Ⅰ 液壓馬達連接什麼裝置可以使傳動方向改變90度,且體積較小
優點(1)在相同的體積下,液壓執行裝置能比電氣裝置產生出更大的動力。在同等功率的情況下,液壓執行裝置的體積小、重量輕、結構緊湊。液壓馬達的體積重量只有同等功率電動機的12%左右。(2)液壓執行裝置的工作比較平穩。由於液壓執行裝置重量輕、慣性小、反應快,所以易於實現快速起動、制動和頻繁地換向。液壓裝置的換向頻率,在實現往復回轉運動時可達到每分鍾500次,實現往復直線運動時可達每分鍾1000次。(3)液壓傳動可在大范圍內實現無級調速(調速比可達1:2000),並可在液壓裝置運行的過程中進行調速。(4)液壓傳動容易實現自動化,因為它是對液體的壓力、流量和流動方向進行控制或調節,操縱很方便。當液壓控制和電氣控制或氣動控制結合使用時,能實現較復雜的順序動作和遠程式控制制。(5)液壓裝置易於實現過載保護且液壓件能自行潤滑,因此使用壽命長。(6)由於液壓元件已實現了標准化、系列化和通用化,所以液壓系統的設計、製造和使用都比較方便。液壓傳動的缺點:(1)液壓傳動是以液體為工作介質,在相對運動表面間不可避免地要有泄漏,同時,液體又不是絕對不可壓縮的,因此不宜在傳動比要求嚴格的場合採用,例如螺紋和齒輪加工機床的內傳動鏈系統。(2)液壓傳動在工作過程中有較多的能量損失,如摩擦損失、泄漏損失等,故不宜於遠距離傳動。(3)液壓傳動對油溫的變化比較敏感,油溫變化會影響運動的穩定性。因此,在低溫和高溫條件下,採用液壓傳動有一定的困難。(4)為了減少泄露,液壓元件的製造精度要求高,因此,液壓元件的製造成本高,而且對油液的污染比較敏感。(5)液壓系統故障的診斷比較困難,因此對維修人員提出了更高的要求,既要系統地掌握液壓傳動的理論知識,又要有一定的實踐經驗。(6)隨著高壓、高速、高效率和大流量化,液壓元件和系統的雜訊日益增大,這也是要解決的問題。總而言之,液壓傳動的優點是突出的,隨著科學技術的進步,液壓傳動的缺點將得到克服,液壓傳動將日益完善,液壓技術與電子技術及其它傳動方式的結合更是前途無量。
Ⅱ 常見的液壓馬達有哪些及其特點解析
液壓馬達分類抄
分類 結構形襲式 特點
高速馬達 齒輪馬達 具有體積小、重量輕、結構簡單、工藝性好,對油液的污染不敏感、耐沖擊和慣性小等優點。缺點有扭矩脈動較大、效率較低、起動扭矩較小(僅為額定扭矩的60%——70%)和低速穩定性差等。
葉片馬達 葉片馬達與其他類型馬達相比較具有結構緊湊、輪廓尺寸較小、雜訊低、壽命長等優點,其慣性比柱塞馬達小,但抗污染能力比齒輪馬達差,且轉速不能太高,一般在200r/min 以下工作。葉片馬達由於泄漏較大,故負載變化或低速時不穩定。
徑向柱塞馬達
軸向柱塞馬達 斜軸式柱塞馬達
斜盤式柱塞馬達
低速液壓馬達 徑向柱塞馬達 連桿式液壓馬達 是結構簡單、工作可靠、品種規格多、價格低。其缺點是體積和重量較大,扭矩脈動較大
無連桿式液壓馬達
擺缸式液壓馬達
滾柱式液壓馬達
軸向柱塞馬達 雙斜盤式柱塞馬達
軸向球塞式馬達
葉片馬達
擺線馬達
Ⅲ 液壓馬達 聯軸器 減速機的意義及用途(急)
液壓馬達:將抄液壓泵提供的襲液壓能轉變為機械能的能量轉換裝置
與電機比的優點缺點:同功率的液壓馬達的體積比電機小很多,而且液壓馬達可以通過液壓系統實現無級調速,而且很方便,但是如果經常需要在低轉速下工作,則液壓馬達需要接個減速機,因為液壓系統的低速調速性能不好。但是,液壓馬達需要現場有液壓站,且管路系統的布置很麻煩且維護沒有電機方便。
但是液壓馬達(進口)一般都比進口電機+進口減速機整體還有貴很多。
聯軸器:使電機與設備或減速機與設備的安裝精度降低很多,節省很多成本,聯軸器(剛性聯軸器除外)可以吸收徑向,軸向和角向的安裝誤差,使安裝的調整工作變得很容易,當然也可以起到緩存的作用。
減速機:一般電機的高轉速是不適合實際設備所需要的轉速的,而電機輸出的扭矩也不符合要求,需要接減速機,實現低轉速和高轉矩來滿足實際設備的需要
Ⅳ 液壓馬達如何驅動
一、驅動原理。
液壓馬達的主動軸和泵的主動軸相連(同軸),當液壓馬達旋轉時帶動泵旋轉。液壓馬達是高壓油進低壓油出,泵是吸入低壓油排出高壓油。當然液壓馬達是靠別的泵驅動的。這種裝置一般用在特殊場合。
二、特點。
從能量轉換的觀點來看,液壓泵與液壓馬達是可逆工作的液壓元件,向任何一種液壓泵輸入工作液體,都可使其變成液壓馬達工況;反之,當液壓馬達的主軸由外力矩驅動旋轉時,也可變為液壓泵工況。因為它們具有同樣的基本結構要素--密閉而又可以周期變化的容積和相應的配油機構。
但是,由於液壓馬達和液壓泵的工作條件不同,對它們的性能要求也不一樣,所以同類型的液壓馬達和液壓泵之間,仍存在許多差別。首先液壓馬達應能夠正、反轉,因而要求其內部結構對稱;液壓馬達的轉速范圍需要足夠大,特別對它的最低穩定轉速有一定的要求。因此,它通常都採用滾動軸承或靜壓滑動軸承;其次液壓馬達由於在輸入壓力油條件下工作,因而不必具備自吸能力,但需要一定的初始密封性,才能提供必要的起動轉矩。由於存在著這些差別,使得液壓馬達和液壓泵在結構上比較相似,但不能可逆工作。
三、分類簡介。
1、液壓馬達按其結構類型來分,可以分為齒輪式、葉片式、柱塞式和其它型式。
2、按液壓馬達的額定轉速分為高速和低速兩大類。額定轉速高於500r/min的屬於高速液壓馬達,額定轉速低於500r/min的屬於低速液壓馬達。
a、高速液壓馬達的基本型式有齒輪式、螺桿式、葉片式和軸向柱塞式等。它們的主要特點是轉速較高、轉動慣量小、便於啟動和制動、調節(調速及換向)靈敏度高。通常高速液壓馬達輸出轉矩不大所以又稱為高速小轉矩液壓馬達。
b、低速液壓馬達的基本型式是徑向柱塞式,此外在軸向柱塞式、葉片式和齒輪式中也有低速的結構型式,低速液壓馬達的主要特點是排量大、體積大轉速低(有時可達每分鍾幾轉甚至零點幾轉)、因此可直接與工作機構連接;不需要減速裝置,使傳動機構大為簡化,通常低速液壓馬達輸出轉矩較大,所以又稱為低速大轉矩液壓馬達。
四、液壓馬達主要參數。
1.工作壓力與額定壓力
工作壓力:輸入馬達油液的實際壓力,其大小決定於馬達的負載。
馬達進口壓力與出口壓力的差值稱為馬達的壓差。
額定壓力:按試驗標准規定,使馬達連續正常工作的最高壓力。
2.排量和流量
排量:在不考慮泄漏的情況下,液壓馬達每轉一轉所需要輸入液體的體積。Vm (m3/rad)
流量:不計泄漏時的流量稱理論流量qMt,考慮泄漏流量為實際流量qM。
3.容積效率和轉速
容積效率ηMv:實際輸入流量與理論輸入流量的比值。
4.轉矩和機械效率
在不計馬達的損失情況下,其輸出功率等於輸入功率。
實際轉矩T:由於馬達實際存在機械損失而產生損失扭矩ΔT,使得比理論扭矩Tt小,即馬達的機械效率ηMm:等於馬達的實際輸出扭矩與理論輸出扭矩的比.
5.功率和總效率
馬達實際輸入功率為pqM,實際輸出功率為Tω。
馬達總效率ηM:實際輸出功率與實際輸入功率的比值.
Ⅳ 有一傳動裝置,液壓馬達加減速機。驅動15噸重量滾筒旋轉,需要多大扭矩,如何計算。
這個就是 混凝土攪拌車用的減速機 可以問問 傳菱精密
Ⅵ 液壓傳動系統有哪幾個部分組成各起什麼作用
液壓傳動系統主要由五塊組成,分別是:
1、動力元件
2、執行元件
3、控制元件
4、輔助元件
5、工作介質
各部分的功能分別是:
1、動力元件的作用是利用液體把機械能轉換成液壓力能;它是液壓傳動中的動力因素。
2、執行元件是將液體的液壓能轉換成機械能,和動力原件的作用互反。油缸-直線運動,馬達-旋轉運動。
3、控制元件是根據需要無級調節液動機的速度,並對液壓系統中工作液體的壓力、流量和流向進行調節控制。
4、輔助元件包含壓力表、濾油器、蓄能裝置、冷卻器、管件各種管接頭,高壓球閥、快換接頭、軟管總成、測壓接頭、管夾等及油箱等,每個元件都用不同的功用。
5、工作介質是指各類液壓傳動中的液壓油或乳化液,它經過油泵和液動機實現能量轉換。
Ⅶ 液壓傳動裝置由哪些基本部分組成
1.
動力裝置:將機械抄能轉換為液壓能;
2.
執行裝置:包括將液壓能轉換為機械能的液壓執行器;
3.
控制裝置:控制液體的壓力、流量和方向的各種液壓閥;
4.
輔助裝置:包括儲存液體的液壓箱,輸送液位的管路和接頭,保證液體清潔的過濾器等;
5.
工作介質:液壓液,是動力傳遞的載體。
Ⅷ 液壓馬達都有哪些結構形式
液壓馬達的結構形式:
一、葉片式
由於壓力油作用,受力不平衡使轉子產生轉矩。葉片式液壓馬達的輸出轉矩與液壓馬達的排量和液壓馬達進出油口之間的壓力差有關,其轉速由輸入液壓馬達的流量大小來決定。由於液壓馬達一般都要求能正反轉,所以葉片式液壓馬達的葉片要徑向放置。為了使葉片根部始終通有壓力油,在回、壓油腔通人葉片根部的通路上應設置單向閥,為了確保葉片式液壓馬達在壓力油通人後能正常啟動,必須使葉片頂部和定子內表面緊密接觸,以保證良好的密封,因此在葉片根部應設置預緊彈簧。葉片式液壓馬達體積小、轉動慣量小、動作靈敏、可適用於換向頻率較高的場合;但泄漏量較大、低速工作時不穩定。因此葉片式液壓馬達一般用於轉速高、轉矩小和動作要求靈敏的場合。
二、徑向柱塞式
徑向柱塞式液壓馬達工作原理,當壓力油經固定的配油軸4的窗口進入缸體內柱塞的底部時,柱塞向外伸出,緊緊頂住定子的內壁,由於定子與缸體存在一偏心距。在柱塞與定子接觸處,定子對柱塞的反作用力為。力可分解為和兩個分力。當作用在柱塞底部的油液壓力為p,柱塞直徑為d,力和之間的夾角為X時,力對缸體產生一轉矩,使缸體旋轉。缸體再通過端面連接的傳動軸向外輸出轉矩和轉速。以上分析的一個柱塞產生轉矩的情況,由於在壓油區作用有好幾個柱塞,在這些柱塞上所產生的轉矩都使缸體旋轉,並輸出轉矩。徑向柱塞液壓馬達多用於低速大轉矩的情況下。
1、單作用連桿型徑向柱塞馬達
連桿馬達圖、軸配流液壓馬達圖、五角徑向馬達裝配動畫所示為單作用連桿型徑向柱塞馬達工作原理圖,其外型呈五角星狀。該馬達由殼體1、曲軸6、配流軸5、連桿3、柱塞2、和偏心輪4等零件組成。優點:結構簡單,工作可靠。缺點:體積大、重量大,轉扭脈動,低速穩定性較差。
2、多作用內曲線柱塞馬達
該馬達由配流軸1、缸體2、柱塞3、橫梁4、滾輪5、定子6和輸出軸7等組成。這種馬達的排量較單行程馬達增大了1倍。相當於有21個柱塞。由於當量柱塞數增加,在同樣工作壓力下,輸出扭矩相應增加,扭矩脈動率減小。有時這種馬達做成多排柱塞,柱塞數更多,輸出扭矩進一步增加,扭矩脈動率進一步減小。因此這種馬達可做成排量很大,並且可在很低轉速成下平穩運轉。由於馬達需要雙向旋轉,因此葉片槽呈徑向布置。
3、柱塞式高速液壓馬達
柱塞式高速液壓馬達一般都是軸向式。
三、軸向柱塞馬達
軸向柱塞泵除閥式配流外,其它形式原則上都可以作為液壓馬達用,即軸向柱塞泵和軸向柱塞馬達是可逆的。軸向柱塞馬達的工作原理為,配油盤和斜盤固定不動,馬達軸與缸體相連接一起旋轉。當壓力油經配油盤的窗口進入缸體的柱塞孔時,柱塞在壓力油作用下外伸,緊貼斜盤,斜盤對柱塞產生一個法向反力p,此力可分解為軸向分力及和垂直分力Q。Q與柱塞上液壓力相平衡,而Q則使柱塞對缸體中心產生一個轉矩,帶動馬達軸逆時針方向旋轉。軸向柱塞馬達產生的瞬時總轉矩是脈動的。若改變馬達壓力油輸入方向,則馬達軸按順時針方向旋轉。斜盤傾角a的改變、即排量的變化,不僅影響馬達的轉矩,而且影響它的轉速和轉向。斜盤傾角越大,產生轉矩越大,轉速越低。
四、齒輪馬達
齒輪馬達在結構上為了適應正反轉要求,進出油口相等、具有對稱性、有單獨外泄油口,將軸承部分的泄漏油引出殼體外;為了減少啟動摩擦力矩,採用滾動軸承;為了減少轉矩脈動,齒輪液壓馬達的齒數比泵的齒數要多。齒輪液壓馬達由干密封性差、容積效率較低、輸入油壓力不能過高、不能產生較大轉矩。並且瞬間轉速和轉矩隨著嚙合點的位置變化而變化,因此齒輪液壓馬達僅適合於高速小轉矩的場合。一般用於工程機械、農業機械以及對轉矩均勻性要求不高的機械設備上。
五、高速馬達
額定轉速高於500r/min的馬達屬於高速馬達。高速馬達的基本形式有齒輪式、葉片式和軸向柱塞式。它們主要特點是轉速高,轉動慣量小,便於啟動、制動、調速和換向。
六、低速馬達
轉速低於500r/min的液壓馬達屬於低速液壓馬達。它的基本形式是徑向柱塞式。低速液壓馬達的主要特點是:排量大,體積大,轉速低,可以直接與工作機構連接,不需要減速裝置,使傳動機構大大簡化,低速液壓馬達的輸出扭矩較大,可達幾千到幾萬Nm,因此又稱為低速大扭矩液壓馬達。
Ⅸ 液壓傳動系統的組成有什麼
液壓傳動系統的組成:
液壓系統主要由:動力元件(油泵)、執行元件(油缸或液壓馬版達)、權控制元件(各種閥)、輔助元件和工作介質等五部分組成。 1、動力元件(油泵)
它的作用是利用液體把原動機的機械能轉換成液壓力能;是液壓傳動中的動力部分。 2、執行元件(油缸、液壓馬達)
它是將液體的液壓能轉換成機械能。其中,油缸做直線運動,馬達做旋轉運動。 3、控制元件
包括壓力閥、流量閥和方向閥等。它們的作用是根據需要無級調節液動機的速度,並對液壓系統中工作液體的壓力、流量和流向進行調節控制。 4、輔助元件
除上述三部分以外的其它元件,包括壓力表、濾油器、蓄能裝置、冷卻器、管件各種管接頭(擴口式、焊接式、卡套式)、高壓球閥、快換接頭、軟管總成、測壓接頭、管夾等及油箱等,它們同樣十分重要。 5、工作介質
工作介質是指各類液壓傳動中的液壓油或乳化液,它經過油泵和液動機實現能量轉換。
Ⅹ 什麼情況下一般採用液壓本來是氣動傳動裝置換成液壓傳動可以嗎
氣動傳抄動與液壓傳動相襲比較,主要的區別為(只針對目前情況):
1、氣動的動作速度快,但速度調節比液壓難。
2、從構造上講,液壓比氣動稍稍復雜些。
3、從定位精度講,液壓比氣動精確些。
所以,可以用液壓做夾緊夾具,但是不知學校是否允許。