A. 制動系統的傳動裝置
目前,轎抄車上的制動傳動裝置有機械式和液壓式兩種。 目前,轎車的行車制動系統都採用了液壓傳動裝置,主要由制動主缸(制動總泵)、液壓管路、後輪鼓式制動器中的制動輪缸(制動分泵)、前輪鉗盤式制動器中的液壓缸等組成,見右圖。主缸與輪缸間的連接油管除用金屬管(銅管)外,還採用特製的橡膠制動軟管。各液壓元件之間及各段油管之間還有各種管接頭。制動前,液壓系統中充滿專門配製的制動液。
踩下制動踏板4,制動主缸5將制動液壓入制動輪缸6和制動鉗2,將制動塊推向制動鼓和制動盤。在制動器間隙消失並開始產生制動力矩時,液壓與踏板力方能繼續增長直到完全制動。此過程中,由於在液壓作用下,油管的彈性膨脹變形和摩擦元件的彈性壓縮變形,踏板和輪缸活塞都可以繼續移動一段距離。放開踏板,制動蹄和輪缸活塞在回位彈簧作用下回位,將制動液壓回主缸。
B. 汽車液壓制動裝置有哪些部件組成
氣壓增壓式液力制動傳動裝置主要由制動踏板、制動主缸、儲液罐、出器、儲氣筒、空氣壓縮機、制動輪缸、制動控制閥、氣壓伺服氣室、輔助缸、安全缸等零部件組成
C. 制動傳動裝置的作用是什麼
制動傳動裝置的作用是將制動缸產生的制動原力應用杠桿原理增大若干倍,均衡地傳遞給各個閘瓦。
D. 什麼叫半軸對半軸型液壓制動傳動裝置
半軸也叫驅動軸。是將差速器與驅動輪連接起來的軸。半軸是變速箱減速器與版驅動輪權之間傳遞扭矩的軸,其內外端各有一個萬向節別通過萬向節上的花鍵與減速器齒輪及輪轂軸承內圈連接。
半軸是變速箱減速器與驅動輪之間傳遞扭矩的軸(以前實心居多,但由於空心軸轉動不平衡控制更容易,因此,很多轎車上都採用空心軸),其內外端各有一個萬向節分別通過萬向節上的花鍵與減速器齒輪及輪轂軸承內圈連接。
半軸用來在差速器與驅動輪之間傳遞動力。普通非斷開式驅動橋的半軸,可根據外端支承形式不同分為全浮式、3/4浮式和半浮式3種。
E. 真空助力式液壓制動傳動裝置組成部分有哪些
全液壓制動系統由:充液閥、蓄能器、腳踏閥、鉗盤制動器(或其他形式的制動版器),以及制動尾燈開關,壓權力開關等組成。工作原理是壓力油經由充液閥向蓄能器供油後,一路進入腳踏閥,腳踏閥實際上為一個腳踩的比例換向閥,然後進入輪胎旁的制動器。當制動力不夠時可由蓄能器短時供油。還有一種是氣推液形式的剎車。由發動機上的真空助力泵產生壓力氣體,推動剎車油缸,剎車油壺的右進入剎車油缸,起到增力的目的,然後進入制動器中。目前大多數制動器為碟剎,而不是鼓剎。
F. 氣壓增壓式液力制動傳動裝置有那些主要部件組成
空氣液壓制動傳動裝置(油氣復合式) 一、目的 氣壓制動的長處是小的踏板力和小的踏板行程,能產生大的促動力。液壓制動之長是滯後時間短,摩擦件少,性能穩定,非懸架支承件少,行駛平順性好,適用多種高性能制動器,可用雙輪缸,更合理的布置雙管路系統。 為了兼取氣壓制動和液壓制動兩者的優點,不少重型汽車採用了空氣液壓制動傳動裝置。它和真空加力裝置的原理一樣,只是以壓縮空氣作為動力源。由於壓縮空氣的工作壓力較大,多為(0.45~0.6)mpa,而真空式所具有的最大壓力差,只能略等於大氣壓力。故加力氣室小巧緊湊,安裝位置不受限制,系統布局合理。 二、控制型式 這種制動傳動裝置,由於控制閥的安裝和控制方式的不同,可分為兩種控制型式: (1)直接控制式--利用氣壓控制閥同時直接控制兩個單腔的增壓器或一個雙腔的增壓器(又稱氣頂油式)。 (2)間接控制式--利用一個單腔液壓主缸,同時控制兩個帶有氣壓控制閥的增壓器(又稱油控氣、氣頂油式)。 三、間接控制式的空氣液壓制動傳動裝置 (一)組成和構造特點 圖20-67所示為雙管路油控氣、氣頂油制動系統的組成。它由空氣壓縮機1、調壓器2、貯氣筒3、4組成加力氣源。各管路分別裝有2各自的空氣增壓器,用一個單腔液壓主缸34控制。 圖20-67 間接控制式的空氣液壓制動傳動裝置 1-空氣壓縮機;2-調壓器;3、4-貯氣筒,5、7-輪缸;6、9-空氣增壓器;8-制動主缸;10-氣壓表(二)空氣增壓器 1、空氣增壓器的組成 從圖20-68看出:空氣增壓器是由加力氣室17、輔助缸12和控制閥三部分組成。是氣壓和液壓制動結構的變型體,故省略結構內容。 圖20-68 間接控制的空氣增壓器簡圖 1-加力氣室活塞;2-回位彈簧;3-控制閥活塞;4-放氣螺釘;5-膜片芯管;6-空氣濾清器;7-膜片;
8-排氣閥;9-進氣閥;10-放氣螺釘;11-復合式單向閥;12-輔助缸;13-球閥;14-輔助缸活塞;
G. 氣壓增壓式液力制動傳動裝置有哪些主要部件組成
空氣液壓制動傳動裝置(油氣復合式) 一、目的 氣壓制動的長處是小的踏板力和小的踏板行程,能產生大的促動力。液壓制動之長是滯後時間短,摩擦件少,性能穩定,非懸架支承件少,行駛平順性好,適用多種高性能制動器,可用雙輪缸,更合理的布置雙管路系統。 為了兼取氣壓制動和液壓制動兩者的優點,不少重型汽車採用了空氣液壓制動傳動裝置。它和真空加力裝置的原理一樣,只是以壓縮空氣作為動力源。由於壓縮空氣的工作壓力較大,多為(0.45~0.6)mpa,而真空式所具有的最大壓力差,只能略等於大氣壓力。故加力氣室小巧緊湊,安裝位置不受限制,系統布局合理。 二、控制型式 這種制動傳動裝置,由於控制閥的安裝和控制方式的不同,可分為兩種控制型式: (1)直接控制式--利用氣壓控制閥同時直接控制兩個單腔的增壓器或一個雙腔的增壓器(又稱氣頂油式)。 (2)間接控制式--利用一個單腔液壓主缸,同時控制兩個帶有氣壓控制閥的增壓器(又稱油控氣、氣頂油式)。 三、間接控制式的空氣液壓制動傳動裝置 (一)組成和構造特點 圖20-67所示為雙管路油控氣、氣頂油制動系統的組成。它由空氣壓縮機1、調壓器2、貯氣筒3、4組成加力氣源。各管路分別裝有2各自的空氣增壓器,用一個單腔液壓主缸34控制。 圖20-67 間接控制式的空氣液壓制動傳動裝置 1-空氣壓縮機;2-調壓器;3、4-貯氣筒,5、7-輪缸;6、9-空氣增壓器;8-制動主缸;10-氣壓表(二)空氣增壓器 1、空氣增壓器的組成 從圖20-68看出:空氣增壓器是由加力氣室17、輔助缸12和控制閥三部分組成。是氣壓和液壓制動結構的變型體,故省略結構內容。 圖20-68 間接控制的空氣增壓器簡圖 1-加力氣室活塞;2-回位彈簧;3-控制閥活塞;4-放氣螺釘;5-膜片芯管;6-空氣濾清器;7-膜片;
8-排氣閥;9-進氣閥;10-放氣螺釘;11-復合式單向閥;12-輔助缸;13-球閥;14-輔助缸活塞;
15-片狀推叉;16-加力氣室推桿;17-加力氣室;18-保養孔 2.空氣增壓器的工作情況 (1)不制動時–––控制閥活塞3左側c室無控制油壓,控制閥的膜片7和活塞3在其回位彈簧的作用下被推到左側極端位6置,進氣閥9關閉,壓縮空氣不能進入d室。排氣閥8開啟,使d和e室與大氣相通。加力氣室的a室、b室也與大氣相通, 活塞1被推到左側極端位置。輔助缸活塞14與推桿16用銷連接,也處在左側極端位置。此時,片狀推叉15球端將球閥13推開,使輔助缸左右兩腔連通,增壓器處於不工作狀態,制動主缸和輔助缸油壓與大氣壓力相等。 (2)制動時–––制動主缸的控制油液進入輔助缸活塞14的左側,通過活塞14的中心孔,球閥13、出油閥11進入各自輪缸而制動。另一部分油液經節流小孔進入c室,推動活塞3和膜片7及芯管5右移。先消除排氣閥間隙使排氣閥8關閉,切斷d室和e室的通道,再將進氣閥9推開。貯氣筒的壓縮空氣進入d室,並經空氣管進入a室,推動活塞1、推桿16和活塞14右移。b室中的空氣經e室排出,並產生較小的噓聲。此時,由於輔助缸活塞14離開了左側的極端位置,片狀推叉15對球閥13的推力消失,球閥立即關閉,活塞14右腔的油壓升高。此時,作用在活塞14上的壓力,等於增壓推力和控制油壓推力之和。但前者比後者更大,因而減輕了操縱力。 (3)維持制動時–––若踏板停止不動時,隨著輔助缸活塞的右移,控制閥活塞左側的油壓趨於下降,膜片總成左移,進氣閥9關閉,控制閥即處於「雙閥關閉」的平衡狀態。此時,控制活塞左側的控制油壓推力與右側膜片上的氣壓推力平衡。輔助缸活塞左側的推力也與右側的總阻抗力平衡。 可見,制動主缸輸出的控制油壓,決定了控制閥隨動輸入的氣壓。當加力氣室的氣壓達到一定值時(0.6mpa),輔助缸輸出的油壓達13mpa。制動踏板再繼續踩下時,增壓器即進入定值加力段。 (4)放鬆制動時–––制動主缸的輸出油壓撤消,作用在控制閥活塞3和輔助缸活塞14左側的油壓即撤消回位。排氣閥8開啟,a室的壓縮空氣經空氣管返回d室,並經排氣間隙、芯管和e室帶著較大的噓聲排入大氣。活塞1、活塞3、活塞14都返回左側的極端位置。片狀推叉15又頂開球閥13,各輪缸油管的油液推開復合式單向閥11返回輔助缸和主缸,制動即解除。當閥門11外側油壓達到殘余壓力值時即關閉,使輔助缸輸出管路和各輪缸間保持一定的殘壓,制動主缸內無復合式單向閥,它和輔助缸間無殘壓存在。 (5)增壓器失效時和無壓縮空氣時 由於輔助缸活塞有中心孔和球閥13,在增壓器失效時和無壓縮空氣時,能進行應急制動。但制動力顯著降低,且踏板沉重。因此項應急功能必須存在,輔助缸只能是單活塞式,雙管路系統只能是並裝兩個空氣增壓器。 另外,從工作過程得知:在踩下制動踏板和放鬆制動踏板時,空氣濾清器6處會有一小、一大的排氣噓聲,這是人工檢驗空氣增壓器好壞的表徵。
H. 什麼叫液壓制動傳動裝置
由於液體傳動有多向性,可以向任何方向傳動。並且是比較簡單和輕便回,所以大多應用在輕型汽車上答。液壓制動一般有制動總泵及儲油罐,油管和分泵、摩擦片等組成。踩下制動踏板,制動液從油罐進入總泵,經皮碗和活塞壓縮進入油管達到分泵,然後經分泵皮碗及活塞的推理推動摩擦片對制動鼓或摩擦片作用產生制動力。