械增壓系統機械增壓系統:這個裝置安裝在發動機上並由皮帶與發動機曲軸相連接,從發動機輸出軸獲得動力來驅動增壓器的轉子旋轉,從而將空氣增壓吹到進氣岐道里。其優點是渦輪轉速和發動機相同,因此沒有滯後現象,動力輸出非常流暢。但是由於裝在發動機轉動軸裡面,因此還是消耗了部分動力,增壓出來的效果並不高。 廢氣渦輪增壓系統廢氣渦輪增壓系統:這就是我們平時最常見的渦輪增壓裝置了,增壓器與發動機無任何機械聯系,實際上是一種空氣壓縮機,通過壓縮空氣來增加進氣量。它是利用發動機排出的廢氣慣性沖力來推動渦輪室內的渦輪,渦輪又帶動同軸的葉輪,葉輪壓送由空氣濾清器管道送來的空氣,使之增壓進入氣缸。當發動機轉速增快,廢氣排出速度與禍輪轉速也同步增快,葉輪就壓縮更多的空氣進入氣缸,空氣的壓力和密度增大可以燃燒更多的燃料,相應增加燃料量就可以增加發動機的輸出功率。一般而言,加裝廢氣渦輪增壓器後的發動機功率及扭矩要增大20%—30%。但是廢氣渦輪增壓器技術也有其必須注意的地方,那就是泵輪和渦輪由一根軸相連,也就是轉子,發動機排出的廢氣驅動泵輪,泵輪帶動渦輪旋轉,渦輪轉動後給進氣系統增壓。增壓器安裝在發動機的排氣一側,所以增壓器的工作溫度很高,而且增壓器在工作時轉子的轉速非常高,可達到每分鍾十幾萬轉,如此高的轉速和溫度使得常見的機械滾針或滾珠軸承無法為轉子工作,因此渦輪增壓器普遍採用全浮動軸承,由機油來進行潤滑,還有冷卻液為增壓器進行冷卻。 復合增壓系統復合增壓系統:即廢氣渦輪增壓和機械增壓並用,機械增壓有助於低轉速時的扭力輸出,但是高轉速時功率輸出有限;而廢氣渦輪增壓在高轉速時擁有強大的功率輸出,但低轉速時則力不從心。發動機的設計師們於是就設想把機械增壓和渦輪增壓結合在一起,來解決兩種技術各自的不足,同時解決低速扭矩和高速功率輸出的問題。這種裝置在大功率柴油機上採用比較多,汽油機上採用雙增壓系統(復合增壓系統)的車型還比較少,大眾的1.4 TSI發動機(這款發動機兼顧了低速扭力輸出和高速功率輸出。在低轉速時,由機械增壓提供大部分的增壓壓力,在1 500rpm時,兩個增壓器同時提供增壓壓力。隨著轉速的提高,渦輪增壓器能使發動機獲得更大的功率,與此同時,機械增壓器的增壓壓力逐漸降低。機械增壓通過電磁離合器控制,它與水泵集合在一起。在轉速超過3500rpm時,由渦輪增壓器提供所有的增壓壓力,此時機械增壓器在電磁離合器的作用下完全與發動機分離,防止消耗發動機功率)採用了了這一系統。其發動機輸出功率大、燃油消耗率低、雜訊小,只是結構太復雜,技術含量高,維修保養不容易,因此很難普及。
㈣ 賽歐3可以加裝機械增壓裝置
你好,這個是可以的,但是加裝完以後效果不是很大,不建議你加裝機械增壓。
㈤ 速度與激情中道奇車發動機蓋上面的裝置是什麼
不要聽前面那幾復位的回答制他們什麼都不懂那是機械增壓也稱基本式機械增壓基本式機械增壓(RootsSuperchargers):你經常能在60到70年代的肌肉車上看到看到這東西,它從發動機蓋上的突非常明顯,這種機械增壓將空氣吸入增壓器內部,有兩個螺旋狀葉片將空氣壓縮,之後送到進氣歧管里。這種機械增壓能提供強大的扭矩輸出。它在加速比賽和街道競賽中十分流行。
㈥ 2014卡宴中規4,8gts是否機械增壓裝置
不是,4.8的是渦輪增壓,3.0才是機械增壓【汽車有問題,問汽車大師。4S店專業技師,10分鍾解決。】
㈦ 風力發電機增加它的儲能裝置有什麼好處
風力發電機受環境影響比較大,風力小的時候,電量容易供應不足!如果增加儲能,版那麼供電不足的權時候,可以使用儲備能源!
好好學習,天天向上。
只要用心去學,你就是最好的。
金猴獻瑞,吉星臨門。
祝你學業進步,馬到功成。
㈧ 機械增壓與渦輪增壓一般是同時使用的嗎還是只有其一
兩種增壓方式一般是分開使用的。渦輪增壓(Turbo)是靠發動機產生的廢氣推動渦輪運轉而帶來額外功率,但因需要速度較大的廢氣流,所以發動機只有高轉速渦輪才有用武之地,低轉速下渦輪增壓發動機扭矩明顯不足,這個現象稱為"渦輪遲滯"。而機械增壓則是通過一套皮帶-齒輪裝置的運作提供額外功率,低速扭矩表現出色,但因機械強度有限,增功率無法與渦輪增壓相提並論。現在也有同時使用渦輪增壓與機械增壓的發動機,那就是大眾的TSI(注意,不是國內的TFSI)。TSI雙增壓發動機同時使用機械增壓與渦輪增壓兩套增壓裝置,低速時機械增壓器工作,而高速時渦輪增壓器工作,很好地實現了二者功能的互補。目前使用雙增壓的發動機只有大眾的1.4TSI一款(這是2008年世界十佳發動機之一),裝配於POLO GTI,Scirocco等較小的車型上。
㈨ 空分裝置循環壓縮機增壓時有哪些風險
循環壓縮機一般用於液體空分、內壓縮流程,由於機器本身的控制一般相對都比內較完善,所以操作中本容身並沒有風險,但由於增壓機的起動和停機對系統不僅會造成壓力的波動,正常調節壓力、流量時,如果過快,幅度過大,系統閥門的調節跟不上,故應當設定並保證增減的幅度,使之對系統影響是可控的,但緊急放散的情況除外。增壓機如果採用離心式壓縮機時,要保證最小流量,防止喘振。
㈩ 機械增壓進氣裝置
機械增壓進化論 GM在量產跑車考維特上裝載的LS9機械增壓發動機。 一台往復式活塞內燃機的存在意義,就是吸,壓,爆,排。而發動機的吸入的空氣則是單純的依靠活塞從上止點往下止點運動的過程中,所產生的壓差來獲取,這么看來,發動機獲得空氣的手段極其的單一,而且,這樣的工作效率也並不是發動機本身所具有的,作為市面上大部分的發動機,汽油機也好,柴油機也好,空氣這種平常看似微乎其微的東西對於每一次缸內爆燃後所產生動力的多少實在是太過於重要了。空氣中,氧的含量只有僅僅的23%,而每分鍾單靠壓差來獲得的空氣總是有限的,不管你手中有台在賽道上疾馳的跑車,或是在野外征服各種復雜地形的越野車,你都希望當你的右腳踏在油門踏板上的時候,澎湃洶涌的動力則是發動機給你最直接的回饋。所以,在汽車工業發展的數百年歷程上,無數的汽車工程師絞盡腦汁來讓發動機在需要的時候獲得更多的空氣。 用在GM旗下土星2006款Ion上的Eaton魯氏增壓器。 離距第一台內燃機驅動車輛問世不到幾十年的時候,德國工程師戴姆勒通過氣泵工作原理的啟發,發明了機械式增壓。其實戴姆勒發明這個東西的初衷是很簡單的,發動機需要大量的空氣來提高燃燒性能,如果有一樣東西在發動機進氣部分能不斷地吹入空氣,就像一個氣泵一樣,往裡送空氣,那麼發動機的燃燒性能肯定會得到提升,而這一點也在隨後的實驗中得到了驗證,的確,發動機的工作性能因為這么一個泵而大大的提高了,而且在低轉速的時候,工作狀態極其明顯。而這個泵的體積也不大,送空氣的形式也貌似是由一個人的嘴在吹,所以,機械增壓,很快在英文名中有了一個簡單形象而且容積記住的名字---Blower。 1929年賓利的機械增壓跑車。 機械增壓的出現,標志著發動機由單純的自然進氣時代,進入了自然進氣和強制進氣共存的一個多元化時代,而在20世紀10-30年代,機械增壓大規模應用在了各個品牌的車輛上,這一點是幾十年後渦輪增壓所不能媲美的一種市場效應。隨著人們對於極限不斷地挑戰和追求,汽車愛好者們樂此不疲地尋找各種方式來提高汽車的極限。在第一台機械增壓問世十幾年後,美國人理查德維克,來自於美國賓夕法尼亞Pottstown,製造出了世界上第一台機械增壓發動機賽車,這台賽車在當時跑出了每小時160公里的速度,讓所有人嘆為觀止。 重度改裝後參加0-400米直線賽的美國肌肉AMC,圖中的龐然大物就是機械增壓器。 正如剛才所說,機械增壓就好比是一台氣泵,不斷地抽空氣,然後送入發動機內,而驅動機械增壓的形式也很直觀,簡單,發動機的曲軸作為一個伴隨著發動機一起轉動的東西,通過這個來驅動機械增壓是再好不過的選擇了,而且對於曲軸上動力的損耗,也是非常有限的,並不會影響到發動機的工作。而機械增壓在隨後的發展中,依靠著人類智慧的進步,進行了很多次的革新,以及延伸出了很多不同類型的機械增壓。 機械增壓分為兩種形式:容積泵式和動壓力式。 容積式泵可以再不同的速度下,在發動機每一次的循環中恆定壓入接近等量的空氣,換句簡單的話來說,不管你的車速或發動機的轉速,容積式壓入的空氣都是差不多的。而容積式通過發動機驅動,機械式地將空氣一部分一部分的輸送至發動機內。 很多廠家基於容積式泵的原理,也紛紛設計出了不同類型的容積式泵,通常我們在量產車和改裝車上所常見的就是如下的幾個不同的種類: Roots-魯氏 Lysholm Screw -另外一個名字就是雙螺桿,twin-screwd Sliding vane-葉片式 Scroll-type superchareged- G-Lader Piston as in Bourke engine Wankel Engine 魯氏增壓器內部轉子的圖形,藍色箭頭標志位空氣進口,紅色箭頭連接處為發動機的進氣歧管處。 (早期的雙螺桿式機械增壓器的轉子圖) 裝配了Sprintex雙螺桿機械增壓的切諾基 後三種比較不常見,多為製造工藝復雜,成本高,或是熱效率低,工作形態不高。這里主要說前三種。 Roots,魯氏機械增壓是一個比較常見,比較典型的外部壓縮機。外部壓縮是指空氣在正常大氣壓下通過泵的形式傳遞到發動機內。如果發動機在運行狀態中處於非壓力下工作狀態,那麼,在進氣歧管內的壓力會高於來自機械增壓的壓力,這樣會導致從發動機到機械增壓的一個迴流現象,而這個現象直到兩端的壓力平衡為止。這種迴流通常用於壓縮即將進入的氣體,這是一個非常低效的過程,而魯氏增壓低效主要的因素就是在高壓力時所產生的能量損失。而對於魯氏增壓來說,工作壓力越低,那麼動力損失就越小,換句話來說,魯氏增壓是一種很適合於低壓差狀態下工作的增壓器。我們經常看到很多0-400米直線賽中,美國肌肉車的發動機蓋上,突兀著一個龐然大物,那就是魯氏機械增壓,當然,美國人喜歡什麼都要做成大的,所以,他們把機械增壓也做大了,當然,在0-400米上,沒人去考慮這個東西的體積多大,或是多難看,只要管用就行,但是回到我們正常的民用改裝車上,我估計沒人願意去給自己的發動機蓋上掏個大洞,然後凸出一大塊金屬體,不明白的人以為你給你的車里裝了個大型空調呢,而且這么沉重的一個東西放在機艙內,佔地方不說,又影響了整車比重,大大影響了汽車的操控樂趣,而且,效率這么低的一個東西,又有誰會去安裝到自己的車上呢?!反正我對魯氏的東西沒有太好的印象, 機械增壓被廣泛的應用在了直線加速賽上,圖為裝配了機械增壓的89款福特野馬fox body-five。 用在考維特LS9上的中冷器,即使是魯氏增壓器,當配合了大功
率輸出發動機的時候,也需要中冷器才能進入正常工作狀態。 有外部壓縮,那相對的自然而然也就有內部壓縮,不管是什麼形式,最終所做的工都是用在了壓縮上,只能說明不同類型的壓縮有著各自的優缺點。對於內部壓縮,是指空氣本身在增壓器本體里已經完成了壓縮,而且已經達到或是接近了工作壓力值並且可以很暢快的傳遞入發動機內而且沒有任何的迴流現象出現。而這種形態的壓縮比迴流式壓縮更有效率以及能達到更高的工作壓力。內部增壓設備通常是工作在一個固定的壓縮比下。當增壓壓力,也就是我們常說的boost,等於增壓本體內的壓縮壓力,迴流的流量為0,也就是沒有迴流。相比於外部增壓,這一點的效率是非常明顯的。但是,當增壓壓力超過了壓縮壓力的時候,依然會像魯氏增壓那樣出現迴流現象。所以,在內部增壓的工作狀態下,增壓壓力和壓縮壓力必須完美的結合在一起依此來達到最佳的工作狀態和提升更高的效率,否則內部增壓亦將會產生和魯氏增壓一樣的問題。 容積式機械增壓通常是由每轉所承受的容量來標號的。在魯氏增壓器里,GMC的標號模式是比較典型的。GMC的標號模式是根據2沖程缸體的數量以及缸體的容積來定的,其設計目的就是在於清除發動機內的廢氣。GMC已經製作了2-71,3-71,4-71已經聞名世界的6-71型等。而這些數字都是含有實際意義的,比如說6-71,其設計目的是為了在6缸發動機中,每缸清除71立方英寸的廢氣,並且能在426立方英寸的2沖程柴油機上使用。6-71也僅僅只是GMC在發動機上的一個設計理念,而並非為獨立產品,並且,在實際的應用中,所產生的位移(這里的位移可簡單理解為空流量)要小於上述中每缸的清楚容積乘於缸數。比如說6-71型實際上每轉只能流入339立方英寸的空氣。而改裝市場則從未停止過革新,從當初的8-71到今天現有的14-71型。從這一點出現,我們可以看到,一個6-71的容積約等於2個3-71。而GMC也設計出了每缸53立方英寸的53系列,並且從2缸機到8缸機上都有廣泛的應用,後來,GMC為了配套V型發動機,推出了「V71」系列。 魯氏增壓效率圖 對於任何一種魯氏增壓器在任何一種工況下工作,單點就會顯示在這張圖上。這一點會伴隨上漲的增壓值而上漲,並根據增壓器的工作速度增長而向圖右運動。這里可以看出,在普通的工作速度和略低的增壓值下,魯氏增壓的工作效率可以達到90%。而這塊區域是魯氏增壓原本最佳的工作區域。增壓值(boost)這里可以定義為壓力的比例,也就是在進入壓縮器之前的絕對大氣壓值和從壓縮器出來並已壓縮過的絕對大氣壓值比。 假設沒有任何的增壓值出現,那麼這個壓力比值就是1.0(1:1),進入端的壓力等於出口端的壓力。在這張圖上,15psi的增壓值是作為一個參考值來詳細說明魯氏增壓器(15psi,與絕對大氣相比比值為2.0附近)。我們可以看到,在15psi增壓值下,魯氏增壓器的始終徘徊在50%--58%附近。現在圖中所示的是較小的魯氏增壓器。當圖右所示的增壓器轉速增長的時候,在圖左,效率區亦會相對增長,也就是說,增壓器的轉速越快,效率就逐漸相對減弱。所以,一般在各種用途上,都是已體積較大的增壓器再在較低的增壓值區間運轉,從而達到更高的效率。 魯氏增壓器的容積效率通常都能保持在90%左右,但是僅僅局限於低轉速的時候。即使是在低轉速的時候,增壓器仍會機械的將定量的空氣傳入發動機內,但是這些空氣都是熱空氣,也就是溫度較高的空氣。這里舉一個400米直線加速的例子,在400米直線加速中,熱空氣伴隨著大量的燃油被噴射到發動機內,燃油的蒸發帶走了熱量,類似這樣的循環方式,就好比是通過液體來給空氣降溫,換成我們平常所說的就是中冷了。 雙螺桿式 世界著名直線賽車手Jay Upton保持世界記錄的戰車,選用了來
自澳洲Sprintex的雙螺桿式機械增壓,0-400米的成績為6.17秒。 雙螺桿式增壓器是一種通過高容隙之間齒輪或轉子的嚙合來帶動空氣流動的
一種壓縮機,雙螺桿增壓器也叫做Lysholm壓縮機,是由Alf Lysholm發明的。 進氣口位於雙螺桿的一側疊蓋住的,但是不完全疊蓋,留有一個小孔。當轉子轉動時,空氣由入口孔處進入,經過壓縮並流入出氣口,空氣由軸向運動通過機體,空氣體積越來越小,而且空氣在被轉子之間間隙壓縮,與此同時,進氣口還有更多的空氣通過壓差流入增壓器本體內。由於增壓器本體內的出氣壓縮比例已經是設定好的,所以在沒有達到出氣壓力比之前,壓差會將機體內的空氣保留在內,而直到壓縮比值達到設定值後進入才會是壓縮後的空氣進入發動機。而這一點於魯氏相比,我們可以看到雙螺桿在壓力泄露和損失特性要大大低於魯氏。雙螺桿增壓器也是一款很常見的由發動機曲軸皮帶或是其它類型齒輪驅動的增壓器。在工作方式上和魯氏一樣,但是不一樣的就是在空氣真正的內部壓縮以及效率損耗上,雙螺桿的設計特性保證了其優越度超過魯氏。 雙螺桿增壓器一般都是由高精度的CNC機器加工而成,在眾多類型的機械增壓中屬於造價較高的一種,但是其特性讓很多廠家無法割捨這么一個高效的增壓器,好在時間的推移,科技的進步下,很多廠家都已經做出了效率更高,而價格相對低廉的雙螺桿壓縮機。 雙螺桿式機械增壓的結構和轉子圖。 對於雙螺桿增壓器,大家可能聽到有關的資料不算多,但是以下的例子可能會更直觀,在眾多主機廠中,福特,Koenigsegg,水星,梅賽德斯都是大量使用了雙螺桿增壓的技術。雖然說離心式的增壓器也比較可靠,被很多廠家考慮到,但是離心式的缺點就在於當發動機進入了峰值工況時,不能提供全增壓值的工作狀態。這一點著實的讓很多主機廠家頭痛,而且也不是每個廠家都願意承擔離心式所帶來的超高工溫。 由Sprintex為Bullet設計生產地克萊斯勒300 SRT-8系列的機械增壓套件將這台2氣門大排量V8的極限發揮的琳琳精緻。 (這是用在賓士C32AMG,SLK32AMG上的雙螺桿式機械增壓器) 離心式 離心式機械增壓工作示意圖。 離心式增壓器是一款應用在內燃機里以發動機動力帶動,通過壓縮空氣來獲得更多的氧氣以此來幫助和提高發動機的燃燒和功率輸出。這種類型的增壓器在很多設計上類似於渦輪增壓的結構,唯一的區別就是渦輪增壓是通過廢氣的壓力來驅動,而離心式增壓器則和魯氏,雙螺桿一樣,靠發動機的曲軸通過傳動皮帶、齒輪、鏈條來獲得工作動力。和任何離心式增壓器一樣,在發動機低轉速的時候提供很小范圍的增壓來輔助發動機進行工作,並且在發動機減速的時候,空氣會旁通,這一點和魯氏,雙螺桿一樣,在發動機的任何工作速度下都能提供有效地增壓值。 瑞典著名超級跑車Koenigsegg CCR,裝載了雙離心式機械增壓,但由於離心式機械增壓器的工溫
較高,而且經濟性能不如雙螺桿式,所以只有部分追求極限的廠家才會選用離心式機械增壓器。 在第二次世界大戰的時候,很多活塞式引擎戰斗機,例如勞斯萊斯梅林,戴姆勒賓士DB601,都大規模的使用了單速或是多速的離心式增壓器,由於飛機發動機大多時間下都是處於極高速運轉或是高恆速運轉,速差不大,所以在低轉速區間的工作狀況基本上可以忽略不計。直到了渦輪增壓的出現,很多飛機製造廠商因為發動機設計的需要,都放棄了離心式機械增壓器的使用。 盡管如此,離心式增壓器在低轉速區間的工作狀態還是受到了關注,由於設計原理,離心式增壓器在低轉速區間的工作狀態和渦輪增壓有著相同的弊病,那就是滯後。由於汽油發動機要求燃油和氧氣在相對較小的比列下壓縮成混合油氣並進行內燃,所以在低轉速的工作狀態成為了很多人關注的熱點,而離心式實際上在低轉速區間不能和魯氏,雙螺桿一樣供給足夠的氧氣去提供內燃,所以離心式被考慮在給大排量,而且在啟動階段不需要過多的強制進去的發動機進行匹配,而這樣也可以避免了輪胎在發動機啟動階段的打滑。 無論如何,離心式增壓器在民用汽車上的使用也不為廣泛,在目前市場上,我們可以看到,不論是量產車還是高性能的超級跑車,都大量的使用了魯氏或是雙螺桿。因為離心式存在著一個很多汽車廠商都不願意在機械式增壓器上見到的問題,就是工溫。盡管目前市面上很多改裝廠商,Powerdyno, Rotrex, Vortech等都改進自己的工藝,但是不管怎樣,在大部分使用離心式增壓器的發動機上,冷卻裝置都是不可避免的需要,盡管尺寸不會和裝配了渦輪增壓的中冷一樣,但是對於發動機在工作上所要求的各種指標,工溫高相對的就是進氣溫度高,而這一點作為專業賽車也好,還是平時的改裝街車也好,都不希望自己進氣歧管內的溫度高過發動機的水溫。 可以看出,在目前世界所有的汽車廠商中,大規模被使用在量產車上就是魯氏增壓器和雙螺桿式增壓器。GM,福特,Land Rover, Jaguar,賓士,都是機械增壓器的長期忠實粉絲,他們旗下的眾多車型都裝在了機械增壓器,而近些年,一些日本改裝廠家也開始根據自己現有的車型選用了機械增壓器作為提升性能的一種手段,本田原廠御用的Mugen(無限)發布了一款機械增壓的思域。 K20A配備機械增壓,彌補了低轉區間Vtec的劣勢,讓這台思域上得賽道下得街道。 TRD, Toyota Racing Development,豐田原廠競技部門設計生產的雙螺桿式機械增壓器。 歐版豐田花冠運動版也裝配了機械增壓器從而來提高低轉區間的工作效率。