A. 試驗設計
(一)試驗配水
試驗配水主要模擬排污河水質。考慮到排污河水主要由生活污水和工業廢水組成,除常規污染組分外,一般重金屬和有機污染物比較常見,所以試驗配水選擇了兩種有代表性的重金屬:不易遷移的鉛和容易遷移的鉻,有機物選擇了苯系物和四氯乙烯。具體的配水方案如下:取中國地質大學(北京)生活污水預沉澱1d後,加入硝酸鉛、重鉻酸鉀、汽油和四氯乙烯,攪拌均勻,靜置1d後使用。為了使試驗效果更加顯著,試驗配水中鉛和鉻的濃度均採用10mg/L,汽油和四氯乙烯均各自用量筒量取150mL加入75L污水中。其中,四氯乙烯7d後停止加入,主要是考慮大劑量的四氯乙烯污染會對地下水有影響。
作者曾在試驗正式開始之前就用試驗配水做過初步的研究試驗,目的是了解加入的重金屬和有機物之間,以及它們跟生活污水中的污染組分之間會發生哪些反應。
1.重金屬+生活污水+有機物
試驗配製了七種不同的水樣,它們分別是樣1:Pb標准液(10mg/L);樣2:生活污水;樣3:Pb標准液(10mg/L)+污水;樣4:Pb標准液(10mg/L)+污水+Cr(10mg/L);樣5:Pb(10mg/L)+污水+有機物(5mg/L);樣6:Pb(10mg/L)+污水+有機物(5mg/L)+Cr(10mg/L);樣7:Pb(10mg/L)+污水+有機物(5mg/L)+Cr(10mg/L)。
從表2-1可以看出,樣2中Pb基本穩定,不與污水發生反應;通過樣3和樣4的對比可以看出,Pb與Cr發生反應生成鉻酸鉛沉澱,故Pb和Cr的濃度均降低很多;樣5和樣3比較,Pb的濃度基本沒有變化,說明Pb與有機物不發生反應,有機物的加入使COD濃度大大提高;樣6和樣7是兩個平行樣,它們與樣5比較的結果同樣顯示了Pb與Cr之間的反應。
表2-1 配水試驗反應結果表 單位:mg/L
2.500mL重鉻酸鉀溶液(5mg/L)+1mL汽油
從表2-2可以看出,Cr6+的濃度在放置5d後減小了0.16mg/L,說明重鉻酸鉀與汽油會發生一定的氧化還原反應,只是由於反應時間短,效果不是十分明顯。
表2-2 重鉻酸鉀與汽油的反應結果表 單位:μg/L
3.500mL重鉻酸鉀溶液(5mg/L)+40μL四氯乙烯
由於四氯乙烯難溶於水,所以先將其溶於10mL甲醇中,再和重鉻酸鉀溶液混合反應。從表2-3可以看出,重鉻酸鉀與甲醇發生了氧化還原反應,在放置48d之後Cr6+的濃度降低了2.33mg/L,而在重鉻酸鉀+甲醇+四氯乙烯的反應中,Cr6+的濃度變化基本同重鉻酸鉀與甲醇的反應,說明重鉻酸鉀不和四氯乙烯發生反應。
表2-3 重鉻酸鉀與四氯乙烯反應時Cr6+濃度變化表 單位:mg/L
(二)試驗裝置
整個試驗裝置由土柱、配水系統和監測系統三部分組成(圖2-1)。
圖2-1 試驗裝置圖(單位:cm)
土柱 為土柱試驗的主體部分。由內徑為0.15m的3根有機玻璃柱組成,柱高1.5m。柱體下部為0.15m的承托層,由粗的石英砂組成;中部為1.2m的土柱試驗段;試驗段以上為0.10m的試驗用水,由溢流口控制為定水頭。考慮接近野外土體實際情況,土柱側壁用泊紙遮蓋,以起到避光作用。
配水系統 由配水箱、水泵和高位供水箱組成。配水箱容積為75L,可保證土柱試驗3~7d的用水量。將試驗配水由水泵送到高位供水箱,同時向三個土柱供水,採用定水頭連續供水。
監測系統 定水頭供水由溢流口控制,多餘的進水送到配水箱中循環使用。在進水口取樣,監測各特徵組分的進水濃度。在土柱實體部分0.2m、0.4m、0.6m、0.8m、1.0m及1.2m深度處分別設有飽水取樣口,在試驗運行初期,可以定期監測不同深度處各特徵污染組分的濃度變化情況。另外,在土體0.1m、0.5m和0.9m深度處分別設有測壓管,用來監測污水下滲的水動力學特徵。當土柱逐漸被污染物堵塞,變成非飽水狀態時,關閉飽水取樣口,在土體0.2m、0.4m、0.6m、0.8m、1.0m處和飽水取樣口垂直的位置設有非飽水取樣口(陶土頭),外接真空泵抽氣取樣。
(三)有關參數的測定
試驗所選用的三種砂土均為天然砂土,取自北京豐台的不同地段。三種砂土分別為:柱1為粗砂,柱2和柱3均為中砂。
1.砂土篩分及顆粒級配的確定
砂土篩分及顆粒級配情況見表2-4和圖2-2。
表2-4 砂土粒度分析結果表
圖2-2 三種砂土篩分曲線
2.試驗砂土參數測定
測定的砂土參數見表2-5。
表2-5 土的物理性質指標
B. 淋濾試驗設計
天然條件下,河流滲濾系統是一個復雜的開放系統,具有多層次、多影響因素的特點。有機污染物在滲濾過程中的衰減除受微生物的作用外,還受各種環境因素包括光、溫度、化學物質以及其他物理過程的影響,因而在擬定的研究目標下,很難實現在天然河流滲濾系統中的有機污染物生物降解試驗研究。
另外,原則上在一個未受污染或污染較輕的天然河流水環境中,在各種狀態下都不允許進行人為投放污染物的研究,而且在野外自然狀態下進行試驗將要消耗大量的人力、物力和財力,因而室內模擬試驗成為研究河流滲濾系統自然凈化過程的重要手段之一。
BTEX在河流滲濾系統中的環境行為非常復雜,要想真正掌握其遷移轉化的機理,必須藉助於模擬試驗研究。在對大量試驗數據進行分析的基礎上,才能在理論上有所突破。土柱試驗(淋濾試驗)歷來是土壤-水系統中污染物遷移轉化機理研究的重要手段,國內外學者利用土柱試驗進行了大量的試驗研究工作,在此基礎上形成了大量的研究成果,所以進行土柱試驗是研究BTEX在河流滲濾系統中遷移轉化的有效手段。
本試驗也主要以室內土柱試驗(淋濾試驗)為主要研究手段,其主要目的是研究BTEX污染河水通過河流滲濾系統時各組分發生了哪些環境行為,以及河流滲濾系統對這些污染組分的凈化機理和凈化效果如何,探討BTEX在河流滲濾系統中的遷移轉化對地下水環境的影響。
本次試驗在已有的對BTEX的揮發行為及其在土壤中的吸附行為研究的基礎上,通過動態土柱試驗(淋濾試驗)研究BTEX各組分分別在以 和 作為電子受體的情況下在河流滲濾系統中的生物降解性能,並結合其中的微生物指標的測定,研究BTEX在河流滲濾系統中的生物降解作用。
(一)試驗裝置
試驗裝置有三部分組成,分別為淋濾液輸入系統、模擬的河流滲濾系統和淋濾液輸出採集系統,這三部分各自的主要功能是:
(1)淋濾液輸入系統:利用該系統把人工配製的、含有BTEX污染組分的淋濾液源源不斷地輸入至模擬的河流滲濾系統。
(2)模擬的河流滲濾系統:把從野外採集的河流沉積物樣品裝入自製的有機玻璃柱中,製成模擬的河流滲濾系統,其入口連通淋濾液輸入系統接納淋濾液,其出口連通淋濾液輸出採集系統,淋濾液在流經模擬的河流滲濾系統的過程中,經過吸附、微生物降解等作用被凈化。
(3)淋濾液輸出採集系統:通過該系統採集經模擬的河流滲濾系統凈化後的淋濾液,然後測定淋濾液中BTEX各組分和兩種電子受體的濃度。
(二)試驗系統的裝配
為了滿足試驗對三部分的功能要求,試驗系統的三部分應分別由相應設備組裝而成。試驗系統和試驗裝置實物圖如圖3-29和圖3-30所示。
圖3-29 試驗系統示意圖
圖3-30 淋濾試驗裝置
(1)輸入系統設備的組裝:採用5L下口瓶盛放淋濾液,使用硅膠管將帶有閥門的出口與土柱連接,每隔一定時間向瓶中注入配製好的淋濾液,以保證淋濾液能夠源源不斷地供給,並利用閥門和蠕動泵來控制淋濾液流速。為了排除揮發的影響,從出口處另引出一根硅膠管,每日從中採集淋濾液以測定淋濾液進入土柱的初始濃度。
(2)滲濾系統設備的組裝:由三根有機玻璃柱聯通而成,其中最上層一根長30cm,直徑10cm,內裝野外採集粉土樣品;中間一根長50cm,直徑10cm,內裝野外採集細砂樣品;最下端一根長50cm,直徑10cm,內裝野外採集粗砂樣品。由此三部分組成的滲濾系統可以模擬野外河流滲濾系統,淋濾液經過此系統時,其中的BTEX經過土壤吸附、微生物降解等相關過程被凈化。將土樣分別裝入有機玻璃柱中並夯實,柱兩端用濾網和石英砂隔開。根據裝入土壤的質量和體積計算出各土柱的容重(表3-18)。其中柱1代表以 為電子受體的系統,柱2代表以 為電子受體的系統。
(3)採集系統設備的組裝:在土柱最下端由硅膠管和淋濾液收集裝置組成,每天定時測定淋濾液下滲流量,並採集相應水樣測定其中的目標組分含量。
(三)淋濾試驗過程
實驗室人工配製淋濾液以模擬BTEX污染河水,分別以 和 作為電子受體加入模擬的污染河水中,將淋濾液源源不斷輸入到土柱中,以模擬在不同條件下河流滲濾系統中BTEX的遷移轉化機理。
表3-18 土柱容重
試驗前必須對土柱進行洗鹽,以消除土壤中原有鹽分對試驗測定的影響。用去離子水從頂部注入土柱,完全飽和後繼續沖洗土樣中的鹽分。經過一定時間的洗鹽過程, 的濃度從最初的5.5mg/L降至檢測限以下;而 自淋濾洗鹽開始即未檢出。通過洗鹽可以在今後淋濾試驗中排除土壤中溶出的兩種電子受體對降解作用的影響。
另外為了模擬地下水的避光環境,將土柱用錫紙包裹,外層再覆蓋黑布,盡可能減少光對土壤中微生物菌群的影響。BTEX滲濾試驗步驟如下:
第一步,室內人工配製淋濾液,用去離子水作為溶劑。第一套系統(柱1)溶質是BTEX色譜純試劑和KNO3,其中苯、甲苯、乙苯、間二甲苯的濃度均約為80mg/L, 濃度為400mg/L,並將它源源不斷地供給輸入系統,污水經過滲濾系統後流入採集系統。第二套系統(柱2)以 作為電子受體,試驗系統裝置各部件沒有做任何改動,變化的僅僅是輸入系統污水成分。同樣用去離子水作為溶劑,溶質是BTEX色譜純試劑和K2SO4,其中苯、甲苯、間二甲苯、乙苯的濃度均約為80mg/L, 濃度為400mg/L,並將它源源不斷地供給輸入系統,污水經過滲濾系統後流入採集系統。
第二步,兩套系統同時開始注入淋濾液,並每天一次定時從兩套採集系統採集滲出液,同時測量其滲出液溫度與流量Q,並分析滲出液中BTEX各單組分、 、 等各項指標。然後分析滲出液中的BTEX各單組分和 、 濃度變化的相關關系。
第三步,對試驗數據處理計算得到最後試驗結果。
第四步,對比兩套試驗系統的試驗結果。
上述所有的淋濾試驗都是在飽水狀態下進行的,人為控制試驗的淋濾液流量以使其穩定。
試驗精度保證:由於本次試驗的目標污染物是極易揮發的BTEX,試驗過程中揮發損失的控制、樣品測試的准確性就顯得極為重要。
試驗過程中全部選用5000 mL下口瓶儲存溶液,用注射器從下口引出的硅膠管抽取目標污染物溶液,並測定其初始濃度,以最大限度地控制試驗過程中揮發損失對試驗的影響。
各目標組分測定方法參考《水和廢水監測分析方法》 推薦的方法,具體見表3-19。淋濾試驗結束後,將土柱中的土壤立即取出進行微生物指標分析,並與未經淋濾的土壤樣品進行對比,從而確定淋濾過程中,土壤中微生物菌群發生的變化。分析指標包括:細菌、真菌、放線菌、硝化細菌、亞硝化細菌和反硝化細菌,分析方法參見表3 -19。BTEX檢測結果來自華北水利水電學院環境工程實驗中心,採用島津GC-14C型氣相色譜儀檢測,檢測條件同第二章所述。 和 的檢測結果來自華北水利水電學院資源與環境實驗室,採用島津UV-2550紫外分光光度計測定。
表3-19 各目標組分分析方法
C. 微生物對土層中垃圾污染物的凈化作用<sup>[、]</sup>
一、研究意義
天然粘性土對垃圾污染物具有阻隔和凈化能力。這種阻隔和凈化能力一方面是粘性土具有機械過濾、離子交換、物理吸附作用和絡合、螯合、分解等化學作用,另一方面,土中具有大量的微生物活動,這些微生物對垃圾污染物具有生物、生物化學作用,能把有毒有害物質轉化成無毒無害物質。但是,土中微生物對垃圾污染物的這種凈化究竟有多大?能否在土層中添加土壤微生物的營養物質,促使微生物優勢菌種的大量繁殖,以增強其對污染物的凈化能力?對這些問題的回答,對於垃圾填埋技術的突破及微生物地球化學的理論和方法發展,都具有重要的意義。目前,土壤微生物學的研究又進入了一個新領域,人們可以利用微生物處理污染物和污水,降解土壤中有機污染物,消除作物的土壤傳染性病害,這對於凈化環境和土壤保健是大有好處的。但是,研究土壤中的微生物對垃圾淋濾液污染物的凈化作用的成果,在國內學術期刊上還未見有報道,在國外學術期刊上也較少,這是一個新的研究領域,已成為環境科學家關注的焦點之一。因此,此項研究具有特別重要的理論研究價值。
城市垃圾的不適當處置,已經引起了世界范圍內的人類健康和環境問題,對其進行有效控制和處理、處置,已成為各國廣泛關注的問題之一。在對固體廢物的處理方法中,地質填埋法是世界各國最普遍採用的方法。這種處置方法的最關鍵技術是場地的防滲襯墊的鋪設。迄今為止,國內外對防止垃圾滲濾液污染環境的思路是:禁止滲濾液向場外滲漏。在這種思想的指導下,為保護環境,對垃圾滲濾液處理採用鋪設襯墊防滲與建污水處理廠的方法。所用的防滲襯墊中要鋪設低透水的土工膜,使墊層結構復雜、材料昂貴、鋪設難度大,造價高昂。一個中等規模填埋場防滲襯墊的造價高達數百至上千萬元,而一個垃圾滲濾液處理廠的建立,需要投資上千萬元,運轉則需要數百萬元/年。需要如此高昂的費用,對於一般的中小城市,是一個沉重的負擔。我國的許多垃圾場污染環境,都是由於防滲襯墊的鋪設達不到要求或垃圾滲濾液處理廠無法運轉而造成的。如何使防滲層環保效果好,又不需對垃圾滲濾液進行處理,這樣就能達到即使垃圾填埋場環保效果好,又大大地降低成本,這是垃圾填埋處置所追求的目標。探索利用土壤微生物對垃圾污染物的凈化作用,達到這一目的,既能產生重大的環境效益,也能產生巨大的經濟效益,具有特別重要的實踐意義。
基於上述,我們在實驗室作了微生物對土中垃圾污染物的凈化試驗研究。
二、實驗研究方法
(一)實驗研究思路
在垃圾場底部滲濾液、防滲粘性土中的微生物一般以厭氧或兼性微生物為主,如脫氮硫桿菌(th.denitrificans)、反硝化細菌(denitrifying bacteria)、硫酸鹽還原菌(pesulfo vibrio)、專性還原乙酸菌、產甲烷菌等。我們在實驗室用土柱模擬在垃圾場底部、滲濾液之下土層中的微生物生長的環境條件,在實驗室培養厭氧或兼性微生物菌液,將其置入模擬土柱的表層,讓長有大量微生物的菌液隨垃圾滲濾液進入土中,使其參與土層對垃圾污染物凈化的全過程。並在土柱的不同深度定時取水樣進行分析測試垃圾污染組分。同時作沒有人工培養菌落的平行土柱淋濾凈化實驗,以對比兩者的結果,研究微生物對土層中垃圾污染物的凈化作用。
(二)實驗研究方法
1.模擬試驗裝置
模擬實驗裝置如圖5-2和圖5-3。
圖5-2 厭氧微生物對土中垃圾污染物的凈化模擬試驗裝置
圖5-3 粘性土對垃圾污染物的凈化作用的模擬試驗裝置
2.垃圾污染液准備
垃圾滲濾液取自北京市豐台區北天堂垃圾場的底部。
3.具體實驗
利用土體及其中的厭氧微生物作用聯合凈化垃圾污染液的模擬試驗在一個溫度、濕度可調節的實驗室里進行,先把添加了0.2 g12%含磷量的復合磷肥的1600 mL垃圾滲濾液注入實驗土柱,再取經垃圾滲濾液接種、優選、馴化過的多種厭氧或兼性微生物如脫氮硫桿菌(th.denitrificans)、反硝化細菌(denitrifying bacteria)、硫酸鹽還原菌(pesulfo-vibrio)、發酵性產酸菌、專性還原產乙酸菌及產甲烷菌、反硝化菌等菌液各20 mL共計200 mL,在保證厭氧條件下,分別注入到柱內液面以下的土層中,保持室溫在30~35℃。為使土柱內試驗保持厭氧狀態,將設計有單向出氣小孔的密封橡膠塞置於土柱液面之上,以使微生物處於厭氧環境。沿土柱等間距由上到下分別布設4個取樣孔,用負壓單向取樣器通過PVC管連接到負壓取樣瓶內,定時取水樣進行測試分析。實驗測試項目主要有
三、實驗研究結果
經過上述實驗,得到如圖5-4所示結果。
圖5-4 微生物對土中垃圾污染物的凈化作用效果圖
由圖5-4及表5-3可看出,無論是添加了厭氧微生物菌液的土柱,還是未加菌液的天然土柱,試驗的第一回次對垃圾污染物中的
表5-3 天然土體在強化微生物作用下對污染物去除率的提高比較表
四、結論
根據上述研究結果,可得出下列結論:
(1)土壤微生物對污染物的凈化作用研究,是國際上環境科學研究的前沿領域之一,在理論和環境污染治理的應用實踐方面均有及其重要的現實意義。
(2)在垃圾處置場的粘性土襯墊中加入厭氧微生物菌液,可使微生物作用得到強化,並明顯提高了微生物在防滲層中對
(3)在粘性土中加入厭氧微生物菌液,提高土層及微生物聯合作用對垃圾污染物的截留凈化方法,還只作了初步嘗試性的探討實驗。由於微生物的生長和生長環境的復雜性及垃圾污染物的多樣性等,要形成一個比較成熟的方法或技術,還需進一步作大量的工作。
D. 等溫吸附方程
離子交換反應受溫度變化的影響。所以,為了更深入地研究離子交換反應的機理,往往在特定溫度下探索吸附平衡過程。
(一)等溫吸附方程
在特定的溫度下,達到吸附(交換)平衡時,某溶質的液相濃度和固相濃度之間存在一定的關系,把這種關系表示在直角坐標圖上以線的形式出現,這條線即稱為等溫吸附線,其數學表示式稱為等溫吸附方程。等溫吸附方程在溶質遷移,特別是污染物在地質環境中的遷移研究方面,具有重要的意義,是一種有效的手段。等溫吸附線可能是直線,也可能是曲線;等溫吸附方程也可分為線性方程和非線性方程兩種。
1.線性等溫吸附方程
它最簡單的數學表達式為
水文地球化學基礎
式中,S為平衡時固相所吸附的溶質的濃度(mg/kg);C為平衡時液相溶質濃度(mg/L);Kd為分配系數(或稱線性吸附系數)(L/kg)。
(1.165)式重新排列,則
水文地球化學基礎
(1.166)式說明,分配系數Kd的物理意義是,溶質在固相和液相中的分配比,它是一個研究溶質遷移能力的一個很重要參數。Kd值越大,說明溶質在固相中的分配比例大,易被吸附,不易遷移;反之,則相反。例如,氯仿和DDT在某一含水層中的Kd值分別為0.567和3654(L/kg),說明前者比後者容易遷移得多。對於特定溶質及特定固相物質來說,Kd值是一個常數。Kd值是通過實驗求得的,詳細方法在後面闡述。
線性等溫吸附方程的另一種表達式為:
水文地球化學基礎
式中,a為截距,其它符號同前。
2.非線性等溫吸附方程
(1)弗里因德里克(Freundlich)方程
水文地球化學基礎
式中,K為常數;n為表示該等溫吸附線線性度的常數;當液相中被吸附組分濃度很低,或在砂土(CEC值小)中產生吸附時,n→1;c為平衡時液相離子濃度(mg/L);S為平衡時固相被吸附離子的濃度(mg/kg)。(1.168)式取對數形式,可變為線性方程
lgS=lgK+nlgC
令lgK=a,n=6,則
水文地球化學基礎
(2)蘭米爾(Langmuir)等溫吸附方程
蘭米爾等溫吸附方程最初是用來描述固體吸附氣體的,該方程於1918年內蘭米爾提出。後來發現,它可用來描述固體表面的離子吸附,被許多學者廣泛地用來描述土壤及沉澱物對各種溶質(特別是污染物)的吸附。它的數學表達式為:
水文地球化學基礎
式中,Sm為某組分的最大吸附濃度(mg/kg),K為與鍵能有關的常數,其他符號同前。
變換(1.170)式,可得該方程的線性表達式:
水文地球化學基礎
(1.171)方程是最常用的方程。通過實驗,取得一系列的C值及S值,以C/S為縱坐標,C為橫坐標,即可繪出蘭米爾等溫吸附線,如圖1.6。該線的斜率(1/Sm)的倒數,即為Sm;其斜率(1/Sm)被截距
圖1.6是在25℃、pH=6.8、Cr(Ⅵ)濃度大於58μmol/L的條件下的蘭米爾等溫吸附線,其斜率為0.0071,截距為1.41。從而可算得Sm=141mg/kg,K=0.005。利用蘭米爾等溫吸附方程最大的優點是,可求得最最大的吸附容量,這對評價包氣帶土壤對某種污染物吸附容量提供可靠的數據。
上述幾種等溫吸附方程是定量研究吸附過程的有效手段。至於吸附過程遵循哪種方程,一般是通過實驗數據的數學處理後確定的。
(二)建立等溫吸附方程的實驗方法
吸附作用是影響溶質遷移的水文地球作用。實驗目的是為了査清溶質吸附及解吸機理,建立相應的等溫吸附線及其等溫吸附方程,求得分配系數Kd及最大吸附容量Sm。試驗方法分吸附平衡試驗及土柱試驗兩種。
圖1.6蘭米爾等溫吸附線〔14〕
(C=μmol/L,S=mg/kg)
圖1.7Cr(Ⅵ)的穿透曲線(吸附-解吸試
驗)〔14〕
(淋濾水:Cr(Ⅵ)=960μmol/L,流速=7.1×10-4cm/s,pH=6.8,n=40%,1孔隙體積=606m1,pb=1.6g/cm3,C0=淋濾水中鉻濃度,C=滲出水中鉻濃度)
1.吸附平衡試驗
具體步驟如下:
(1)從現場採集所研究的岩土樣,風干,過篩(一般是2mm的篩),備用。
(2)測定岩土樣的有關參數,諸如顆粒級配、有機質、粘土礦物、Fe、Al等,該測定什麼參數視具體研究情況而定,有時還必須測定岩土的pHz值。
(3)稱少量(一般是幾克)備用岩土樣放入離心管(一般是250m1離心管)。
(4)配置含有不同溶質濃度的溶液,取約50m1(視情況有所增減),放入裝有土樣的離心管。
(5)將裝有土樣及某溶質溶液的離心管放置於水浴中,保持恆溫A振盪。定時取出溶液,離心澄清,取少量(一般為1m1或nm1,以不影響離心管溶液濃度明量變化為原則)進行分析,直至前後幾次的濃度不變為止。以時間為橫坐標,濃度為縱坐標,繪出濃度-時間曲線,確定達吸附平衡所需的時間。
(6)將一組(一般是5個以上)裝有不同溶質濃度和岩土樣的離心管置於水浴中,保持恆溫並振盪。待達到上述所確定的吸附平衡所需時間後,取出試管,離心澄清,取清液分析溶質濃度。
(7)溶液原始濃度減去平衡濃度,乘以試驗溶液體積,所得的溶質減量即為岩土的吸附總量,並換算成岩土的吸附濃度。
(8)把實驗數據作數學處理,繪出吸附等溫線,建立等溫吸附方程,求得Kd及Sm值。
2.土柱試驗
土柱試驗和吸附平衡試驗的不同點在於:前者是動態試驗,後者是靜態試驗。前者的結果較接近實際,不僅可確定Kd值,而且可探討吸附_解吸機理。其試驗裝置及步驟簡述如下:
A.裝置(分三部分)
(1)供水。常採用馬利奧特瓶原理穩定水頭,供水容器最好能容納試驗全過程所消耗的溶液(水)。
(2)土柱。包括試驗工作段及濾層。
(3)取樣及測流。包括控流閥,目的是控制試驗流速接近實際;還有流量計及取樣器。
B.步驟
(1)岩土樣風干、搗碎及過篩(一般為2mm孔徑)
(2)試驗岩土參數測定,除平衡試驗所述參數外,增加含水量、容重及比重的測定。
(3)岩土樣裝填。最下段一般為石英砂濾層,其上下應有濾網;上段為岩土試驗段,應根據長度及岩土容重算出裝填岩土重,分段裝填,每段一般為2—5cm,稍稍搗實,以保持土柱岩土接近天然容重。
(4)吸附試驗。將具有某溶質一定濃度的溶液注入土柱,定期測流量、取分析樣。直至滲入水及滲出水某溶質濃度相近為止,吸附試驗結束。
(5)解吸試驗。吸附試驗結束後,供水容器改換不含試驗溶質的溶液(水)進行試驗。取分析水樣,並記錄流量。直至滲出水某溶質濃度為零,或滲出水某溶質濃度趨於穩定為止,試驗結束。
(6)試驗數據處理。以相對濃度Ci/C0為縱坐標,Ci為滲出水濃度,C0為滲入水濃度;滲過土柱水的孔隙體積數為橫坐標,繪制穿透曲線。值得注意的是,一般不應以時間f為橫坐標,因為不同試驗岩土的孔隙體積及流速的不同,如以時間t為橫坐標,使不同岩土試驗的穿透曲線可比性差。土柱孔隙體積應根據裝填岩土的ρ和ρb值計算。n的計算公式如下:
水文地球化學基礎
式中,n為孔隙度,無量綱;ρb為岩土容重(g/cm2);ρ為岩土密度(g/cm2)。
例題1.9
鉻的土柱試驗。此實例取自斯托倫沃克等〔14〕的試驗實例。以下作簡要介紹。
1.試樣及其處理
取含水層砂樣,篩分,取粒徑小於2mm(占總數30%)做試驗。岩礦鑒定表明砂樣由石英、斜長石、白雲母、赤鐵礦及磁鐵礦組成。砂粒表面的氧化鐵薄膜肉眼可見。總鐵含量為12g/kg。
2.土柱試驗
(1)土柱裝置。柱體為有機玻璃管,長80cm,內徑5.1cm;控制流速為7.1×10-4cm/s(與研究區地下水流速相當)。
(2)試驗。首先用1孔隙體積水漂洗土柱易溶鹽,再用2孔隙體積的地下水滲過土柱,以保證固液相的原有平衡。然後在地下水中加入Cr6+(呈
3.結果及討論
穿透曲線見圖1.7。該圖說明,頭7個孔隙體積水裡,Cr6+濃度為零,說明Cr2+完全被吸附;此後滲出水Cr6+逐步增加,至第22孔隙體積水滲過土柱時,Cl/C0=1,砂土吸附量耗盡。據計算,Cr6+的總吸附量為5.9mmol,相當於砂土的Cr6+吸附濃度為2.25mmol/kg;平衡時,水中Cr6+為960μmol/L,據此算得Kd=2.34L/kg。該圖還說明,10個無鉻孔隙體積水滲過±柱後,有50%的Cr6+解吸;再滲過50孔隙體積無Cr6+水後,仍有16%的Cr6+未被解吸。這就說明,Cr6+的吸附中,可能有化學吸附,或者可能有Cr3+的沉澱。事實說明,吸附試驗所求得的S值,可能包括沉澱,以及過濾截留部分在內。在試驗中,一般都作吸附處理,不作區分。
E. 淋濾試驗
採用自行設計的土柱試驗裝置進行BTEX在河流滲濾過程中的環境行為試驗模擬。土柱試回驗裝置由三部答分組成,其中通過淋濾液輸入系統把配製好的、代表含有不同污染組分的淋濾液源源不斷地供給模擬的河流滲濾系統。模擬的河流滲濾系統是把從野外採集的河流沉積物裝入有機玻璃柱中,製成模擬的河流滲濾系統,其入口連通淋濾液輸入系統接納滲濾液,其出口連通淋濾液輸出採集系統,污染河水在流經模擬的河流滲濾系統過程中,被該系統凈化。通過淋濾液輸出系統採集經模擬的河流滲濾系統凈化後的滲濾液並測量其流量,然後測定滲濾液中各目標組分的濃度。淋濾液由實驗室人工配製,以模擬BTEX污染河水,分別以 和 作為電子受體加入到兩套滲濾系統的淋濾液中,並源源不斷輸入到土柱中,模擬在不同條件下河流滲濾系統中BTEX的遷移轉化機理。通過每日定時從土柱採集滲濾液並測定其BTEX各組分的濃度,同時測定其中 和 的濃度並繪制出各組分濃度變化的歷時曲線。當滲濾液中各組分濃度穩定後,將土柱拆除並將土壤進行微生物指標測定,從而研究在模擬的河流滲濾系統中BTEX的微生物降解性能。
F. 淺層粘性土層的阻隔能力實驗研究
以北京地區單店、高安屯、梨園等地的粘性土為實驗研究對象。
一、粘性土滲透系數與土的密度、擊實次數之間的關系
為確定單店粉粘土、高安屯粉粘土、梨園粉粘土在最優含水量下的擊實功、土體密度、滲透系數三者之間關系,採用10-1型單層變體積擊實儀(擊實錘重2.5kg、落距30cm),每次往擊實儀中裝土600g進行不同次數的擊實。擊實後的土樣再拿去作土工試驗和滲透試驗,得到這些土在最優含水量下的擊實功、土體密度、滲透系數數值。經分析,這些土在最優含水量下的擊實功、土體密度、滲透系數三者之間關系如圖6-2和圖6-3。
由圖6-2和6-3可看出,上述三種土層在最優含水量下的干密度隨擊實功的增大而增大,滲透系數則隨擊實功的增大而減小。因此,將土夯實可有效地提高土的防滲能力。
圖6-2 土的密度與擊實功的關系曲線
圖6-3 土的滲透系數與擊實功關系曲線
二、淺層粘性土截污容量的試驗研究方法
(一)試驗研究思路
粘性土對污染質的阻隔或凈化主要是通過機械過濾、物理吸附、陽離子交換、化學反應、生物或生物化學作用來實現。因此,我們在研究粘性土的截污能力時,要研究機械過濾、物理吸附、陽離子交換作用和化學反應和生物或生物化學作用對垃圾污染物的綜合阻隔能力。具體研究思路是,在了解粘性土的物理性質和工程性質的情況下,把土體視為一個黑箱,只關注向該黑箱的輸入輸出因素及其參量之間的相互關系和變化規律,而對污染物在土中的過濾、吸附、陽離子交換等作用的具體方式、作用機制和強度、化學反應、生物或生物化學作用的具體作用機制等不予考慮。這樣便於在分析和解決問題時抓住主要矛盾,揭示問題的實質,研究結果實用。
(二)試驗研究方法
在上述思路的指導下,我們選用了北京地區有代表性的粘性土為研究對象;根據北京地區垃圾淋濾液中主要的污染組分,選用了COD、總氮、氨氮、電導率等幾種污染項目作為研究對象;為研究不同深度、不同厚度、不同密度土的滲透性能、阻隔能力等以及單位重土對土的污染質的截污能力等,製作了如圖6-4所示的系列淋濾試驗模型。
試驗操作和注意事項:①按原地質礦產部《土工試驗規程》,作土工試驗,測試土的物理和工程性質等參數;作擊實試驗,測試擊實後土的密度、容重、比重、滲透系數等參數。②根據上述試驗結果,分別向圖6-4所示的高強度塑料筒(共6個)中按不同的密度裝上,在此過程中,為預防土與塑料壁之間接觸不良或開裂所造成的影響,我們採用了在裝土之前向塑料筒邊壁上先塗抹一層凡士林的辦法,效果很好。③為真實地模擬垃圾滲濾液在土中的運移及研究粘性土的截污能力,我們採用填埋場滲濾液的原液來作系列淋濾凈化試驗。④由於土柱上的淋濾液向土中滲濾,再從土柱上的取樣孔中取出的水之間存在一個時間差,為避免這個時間差造成的誤差,我們在測試從土柱中取出的水的污染組分的同時,也測試土柱之上的淋濾液的相應成分的濃度,通過計算,消除誤差。⑤不同密度土的滲透試驗採用常規的滲透試驗方法。試驗時的實驗室溫度變化范圍用空調器控制在4℃以內,以避免由於熱脹冷縮過大帶來的誤差。由於粘性土中孔隙水滲流量特別小,為避免由於乾燥產生蒸發對觀測流量帶來的誤差,在實驗室安裝了加濕器,以保證室內濕度在90%以上。⑥土柱中水樣的採集採用真空負壓計,保證隨時取到水樣。土柱中淋濾水的污染組分由中國地質科學院水文地質專業測試中心測試。
圖6-4 土體截污能力淋濾試驗裝置
(三)截污容量的計算方法
計算截污容量,要確定凈化率R和截污值S這兩個參數。
(1)凈化率R。
城市垃圾地質環境影響調查評價方法
C原=原狀滲濾液的濃度,C出=滲濾液滲過土體後流出水的污染質的濃度。凈化率R是一個衡量粘性土對污染質凈化能力重要指標。當土對污染質的凈化率R=0%時,說明該土已經不再對污染質有凈化能力。在實際使用時,為更有效地保護環境,土不再對污染質有凈化能力的標准可根據具體情況而定,而不一定要求凈化率R=0%,我們認為R可以定在0~25%之間。
(2)截污值S。土的截污值S,指滲濾液經過土體後,留在土中的污染質的量。計算式為:
城市垃圾地質環境影響調查評價方法
V原=滲濾液的體積為便於在工程實踐中的應用,我們引入單位重土截污值SD的概念,即用土的截污值S除以參與截污值S的土的重量W。計算式子為:
城市垃圾地質環境影響調查評價方法
S、SD單位分別為mg、mg/g。
(3)截污容量SDM的確定。單位重土截污值SD表明每單位重的土裡截留了多少重量的污染質,就同一種土來說,不一定就是一個定值,它的大小與滲濾液的性質、經過土的時間、土本身的性質等有關。對於同一種土來說,在一定時期內,對污染質的凈化作用並非是無限的。換句話說,到一定程度,土中污染質是要達到飽和的,這時,土的截污值為最大截污值或土的飽和截污值SDM,所累積的污染質的總量就是所謂的土的截污容量(用SDM來表示),它是一個主要與土的性質(土的顆粒組成、密實度、礦物成分、有機物成分、滲透性等)和間歇恢復時間有關的參量。
三、有效阻隔層足額厚度的計算
有效阻隔層足額厚度(Hz)的計算,涉及到有效阻隔層的阻隔能力即粘性土的截污容量SDM、填埋場垃圾的種類、填埋垃圾的密實度(孔隙率a)、填埋垃圾的厚度(HL)、垃圾滲濾液中污染物的濃度(C)和垃圾滲濾液量等參數。
一個垃圾填埋場的填埋容量是一定的,其所產生的污染物的總量也是一定的。按照截污容量的定義,當垃圾場下面有效阻隔層的土量一定時,在一定時期內,它對污染物的阻隔能力也是一定的,當垃圾場下面的有效阻隔層截污總量(SMt)大於或等於垃圾填埋場所產生的污染物的總量(SMw),即當SMt≥SMw時,此垃圾場的污染物不會遷移污染含水層中。當SMt=SMw時,計算得到的有效阻隔層厚度為臨界有效阻隔層足額厚度。這個臨界有效阻隔層足額厚度H:計算推導過程如下:
城市垃圾地質環境影響調查評價方法
式中:Wt=有效阻隔層土的質量(kg),SDM=截污容量(kg/kg),Dt=有效阻隔層土的密度(kg/m3),Vt=有效阻隔層土的體積(m3),St=有效阻隔層土的面積(m2),Hz=有效阻隔層足額厚度為(m)。
由於填埋場垃圾中的污染物總量SMw的計算在世界各國都是一個難題,至今還未得到很好的解決。事實上,我們沒有必要計算填埋場垃圾中的污染物總量SMw,而只需計算垃圾處置場滲入阻隔層中的污染物總量S'Mw,即可。實際上,填埋場中的垃圾污染物在使用期滿封場後,其中的垃圾污染物不斷從有機固體物的降解中,進入垃圾滲濾液中來。同時,垃圾滲濾液中的有機污染物又在微生物的作用下不斷分解和轉化成為非污染物,因而有機污染物濃度隨時間的推移逐漸衰減。而其中的無機污染物也在不斷的化學反應下轉化成非污染物,無機污染物濃度隨時間的推移逐漸衰減(圖6-5),即填埋場滲濾液中的污染物(不論是有機污染物或是無機污染物)濃度在場地使用的初期往往是最高的。因此,我們在計算垃圾處置場滲入阻隔層中的污染物總量S'Mw時,為使所計算的有效阻隔層足額厚度在使用時放心,採用了非常保守的方法,用填埋場垃圾滲濾液最大濃度C與填埋場垃圾滲濾液體積的積作為垃圾處置場滲入阻隔層中的污染物總量S'Mw,而填埋場垃圾滲濾液體積等於填埋場垃圾的體積VL與垃圾孔隙率a的積。
所以:
城市垃圾地質環境影響調查評價方法
當SMt=S'Mw,時,Hz×St×Dt×SDM=HL×SL×a×C,則
城市垃圾地質環境影響調查評價方法
在上述(6-5)、(6-6)中,VL=填埋垃圾的體積(m3),SL=填埋垃圾的面積(m2),HL=垃圾填埋厚度(m),C=填埋場垃圾滲濾液最大濃度(kg/m3),a=垃圾孔隙率(%),其餘同前。
圖6-5 某填埋場中污染物濃度隨時間的推移逐漸衰減規律
如圖6-6所示,設填埋場底下面有效阻隔層足額厚度為Hz,垃圾填埋厚度為HL,在對本區進行垃圾處置場區的選擇規劃時,在單位面積上,先假定SL=St=1,則(6-6)式變成:
城市垃圾地質環境影響調查評價方法
並且,根據北京市平原區現有負地形的一般深度和我們調查中的現有垃圾場的堆放或填埋厚度及機械挖掘的可能深度,我們可初步認為北京未來的垃圾填埋場填埋垃圾的厚度大約為12m,即HL=12m。
a=填埋垃圾的孔隙率(%),根據城市垃圾的成分和壓實程度,其孔隙率通常取40%~52%。為便於計算,我們取45%。
把a=45%、HL=12m代入(6-7),則(6-7)式變成(6-8):
城市垃圾地質環境影響調查評價方法
圖6-6 有效阻隔層足額厚度Hz的計算示意圖
四、粘性土層阻隔能力的實驗研究結果
根據前述實驗研究結果及相關資料的核查,北京地區的粘性土層的截污容量(SDM)、填埋場垃圾滲濾液的最大濃度C、有效阻隔層土的密度Dt等值及利用(6-8)式對有效阻隔層足額厚度Hz計算結果如表6-1。
五、認識和討論
歸納總結上述,可以得出下列初步認識:
(1)廢物處置場的襯墊層目的從「禁止滲濾液向地下水中滲漏」到「隔離污染物,可允許水進入地下水」的理念的轉變,為新的污染物隔離理論創新奠定了基礎。新的襯墊隔離理論來源於對地質隔離層中的物理、力學、化學和土壤微生物學性質等的正確認識和利用;由此,使傳統的處置場隔離理念得到了更新,墊層理論實現了突破。
表6-1 北京市平原區粘性土對垃圾污染物的阻隔能力
(2)粘性土隔離層既具有防滲作用,又具有截污作用。充分利用其截污作用,通過對隔離層截污容量的試驗研究、計算方法的探索,研究出了地質隔離層「截污容量」、「有效隔離層足額厚度」等新的表徵阻隔能力和特性的參數。理論推導和實際例子表明,其理論及計算方法是可靠和可行的。
(3)從Hz=5.4C/(Dt×SDM)計算式子看出,有效隔離層足額厚度Hz的計算確定是應用該理論的關鍵,而計算Hz需要的一個基本參數SD M的准確求取又很重要。本文用隔離層對COD及TDS的截污容量來分別代表有機或無機污染物的截污容量SDM,是在受現有實驗條件、測試技術等的限制和垃圾中的污染成分狀況出發作出的選擇;但有害廢物中的有害物質成分十分復雜,不同的隔離層對不同的污染成分的截污作用或截污能力是不一樣的,究竟用那種(些)污染成分的截污容量來代表廢物污染物的截污容量最合適,還要做大量的探索性研究工作。
(4)從Hz=5.4C/(Dt×SDM)計算式子還可看出,有效隔離層足額厚度與其密度Dt、截污容量SDM成反比,與滲濾液污染物濃度成正比,要使隔離層比較薄的地區能填埋處置廢物,有三種辦法:一是對垃圾進行分選,盡量減少廢物中的污染物;二是對隔離層夯實,增大密度Dt;三是增大隔離層的截污容量SDM。
(5)增加隔離層對垃圾污染物的凈化或截留能力即能增大隔離層的「截污容量」SDM的方法,為此,筆者已經作了較成功的系列性探索。這些方法有:①通過在隔離層中加入微生物菌液體,增強土壤微生物對污染物的降解作用;②在隔離層中按一定比例加入強吸附材料膨潤土;③在隔離層中按一定比例加入強吸附材料風化煤粉;④利用天然泥炭層作為隔離層。
G. 水動力彌散系數的測定
目前,就非飽和土壤水動力彌散系數的測定來看,還沒有公認而成熟的方法和規范可尋,當然,國內外一些學者在這方面也做了不少探索和研究。Yule和Gardner(1978)在假設彌散系數與速度成比例關系以及含水量均勻的前提下,進行室內短柱試驗求得非飽和縱向和橫向彌散系數,但由於假設偏於理想化,求得的參數難以體現實際情況。Smiles和Philip(1978),Smiles等(1978)求得水平吸水過程中溶質運移問題的半解析解,通過一維水平吸水實驗,認為彌散系數僅為含水量的函數,與流速無關。De Smedt和Wierenga(1979,1984)在長30cm的一維垂直土柱中對兩種不同粒徑的玻璃球進行實驗,認為彌散系數與平均孔隙流速呈線性關系。Jones和Watson(1982)用沙進行一維吸水實驗,通過計算結果分析,當取彌散系數與平均流速呈線性關系時,計算結果完全落在實驗結果的范圍之內。楊金忠(1986)利用水平土柱試驗,由數值方法反求參數,是個較有效的方法,但是求解非線性水流方程和對流彌散方程的復雜性,使之難以推廣應用。黃康樂(1987,1988)基於質量守恆原理,借鑒求解水力傳導度的瞬時剖面方法,提出了一種在實驗和計算上都較為簡單的室內和野外試驗方法,並通過室內、野外試驗證明該方法是較有效、精確的。石元春、李韻珠和陸錦文等(1986)以及清華大學的謝森傳、楊詩秀和雷志棟(1989)進行了水平土柱的入滲試驗,並根據試驗結果求得了以含水率為變數的水動力彌散系數。張瑜芳、張蔚榛和沈榮開等(1997)提出,若已知土壤水、鹽運動過程中某兩個時刻的剖面分布,從質量守恆原理建立起剖面上各點的水分及鹽分均衡方程,從而求出剖面上各點的彌散系數,此結果與根據實驗用數值方法反求參數的結果相一致。
圖2.3.3 擴散度擬合曲線
目前,對水動力彌散系數的結構形式的認識尚不統一(王亞東、胡毓騏,1992)。從理論上講,水動力彌散系數Dsh為分子擴散系數Ds和機械彌散系數Dh之和。一般將溶質在土壤中的分子擴散系數僅表示為含水率的函數,而與溶質的濃度無關,常用經驗公式來表示(雷志棟,楊詩秀,謝森傳,1988)。用經驗公式表示的分子擴散系數Ds為:
Ds=D0αebθ (2.3.55)
式中:Ds分子擴散系數(cm2/min);D0溶質在自由水體中的擴散系數(cm2/min);θ土壤含水率(cm3/cm3);α、b均為經驗常數。
據文獻介紹(Olsen 和Kemper,1968),當土壤水吸力在0.3~15atm 的范圍內變化時,上述經驗公式中b=10 比較適合,α的變化范圍為0.005~0.001(沙壤土-粘土),土壤粘性愈大,α值愈小。
一般認為,一維流情況下,機械彌散系數 Dh與平均孔隙流速 υ 的一次方成正比(Bear,1972)
Dh=α|υ| (2.3.56)
式中:Dh機械彌散系數(cm2/min);υ平均孔隙流速(cm/min);α彌散度(為經驗常數)(cm)。
綜上所述,彌散系數Dsh表示為分子擴散系數Ds和機械彌散系數Dh之和,即
Dsh=D0αebθ+α|υ| (2.3.57)
當對流速度相當大時,機械彌散的作用會大大超過分子擴散作用,以致於水動力彌散中只需考慮機械彌散作用;反之,當土壤溶液靜止時,則機械彌散完全不起作用,而只剩下分子擴散了。一般情況下,土壤中的溶質運移,都同時存在分子擴散和機械彌散作用,但實際上很難區分開來,因此,將分子擴散和機械彌散綜合統稱為水動力彌散。實際應用中,有的學者將水動力彌散系數表示為形如分子擴散系數形式的指數函數,如 Smiles 和 Philip(1978),謝森傳、楊詩秀和雷志棟(1989),認為縱向彌散系數對孔隙水流速不敏感,因此,Dsh可以單獨作為含水率的函數來對待。但從文獻資料看,目前不少學者將水動力彌散系數表示為形如機械彌散系數形式的線性函數,認為Dsh與平均孔隙流速υ的一次方成正比。本文所測定的水動力彌散系數取前一種形式。測定方法有水平土柱法和垂直土柱法。
圖2.3.4 垂直土柱試驗裝置示意圖
(一)垂直土柱法
試驗裝置如圖2.3.4 所示,土柱上裝有負壓計和鹽分感測器以測定土壤負壓和土壤溶液濃度,供試溶液由馬氏瓶從底部進入土柱。為了計算水動力彌散系數(Hydrodynamic Dispersion Coefficiet),首先計算水分通量,然後計算鹽分通量,最後由水分通量和鹽分通量計算水動力彌散系數。
1.水分通量
若已知溶液從底部補給土柱的水量,以及不同時刻剖面含水率的分布,則由水量均衡原理,土柱上任一截面z處的水分通量qz可表示為:
土壤水鹽運移數值模擬
即
土壤水鹽運移數值模擬
式中:qz為任一截面z處的水分通量(cm/d),q0為土柱底部的進水量(cm/d),θ為體積含水率(cm3/cm3),Δt=t2-t1為時段(d)。
上式(2.3.59)寫為離散格式:
土壤水鹽運移數值模擬
式中:k為時段數。
2.鹽分通量
若已知土柱底部溶質通量,以及不同時刻剖面含水率和溶質濃度的分布,則任一截面z處的溶質通量Jz由質量守恆原理得:
土壤水鹽運移數值模擬
土壤水鹽運移數值模擬
式中:Jz為任一截面 z 處的溶質通量(g/cm2·d);J0為土柱底部的溶質通量(g/cm2·d);c為土壤溶質濃度(g/cm3);θ為體積含水率(cm3/cm3);Δt=t2-t1為時段(d)。
式(2.3.62)寫為離散格式為:
土壤水鹽運移數值模擬
3.水動力彌散系數
根據水動力彌散原理,溶質通量等於水動力彌散通量與對流通量之和,即:
土壤水鹽運移數值模擬
土壤水鹽運移數值模擬
式中:J 為溶質通量(g/cm2·d);Dsh為水動力彌散系數(cm2/d);c 為溶質濃度(g/cm3);θ為體積含水率(cm3/cm3);Δt=t2-t1為時段(d)。
式(2.3.65)寫為離散格式為:
土壤水鹽運移數值模擬
將前面計算出的
(二)水平土柱吸滲法
試驗裝置如圖2.3.5所示,溶液由馬氏瓶從土柱一端水平滲入,土柱為初始含水率和鹽分含量均勻一致的半無限土柱,這個問題可以用如下的水鹽運移方程進行描述。
圖2.3.5 水平土柱試驗裝置示意圖
水分方程:
基本方程,
土壤水鹽運移數值模擬
式中:D(θ)為水分擴散度(cm2/min);θ為與輸入端(進水邊界)的水平距離為x處的體積含水率(cm3/cm3)。
定解條件,
土壤水鹽運移數值模擬
式中:θi為初始體積含水率(cm3/cm3);θs飽和體積含水率(開始試驗後在邊界處瞬時形成)。
鹽分運移方程:
基本方程,
土壤水鹽運移數值模擬
式中:Dsh為水動力彌散系數(cm2/min);c為與輸入端(進水邊界)的水平距離為x處的溶質濃度(g/cm3);q為水流通量(cm/min);θ為體積含水率(cm3/cm3)。
定解條件,
土壤水鹽運移數值模擬
式中:ci為初始土壤溶液濃度(g/cm3);c0為所供給溶液濃度(g/cm3)。
由水分方程可以解出擴散度:
土壤水鹽運移數值模擬
由鹽分方程可以解出水動力彌散系數,由於,
土壤水鹽運移數值模擬
所以鹽分運移的基本方程式(2.3.69)可以展成:
土壤水鹽運移數值模擬
採用 Boltzmann 變換,將上述偏微分方程化為常微分方程,令
土壤水鹽運移數值模擬
將
土壤水鹽運移數值模擬
令
土壤水鹽運移數值模擬
將式(2.3.71)代入式(2.3.76)得:
土壤水鹽運移數值模擬
將上式寫為離散格式為:
土壤水鹽運移數值模擬
式(2.3.75)可寫為:
土壤水鹽運移數值模擬
Boltzmann變換後鹽分運移問題的定解條件變為:
土壤水鹽運移數值模擬
將上式(2.3.79)兩邊在區間[c,ci]上積分,求出水動力彌散系數:
土壤水鹽運移數值模擬
寫為離散格式為:
土壤水鹽運移數值模擬
根據試驗數據用式(2.3.82)即可計算水動力彌散系數Dsh。
(三)水動力彌散系數測定結果
本書採用水平土柱吸滲法進行水動力彌散試驗。由於不同溶質在土壤中的彌散系數基本相同(張瑜芳、張蔚榛和沈榮開等,1997);通過不同濃度的入滲試驗證明,入滲溶液濃度和初始含水量對Dsh影響不明顯(石元春、李韻珠和陸錦文等,1986);理論分析和實驗證明,入滲溶液的濃度對土壤水分的運動影響很小(謝森傳、楊詩秀和雷志棟,1989)。因此,本書選用氯化鈉溶液作為供水水源進行彌散試驗。
試驗裝置為分節的有機玻璃圓柱(圖 2.3.5),柱長 70cm,內徑 2.5cm,每節長3.5cm,節與節之間為鍾罩式連接,柱的一端裝有多孔板,供水裝置為馬氏瓶。測試土樣同前,為寅陽1#粉砂壤土,大興2#粉砂壤土,興隆沙1#粉質粘壤土,土壤含鹽量及離子組成見表2.3.5。其中寅陽1#砂壤土,興隆沙1#粉質粘壤土的土壤鹽分均以氯化鈉為主,Cl-和Na+的含量占絕對優勢,而大興2#砂壤土離子含量則以
表2.3.5 土樣含鹽量及離子組成
試驗結束後,迅速將土柱按節拆開取樣。土壤含水率採用烘乾法測定,土壤含鹽量採用電導率儀測定。通過實驗數據擬合的電導率與土壤含鹽量的換算關系為
s=2.8882Ec+ 0.1016 (2.3.83)
式中:s為土壤含鹽量(單位質量干土所含鹽分的質量(g/kg));Ec為電導率(土水比為1:5的浸提液,標准為103檔下的讀數(mS/cm))。
土壤溶液濃度c與土壤含鹽量s的換算關系為:
θc=γs (2.3.84)
式中:c為土壤溶液濃度(g/L);θ土壤含水率(cm3/cm3);γ 為干土容重(g/cm3);s土壤含鹽量(g/kg)。
根據試驗的實測數據,按照上述演算法進行計算。擬合的水動力彌散系數的經驗公式如下:
寅陽1#(相關系數R=0.987)
Dsh(θ)=8×10-6e30.187θ (2.3.85)
大興2#(相關系數R=0.981)
Dsh(θ)=4×10-8e47.965θ (2.3.86)
興隆沙1#(相關系數R=0.993)
Dsh(θ)=0.0061e12.448θ (2.3.87)
主要計算圖件及擬合曲線見圖2.3.6至圖2.3.8。
圖2.3.6 寅陽1#曲線圖
圖2.3.7 大興2#曲線圖
圖2.3.8 興隆沙1#曲線圖
H. 室內土柱實驗怎麼分層取土
你的淋洗試驗,正常情況下,土壤要過多少目的篩啊?如果過的篩比較細,應該就沒什麼問題。如果,你是要過2mm這樣的粗篩,建議你還是換一下土樣。因為,你現在的土壤結皮後,相當於把原有土壤的結構破壞了埃