導航:首頁 > 裝置知識 > 裝置設計說明

裝置設計說明

發布時間:2021-01-19 06:11:12

『壹』 齒輪箱體的設計說明書

一、前言
(一)
設計目的:
通過本課程設計將學過的基礎理論知識進行綜合應用,培養結構設計,計算能力,熟悉一般的機械裝置設計過程。
(二)
傳動方案的分析
機器一般是由原動機、傳動裝置和工作裝置組成。傳動裝置是用來傳遞原動機的運動和動力、變換其運動形式以滿足工作裝置的需要,是機器的重要組成部分。傳動裝置是否合理將直接影響機器的工作性能、重量和成本。合理的傳動方案除滿足工作裝置的功能外,還要求結構簡單、製造方便、成本低廉、傳動效率高和使用維護方便。
本設計中原動機為電動機,工作機為皮帶輸送機。傳動方案採用了兩級傳動,第一級傳動為帶傳動,第二級傳動為單級直齒圓柱齒輪減速器。
帶傳動承載能力較低,在傳遞相同轉矩時,結構尺寸較其他形式大,但有過載保護的優點,還可緩和沖擊和振動,故布置在傳動的高速級,以降低傳遞的轉矩,減小帶傳動的結構尺寸。
齒輪傳動的傳動效率高,適用的功率和速度范圍廣,使用壽命較長,是現代機器中應用最為廣泛的機構之一。本設計採用的是單級直齒輪傳動。
減速器的箱體採用水平剖分式結構,用HT200灰鑄鐵鑄造而成。
二、傳動系統的參數設計
原始數據:運輸帶的工作拉力F=0.2 KN;帶速V=2.0m/s;滾筒直徑D=400mm(滾筒效率為0.96)。
工作條件:預定使用壽命8年,工作為二班工作制,載荷輕。
工作環境:室內灰塵較大,環境最高溫度35°。
動力來源:電力,三相交流380/220伏。
1
、電動機選擇
(1)、電動機類型的選擇: Y系列三相非同步電動機
(2)、電動機功率選擇:
①傳動裝置的總效率:
=0.98×0.99 ×0.96×0.99×0.96
②工作機所需的輸入功率:
因為 F=0.2 KN=0.2 KN= 1908N
=FV/1000η
=1908×2/1000×0.96
=3.975KW
③電動機的輸出功率:
=3.975/0.87=4.488KW
使電動機的額定功率P =(1~1.3)P ,由查表得電動機的額定功率P = 5.5KW 。
⑶、確定電動機轉速:
計算滾筒工作轉速:
=(60×v)/(2π×D/2)
=(60×2)/(2π×0.2)
=96r/min
由推薦的傳動比合理范圍,取圓柱齒輪傳動一級減速器傳動比范圍I』 =3~6。取V帶傳動比I』 =2~4,則總傳動比理時范圍為I』 =6~24。故電動機轉速的可選范圍為n』 =(6~24)×96=576~2304r/min
⑷、確定電動機型號
根據以上計算在這個范圍內電動機的同步轉速有1000r/min和1500r/min,綜合考慮電動機和傳動裝置的情況,同時也要降低電動機的重量和成本,最終可確定同步轉速為1500r/min ,根據所需的額定功率及同步轉速確定電動機的型號為Y132S-4 ,滿載轉速 1440r/min 。
其主要性能:額定功率:5.5KW,滿載轉速1440r/min,額定轉矩2.2,質量68kg。
2
、計算總傳動比及分配各級的傳動比
(1)、總傳動比:i =1440/96=15
(2)、分配各級傳動比:
根據指導書,取齒輪i =5(單級減速器i=3~6合理)
=15/5=3
3
、運動參數及動力參數計算
⑴、計算各軸轉速(r/min)
=960r/min
=1440/3=480(r/min)
=480/5=96(r/min)
⑵計算各軸的功率(KW)
電動機的額定功率Pm=5.5KW
所以
P =5.5×0.98×0.99=4.354KW
=4.354×0.99×0.96 =4.138KW
=4.138×0.99×0.99=4.056KW
⑶計算各軸扭矩(N

『貳』 設計題目:用於膠帶輸送機的機械傳動裝置設計(求設計說明書)一份

.............................................新手灌水

『叄』 機械設計基礎課程設計指導書第三版 附錄14 設計題目 2 設計輸送傳送裝置。 求設計說明書!!!

3
1
33

『肆』 設計已螺旋輸送機的驅動裝置設計說明書

計算內容 計算結果
一, 設計任務書
設計題目:傳送設備的傳動裝置
(一)方案設計要求:
具有過載保護性能(有帶傳動)
含有二級展開式圓柱齒輪減速器
傳送帶鼓輪方向與減速器輸出軸方向平行
(二)工作機原始數據:
傳送帶鼓輪直徑___ mm,傳送帶帶速___m/s
傳送帶主動軸所需扭矩T為___N.m
使用年限___年,___班制
工作載荷(平穩,微振,沖擊)
(三)數據:
鼓輪D 278mm,扭矩T 248N.m
帶速V 0.98m/s,年限 9年
班制 2 ,載荷 微振
二.電機的選擇計算
1. 選擇電機的轉速:
a. 計算傳動滾筒的轉速
nw= 60V/πd=60×0.98/3.14×0.278=67.326 r/min
b.計算工作機功率
pw= nw/9.55×10³=248×67.326/9.55×10³=1.748Kw
2. 工作機的有效功率
a. 傳動裝置的總效率
帶傳動的效率η1= 0.96
彈性聯軸器的效率η2= 0.99

滾筒的轉速
nw=67.326 r/min
工作機功率
pw=1.748Kw

計算內容 計算結果
滾動軸承的效率 η3=0.99
滾筒效率 η4=0.96
齒輪嚙合效率 η5=0.97
總效率 η=η1×η2×η34×η4×η5²=
0.95×0.99×0.994×0.96×0.97²=0.816
c. 所需電動機輸出功率Pr=Pw/η=1.748/0.816=2.142kw
3. 選擇電動機的型號:
查參考文獻[10] 表16-1-28得 表1.1
方案
號 電機
型號 電機
質量
(Kg) 額定
功率
(Kw) 同步
轉速(r/min) 滿載
轉速
(r/min) 總傳
動比
1 Y100L1-4 34 2.2 1500 1420 21.091
2 Y112M-6 45 2.2 1000 940 13.962
根據以上兩種可行同步轉速電機對比可見,方案2傳動比小且質量價格也比較合理,所以選擇Y112M-6型電動機。
三.運動和動力參數的計算
1. 分配傳動比取i帶=2.5
總傳動比 i=13.962
i減=i/i帶=13.962/2.5=5.585
減速器高速級傳動比i1= =2.746
減速器低速級傳動比i2= i減/ i1=2.034
2. 運動和動力參數計算:

總效率
η=0.816

電動機輸出功率
Pr=2.142kw

選用三相非同步電動機Y112M-6
p=2.2 kw
n=940r/min
中心高H=1112mm,外伸軸段D×E=28×60

i=13.962
i12=2.746
i23=2.034

P0=2.142Kw

計算內容 計算結果
0軸(電動機軸):
p0=pr=2.142Kw
n0=940r/min
T0=9.55103P0/n0=9.551032.119/940=21.762N.m
Ⅰ軸(減速器高速軸):
p1=p.η1=2.1420.95=2.035Kw
n1= n0/i01=940/2.5=376
T1=9.55103P1/n1=51.687 N.m
Ⅱ軸(減速器中間軸):
p2=p1η12=p1η5η3=2.0350.970.99
=1.954 Kw
n2= n1/i12=376/2.746=136.926 r/min
T2=9.55103 P2/n2=136.283N.m

Ⅲ軸(減速器低速軸):
p3=p2η23= p2η5η3=1.876 Kw
n3= n2/i23=67.319 r/min
T3=9.55103 P3/n3=266.133 N.m
Ⅳ軸(鼓輪軸):
p4=p3η34=1.839 Kw
n4= n3=67.319 r/min
T4=9.55103 P4/n4=260.884 N.m
四.傳動零件的設計計算
(一)減速器以外的傳動零件
1.普通V帶的設計計算
(1) 工況系數取KA=1.2
確定dd1, dd2:設計功率pc=KAp=1.22.2=2.64Kw n0=940r/min
T0=21.762N.m
p1=2.035Kw
n1=376r/min
T1=51.687N.m
p2=1.954Kw
n2=136.926 r/min
T2=136.283 N.m
p3=1.876Kw
n3=67.319 r/min
T3=266.133N.m

p4=1.839 Kw
n4=67.319r/min
T4=260.884 N.m

小帶輪轉速n1= n0=940 r/min
選取A型V帶 取dd1=118mm
dd2=(n1/n2)dd1=(940/376) 118=295mm
取標准值dd2=315mm
實際傳動i=dd1/ dd2=315/118=2.669
所以n2= n1/i=940/2.669=352.192r/min(誤差為6.3%>5%)
重取 dd1=125mm,
dd2=(n1/n2)dd1=(940/376)125=312.5mm
取標准值dd2=315mm
實際傳動比i= dd1/ dd2=315/125=2.52
n2= n1/i=940/2.52=373.016
(誤差為8% 允許)
所選V帶帶速v=πdd1 n1/(601000)=3.14
125940/(601000)=6.152m/s
在5 ~25m/s之間 所選V帶符合
(2)確定中心距
①初定a0 :0.7(dd1 +dd2)≤a0≤ 2(dd1 +dd2)

308≤a0≤880 取a0=550mm
②Lc=2 a0+(π/2)( dd1 +dd2)+( dd2 -dd1)²/4 a0
=2550+(3.14/2) (315+125)+(315-125)²/4550=1807.559
③取標准值:Ld=1800mm
④中心距:a=a0+ (Ld­Lc)/2=550+(1800-1807.559)/2

計算內容 計算結果
=546.221mm
取a=547mm,a的調整范圍為:
amax=a+0.03 Ld=601mm
amin=a-0.015Ld=520mm

(2)驗算包角:
α≈180°-(dd2-dd1) 60° /a=180°-(315-125) 60°/547=159°>120°,符合要求。
(3)確定根數:z≥pc/p0』
p0』=Kα(p0+Δp1+Δp2)
Kα=1.25(1- )=0.948
對於A型帶:c1=3.7810-4,c2=9.8110-3,
c3=9.610-15,c4=4.6510-5
L0=1700mm
ω1= = =98.437rad/s
p0= dd1ω1[c1- - c3 (dd1ω1)²- c4lg(dd1ω1)]
=12598.437[3.7810-4- -9.6
10-15 (12598.437)²- 4.6510-5
lg(12598.437)]=1.327
Δp1= c4dd1ω1 =0.148
Δp2=c4dd1ω1 =0.0142
p0』=0.948 (1.327+0.149+0.0142)=1.413 Kw

確定根數:z≥ ≤Zmax
z= = 取z=2
(4)確定初拉力F0
F0=500 =500×
=175.633KN
(5)帶對軸的壓力Q
Q=2 F0zsin =2 =690.768KN
(二)減速器以內的零件的設計計算
1.齒輪傳動設計
(1)高速級用斜齒輪
① 選擇材料
小齒輪選用40Cr鋼,調質處理,齒面硬度250~280HBS大齒輪選用ZG340~ 640,正火處理,齒面硬度170 ~ 220HBS
應力循環次數N:
N1=60n1jLh=60×376×(9×300×16)=9.74×108
N2= N1/i1=9.74×108 ÷2.746=3.549×108
查文獻[2]圖5-17得:ZN1=1.02 Z N2=1.11(允許有一點蝕)
由文獻[2]式(5-29)得:ZX1 = ZX2=1.0,取SHmin=1.0,Zw=1.0,ZLVR=0.92
按齒面硬度250HBS和170HBS由文獻[2]圖(5-16(b))得:σHlim1=690Mpa, σHlim2=450 Mpa
許用接觸應力[σH]1 =(σHlim1/SHmin)ZN1 ZX1 Zw ZLVR=647.496 Mpa,[σH]2=(σHlim2/SHmin)ZN2 ZX2 Zw ZLVR
=459.540 Mpa
因[σH]2〈[σH]1,所以計算中取[σH]= [σH]2 =459.540 Mpa
②按接觸強度確定中心距
初定螺旋角β=12° Zβ= =0.989
初取KtZεt2=1.12 由文獻[2]表5-5得ZE=188.9 ,減速傳動u=i1 =2.746,取Φa=0.4
端面壓力角αt=arctan(tanαn/cosβ)=arctan(tan20°/cos12°)=20.4103°
基圓螺旋角βb= arctan(tanβ×cosαt)= arctan(tan12°×cos20.4103°)=11.2665°
ZH= = =2.450
計算中心距a:

計算內容 計算結果
a≥
=
=111.178mm
取中心距 a=112mm
估算模數mn=(0.007~0.02)a=(0.007~0.02)×=
0.784~2.24
取標准模數mn=2
小齒輪齒數

實際傳動比: 傳動比誤差 在允許范圍之內
修正螺旋角β=
10°50′39〃
與初選β=12°相近,Zβ,ZH可不修正。
齒輪分度圓直徑

圓周速度
由文獻[2]表5-6 取齒輪精度為8級
③驗算齒面接觸疲勞強度
按電機驅動,載荷平穩,由文獻[2]表5-3 取 KA=1.25
由文獻[2]圖5-4(b),按8級精度和
取KV=1.023
齒寬 ,取標准b=45mm
由文獻[2]圖5-7(a)按b/d1=45/61.091=0.737,取Kβ=1.051
由文獻[2]表5-4,Kα=1.2
載荷系數K= KAKVKβKα=
計算重合度:
齒頂圓直徑
端面壓力角:
齒輪基圓直徑: mm
mm
端面齒頂壓力角:

高速級斜齒輪主要參數:
mn=2
z1=30, z2=80
β=
10°50′39〃
mt= mn/cosβ=2.036mm
d1=61.091mm
d2=162.909mm
da1=65.091mm
da2=166.909mm
df1= d1-2(ha*+ c*) mn=56.091mm
df2= d2-2(ha*+ c*) mn=157.909mm
中心距a=1/2(d1+d2)=112mm
齒寬b2=b=
45mm
b1= b2+(5~10)=50mm

計算內容 計算結果

齒面接觸應力
安全
④驗算齒根彎曲疲勞強度
由文獻[2]圖5-18(b)得:
由文獻[2]圖5-19得:
由文獻[2]式5-23:

計算許用彎曲應力:

計算內容

計算結果

由文獻[2]圖5-14得:
由文獻[2]圖5-15得:
由文獻[2]式5-47得計算

由式5-48: 計算齒根彎曲應力:

均安全。
⑵低速級直齒輪的設計
①選擇材料
小齒輪材料選用40Cr鋼,齒面硬度250—280HBS,大齒輪材料選用ZG310-570,正火處理,齒面硬度162—185HBS
計算應力循環次數N:同高速級斜齒輪的計算 N1=60 n1jL h=1.748×108
N2= N1/i1=0.858×108
計算內容

計算結果
查文獻[2]圖5-17得:ZN1=1.12 Z N2=1.14
按齒面硬度250HBS和162HBS由文獻[2]圖(5-16(b))得:σHlim1=690Mpa, σHlim2=440 Mpa
由文獻[2]式5-28計算許用接觸應力:
[σH]1 =(σHlim1/SHmin)ZN1 ZX1 Zw ZLVR=710.976 Mpa,[σH]2=(σHlim2/SHmin)ZN2 ZX2 Zw ZLVR
=461.472 Mpa
因[σH]2〈[σH]1,所以取[σH]= [σH]2 =461.472 Mpa
②按接觸強度確定中心距
小輪轉距T1=136.283N.m=136283N.m
初取KtZεt2=1.1 由文獻[2]表5-5得ZE=188.9 ,減速傳動u=i23=2.034,取Φa=0.35

計算中心距a: a≥
=145.294mm
取中心距 a=150mm估算模數m=(0.007~0.02)a=(0.007~0.02)×150=
1.05~3
取標准模數m=2
小齒輪齒數

齒輪分度圓直徑

齒輪齒頂圓直徑:

齒輪基圓直徑: mm
mm
圓周速度
由文獻[2]表5-6 取齒輪精度為8級
按電機驅動,載荷平穩,而工作機載荷微振,由文獻[2]表5-3 取 KA=1.25
按8級精度和 取KV=1.02
齒寬 b= ,取標准b=53mm
由文獻[2]圖5-7(a)按b/d1=53/100=0.53,取Kβ=1.03
由文獻[2]表5-4,Kα=1.1
載荷系數K= KAKVKβKα=
計算端面重合度:

安全。
③校核齒根彎曲疲勞強度
按z1=50, z2=100,由文獻[2]圖5-14得YFa1=2.36 ,YFa2=2.22
由文獻[2]圖5-15得YSa1= 1.71,YSa2=1.80。
Yε=0.25+0.75/ εα=0.25+0.75/1.804=0.666
由文獻[2]圖5-18(b),σFlim1=290Mp, σFlim2=152Mp
由文獻[2]圖5-19,YN1= YN2=1.0,因為m=4〈5mm,YX1= YX2=1.0。
取YST=2.0,SFmin=1.4。
計算許用彎曲應力:
[σF1]= σFlim1YST YN1 YX1/SFmin=414Mp
[σF2]= σFlim2YST YN2 YX2/SFmin=217Mp
計算齒根彎曲應力:
σF1=2KT1YFa1YSa1Yε/bd1m=2×1.445×136283×2.36×1.71×0.666/53×100×2=99.866Mp〈[σF1]
σF2=σF1 YFa2YSa2/ YFa1YSa1=98.866Mp〈[σF2]
均安全。
五.軸的結構設計和軸承的選擇
a1=112mm, a2=150mm,
bh2=45mm, bh1= bh2+(5~10)=50mm
bl2=53mm, bl1= bl2+(5~10)=60mm
(h----高速軸,l----低速軸)
考慮相鄰齒輪沿軸向不發生干涉,計入尺寸s=10mm,考慮齒輪與箱體內壁沿軸向不發生干涉,計入尺寸k=10mm,為保證滾動軸承放入箱體軸承座孔內,計入尺寸c=5mm,初取軸承寬度分別為n1=20mm,n2=22,n3=22mm,3根軸的支撐跨距分別為:
計算內容

低速級直齒輪主要參數:
m=2
z1=50, z1=50 z2=100
u=2.034
d1=100mm
d2=200mm
da1=104mm
da2=204mm
df1=
d1-2(ha*+ c*) m=95mm
df2=
d2-2(ha*+ c*) m=195mm
a=1/2(d2+ d1)=150mm
齒寬b2 =b=53mm
b1=b2+
(5~10)=60mm

計算結果
l1=2(c+k)+bh1+s+bl1+n1=2×(5+10)+50+10+60+20=170mm
l2=2(c+k)+bh1+s+bl1+n2=2×(5+10)+50+10+60+20=

172mm
l3=2(c+k)+bh1+s+bl1+n3=2×(5+10)+50+10+60+20=172mm
(2)高速軸的設計:
①選擇軸的材料及熱處理
由於高速軸小齒輪直徑較小,所以採用齒輪軸,選用40r鋼,
②軸的受力分析:
如圖1軸的受力分析:

lAB=l1=170mm,
lAC=n1/2+c+k+bh1/2=20/2+5+10+50/2=50mm
lBC= lAB- lAC=170-50=120mm
(a) 計算齒輪嚙合力:
Ft1=2000T1/d1=2000×51.687/61.091=162.131N
Fr1=Ft1tanαn/cosβ1692.13×tan20°/cos10.8441°=627.083N
Fa1= Ft1tanβ×tan10.8441°=324.141N
(b) 求水平面內支承反力,軸在水平面內和垂直面的受力簡圖如下圖:

RAx= Ft1 lBC/ lAB=1692.131×120/170=1194.445N
RBx= Ft1-RAx=1692.131-1194.445=497.686N
RAy=(Fr1lBC+Fa1d1/2)/lAB=(627.083×120+324.141×
61.091/2)/170=500.888N
RBy= Fr1-RAy=627.083-500.888=126.195N
(c) 支承反力

彎矩MA= MB=0,MC1= RA lAC=64760.85N.mm
MC2= RB lBC=61612.32N.mm
轉矩T= Ft1 d1/2=51686.987N.mm
計算內容

計算結果

d≥ ③軸的結構設計
按經驗公式,減速器輸入端軸徑A0 由文獻[2]表8-2,取A0=100
則d≥100 ,由於外伸端軸開一鍵槽,
d=17.557(1+5%)=18.435取d=20mm,由於da1<2d,用齒輪軸,根據軸上零件的布置、安裝和定位的需要,初定軸段直徑和長度,其中軸頸、軸的結構尺寸應與軸上相關零件的結構尺寸聯系起來考慮。
初定軸的結構尺寸如下圖:

高速軸上軸承選擇:選擇軸承30205 GB/T297-94。
(2)中間軸(2軸)的設計:
①選擇軸的材料及熱處理
選用45號綱調質處理。
②軸的受力分析:
如下圖軸的受力分析:

計算內容

計算結果

lAB=l2=172mm,
lAC=n2/2+c+k+bh1/2=22/2+5+10+50/2=51mm
lBC= lAB- lAC=172-51=121mm
lBD=n2/2+c+k+bl1/2=22/2+5+10+60/2=56mm
(a) 計算齒輪嚙合力:
Ft2=2000T2/d2=2000×136.283/162.909=1673.118N
Fr2=Ft2tanαn/cosβ=1673.118×tan20°/cos10.8441°=620.037N
Fa2=Ft2tanβ=1673.118×tan10.8441°=320.499N
Ft3=2000T2/d3=2000×136.283/100=2725.660N
Fr3=Ft3tanα=2725.660×tan20°=992.059N
(b)求水平面內和垂直面內的支反力
RAx=(Ft2lBC+Ft3lBD )/lAB=(1673.118×121+2725.660×56)/172=2064.443N
RBx=Ft2+Ft3-RAX=1673.118+2725.660-2064.443=2334.35N
RAY=(Fa2d2/2-Fr2lBC+Fr3lBD)/lAB=(320.449×162.909/2-620.037×121+992.059×56)=190.336N
RBY=Fr3-Fr2-RAY=992.059-620.037-190.336=
計算內容

計算結果
181.656N
RA=2073.191N, RB=2341.392N
③軸的結構設計
按經驗公式, d≥A0 由文獻[2]表8-2,取A0=110
則d≥110 ,取開鍵槽處d=35mm
根據軸上零件的布置、安裝和定位的需要,初定軸段直徑和長度,其中軸頸、軸的結構尺寸應與軸上相關零件的結構尺寸聯系起來考慮。
初定軸的結構尺寸如下圖:

中間軸上軸承選擇:選擇軸承6206 GB/T276-94。
(3)低速軸(3軸)的設計:
①選擇軸的材料及熱處理
選用45號綱調質處理。
②軸的受力分析:
如下圖軸的受力分析:

計算內容

計算結果

初估軸徑:
d≥A0 =110
聯接聯軸器的軸端有一鍵槽,dmin=33.5(1+3%)=34.351mm,取標准d=35mm
軸上危險截面軸徑計算:d=(0.3~0.4)a=(0.3~0.4)×150=45~60mm 最小值dmin =45×(1+3%)=46.35mm,取標准
計算內容 計算結果
50mm
初選6207GB/T276-94軸承,其內徑,外徑,寬度為40×80×18
軸上各軸徑及長度初步安排如下圖:

③低速級軸及軸上軸承的強度校核
a、 低速級軸的強度校核
①按彎扭合成強度校核:
轉矩按脈動循環變化,α≈0.6
Mca1= Mc=106962.324N.mm
Mca2=
Mca3=αT=159679.800N.mm
計算彎矩圖如下圖:

計算內容

計算結果

Ⅱ剖面直徑最小,而計算彎矩較大,Ⅷ剖面計算彎矩最大,所以校核Ⅱ,Ⅷ剖面。
Ⅱ剖面:σca= Mca3/W=159679.8/0.1×35³=37.243Mp
Ⅷ剖面:σca= Mca2/W=192194.114/0.1×50³=15.376Mp
對於45號綱,σB=637Mp,查文獻[2]表8-3得
[σb] -1=59
Mp,σca<[σb] -1,安全。
②精確校核低速軸的疲勞強度
a、 判斷危險截面:
各個剖面均有可能有危險剖面。其中,Ⅱ,Ⅲ,Ⅳ剖面為過度圓角引起應力集中,只算Ⅱ剖面即可。Ⅰ剖面與Ⅱ剖面比較,只是應力集中影響不同,可取應力集中系數較大者進行驗算。Ⅸ--Ⅹ面比較,它們直徑均相同,Ⅸ與Ⅹ剖面計算彎矩值小,Ⅷ剖面雖然計算彎矩值最大,但應力集中影響較小(過盈配合及鍵槽引起的應力集中均在兩端),所以Ⅵ與Ⅶ剖面危險,Ⅵ與Ⅶ剖面的距離較接近(可取5mm左右),承載情況也很接近,可取應力集中系數較大值進行驗算。
計算內容

計算結果
b.較核Ⅰ、Ⅱ剖面疲勞強度:Ⅰ剖面因鍵槽引
起的應力集中系數由文獻[2]附表1-1查得:kσ=1.76, kτ=1.54
Ⅱ剖面配合按H7/K6,引起的應力集中系數由文獻[2]附表1-1得:kσ=1.97, kτ=1.51。Ⅱ剖面因過渡圓角引起的應力集中系數查文獻[2]附表1-2(用插入法): (過渡圓角半徑根據D-d由文獻[1]表4.2-13查取) kτ=1.419,故應按過渡圓角引起的應力集中系數驗算Ⅱ剖面
Ⅱ剖面產生的扭應力、應力幅、平均應力為:
τmax =T/ WT=266.133/0.2×35³=31.036Mp,
τa=τm =τmax /2=15.52Mp
絕對尺寸影響系數查文獻[2]附表1-4得:εσ =0.88,ετ =0.81,表面質量系數查文獻[2]附表1-5:βσ =0.92,βτ =0.92
Ⅱ剖面安全系數為:
S=Sτ=
取[S]=1.5~1.8,S>[S] Ⅱ剖面安全。
b、 校核Ⅵ,Ⅶ剖面:
Ⅵ剖面按H7/K6配合,引起的應力集中系數查附表1-1,kσ=1.97, kτ=1.51
Ⅵ剖面因過渡圓角引起的應力集中系數查附表1-2, ,kσ=1.612,kτ=1.43
Ⅶ剖面因鍵槽引起的應力集中系數查文獻[2]附表1-1得:kσ=1.82, kτ=1.62。故應按過渡圓角引起
計算內容

計算結果
的應力集中系數來驗算Ⅵ剖面
MVⅠ=113 RA=922.089×113=104196.057N.mm, TVⅠ=266133N.mm
Ⅵ剖面產生的正應力及其應力幅、平均應力:
σmax= MVⅠ/W=104196.057/0.1×50³=8.336Mp
σa=σmax=8.366 σm=0
Ⅵ剖面產生的扭應力及其應力幅,平均應力為:
τmax =TⅥ/ WT=266133/0.2×50³
絕對尺寸影響系數由文獻[2]附表1-4得:εσ =0.84,ετ
=0.78
表面質量系數由文獻[2]附表1-5查得:βσ =0.92,βτ =0.92
Ⅵ剖面的安全系數:
Sσ =
Sτ=
S=
取[S]= 1.5~1.8,S>[S] Ⅵ剖面安全。
六.各個軸上鍵的選擇及校核
1.高速軸上鍵的選擇:
初選A型6×32 GB1095-79:b=6mm,L=32mm,l=26mm,查文獻[2]表2-10,許用擠壓應力[σp]=110Mp,σp= 滿足要求;

計算內容

高速軸上
選A型6×32 GB1095-79:b=6mm,L=32mm,l=26mm
中間軸
選A型10×32 GB1095-79:b=10mm,h=8mm,L=32mm,l=22mm,

計算結果
2.中間軸鍵的選擇:
A處:初選A型10×32 GB1095-79:b=10mm,h=8mm,L=32mm,l=22mm, [σp]=110Mp
σp= 滿足要求;
B處:初選A型10×45 GB1095-79:
b=10mm,h=8mm,L=32mm,l=22mm,[σp]=110Mp
σp= 滿足要求.
3. 低速軸上鍵的選擇:
a.聯軸器處選A型普通平鍵
初選A型10×50 GB1096-79:b=10mm,h=8mm,L=50mm,l=40mm,查文獻[2]表2-10,許用擠壓應力[σp]=110Mp
σp= 滿足要求.
b. 齒輪處初選A型14×40 GB1096-79:b=14mm,h=9mm,L=40mm,l=26mm, [σp]=110Mp
σp= 滿足要求.
七.聯軸器的選擇
根據設計題目的要求,減速器只有低速軸上放置一聯軸器。
查表取工作情況系數K=1.25~1.5 取K=1.5
計算轉矩 Tc=KT=1.5×266.133=399.200Mp
選用HL3型聯軸器:J40×84GB5014-85,[T]=630N.m, Tc<[T],n<[n],所選聯軸器合適。
低速軸
聯軸器處選A型10×50GB1096-79:b=10mm,h=8mm,L=50mm,l=40mm
低速軸
齒輪處初選A型14×40GB1096-79:
b=14mm,h=9mm,L=40mm,l=26mm

選用HL3型聯軸器:J40×84GB5014-85
參考資料:機械課程設計,理論力學

『伍』 符合圖裝置設計意圖的有()①說明CO具有還原性②既說明CO具有可燃性,又充分地利用了能源③說明CO得

由題目中的圖形可知:一氧化碳能還原氧化銅說明了一氧化碳有還回原性;一氧化碳尾氣點燃,說明可燃答燒;一氧化碳氧化後的產物能使澄清石灰水變渾濁,說明產物為二氧化碳;尾氣點燃可以防止污染空氣.由以上分析可知:
A、符合圖裝置設計意圖的有①②③④.故A正確;
B、符合圖裝置設計意圖的有②④,不全面.故B不正確;
符合圖裝置設計意圖的有②③④.不全面.故C不正確;
符合圖裝置設計意圖的有①②,不全面.故D不正確.
故選A.

『陸』 做牛奶的裝置設計,設計說明怎麼寫

你要說明做什麼「牛奶」,另外,牛奶可不是「做」出來的啊。

『柒』 帶式輸送機傳動裝置設計說明書和裝配圖

圖沒法給你,下面是說明書,自己改吧。

一、設備用途
帶式輸送機是依靠摩擦傳動實現物料輸送的機械,廣泛用於冶金、礦山、煤炭、環保、建材、電力、化工、輕工、糧食等行業。適用於輸送鬆散密度為0.5-2.5t/m3的各種粒狀、粉狀等散體物料,也可以輸送成件物品。其工作環境溫度為-25-60℃,普通橡膠輸送帶適用的物料溫度不超過80℃。

二、技術參數
帶 寬: 1000 mm
頭尾滾筒中心距:60400 mm
帶 速: 1m/s
輸送帶型號:EP-150
輸送帶規格長度:1000X3(3+1.5)X128m(含硫化長度0.9m)
輸送能力:205m3/h
物料密度:0.6 t/m3
傾 角: 0°
電機功率: 7.5kW

三、工作原理
該設備主要由驅動裝置、傳動滾筒、輸送帶、槽型上托輥、下托輥、機架、清掃器、拉緊裝置、改向滾筒、導料槽、重錘張緊裝置及電器控制裝置等組成。
輸送帶繞經傳動滾筒和尾部改向滾筒形成環行封閉帶。托輥承載輸送帶及上面輸送的物料。張緊裝置使輸送帶具有足夠的張力,保證與傳動滾筒間產生摩擦力使輸送帶不打滑。工作時,減速電機帶動傳動滾筒,通過摩擦力驅動輸送帶運行,物料由進料裝置進入並隨輸送帶一起運動,經過一定的距離到達出料口轉入下一道工藝環節。

四、結構和控制特點
上托輥採用槽形托輥,利於承載鬆散物料。回程托輥採用V型托輥,有效防止皮帶機跑偏。在空段清掃器前後安裝下平托輥有利於清除物料。
輸送帶張緊採用螺旋張緊和重錘張緊兩套裝置。螺旋張緊裝置還可以調整皮帶機的跑偏。

在輸送帶的工作面兩側,沿輸送帶全長安裝有導料槽,導料槽由槽板和橡膠板組合而成,橡膠板與輸送帶接觸,形成槽形斷面,起到增加輸送量的作用,同時也防止物料灑落。導料槽板同橡膠板的固定方式採用螺栓和壓板壓緊的形式,橡膠板不需要鑽孔,同時可以根據橡膠板的磨損情況,方便的進行調整,保證橡膠板保持同輸送帶的密封狀態。
在輸送機頭部和尾部安裝有頭部及空段清掃器。頭部清掃器為重錘刮板式結構,安裝於傳動滾筒下方,用於清除輸送帶工作面的粘料。空段清掃器為刮板式結構,安裝於靠近尾部的輸送帶非工作面的上方,用於清除輸送帶非工作面上的物料。
輸送帶採用聚酯帆布帶,具有耐油、耐酸鹼的性質。接頭採用硫化接頭,接頭安全系數10-12。
輸送機一側安裝有拉繩開關,當發生緊急情況時拉動開關上的鋼絲繩啟動此開關,可以立即停機。故障排除後,拉動復位銷開關可復位。
輸送機頭尾部安裝有跑偏開關,當輸送帶發生跑偏時,輸送帶帶動開關上的立輥旋轉並傾斜,傾斜大於一級動作角度12°時,發出一組開關信號;如立輥繼續傾斜大於二級動作角度30°時,發出另一組開關信號。兩組信號分別用於報警和停機。當輸送機恢復正常運行後,立輥自動復位。

五、安裝調試
1.輸送機的各支腿、立柱或平台用化學錨栓牢固地固定於地面上。
2.機架上各個部件的安裝螺栓應全部緊固。各托輥應轉動靈活。托輥軸心線、傳動滾筒、改向滾筒的軸心線與機架縱向的中心線應垂直。
3.螺旋張緊行程為機長的1%~1.5%。
4.拉繩開關安裝於輸送機一側,兩開關間用覆塑鋼絲繩連接,松緊適度。
5.跑偏開關安裝於輸送機頭尾部兩側,成對安裝。開關的立輥與輸送帶帶邊垂直,且保證帶邊位於立輥高度的1/3處。立輥與輸送帶邊緣距離為50~70mm。
6.各清掃器、導料槽的橡膠刮板應與輸送帶完全接觸,否則,調節清掃器和導料槽的安裝螺栓使刮板與輸送帶接觸。
7.安裝無誤後空載試運行。試運行的時間不少於2小時。並進行如下檢查:
(1)各托輥應與輸送帶接觸,轉動靈活。
(2)各潤滑處無漏油現象。
(3)各緊固件無松動。
(4)軸承溫升不大於40°C,且最高溫度不超過80°C。
(5)正常運行時,輸送機應運行平穩,無跑偏,無異常噪音。

六、故障排除
1.輸送帶打滑
原因是輸送帶張力小或驅動滾筒表面粘有物料或水份。應旋緊張緊螺桿,增大張力。清理驅動滾筒並加大空段清掃器的清掃力度。
2.輸送帶在兩端跑偏
原因是滾筒裝配位置偏斜,應拉緊跑偏一側的張緊裝置的螺桿調整改向滾筒位置。通過調整軸承座調整傳動滾筒的位置。
3.輸送帶在中部跑偏
原因是托輥安裝位置不正。應檢查各托輥安裝位置是否與輸送帶垂直,否則松開安裝螺栓調整托輥位置。調整完畢後旋緊各螺栓。
此外,進料口落料點不在輸送帶中心也可能引起跑偏,應改善進料情況。

七、注意事項
輸送機應有專人負責操作。每班使用後進行日常檢修和維護工作:
1. 檢查各緊固件是否松動。
2.各清掃器、導料槽的橡膠刮板磨損時應調整其伸出的尺寸。如果磨損嚴重,應進行更換。
3.多台輸送機或其它設備聯合運轉使用時,應注意啟動和停車順序:應保持空載啟動;進料口設備停機供料後本設備應運轉一段時間待卸空物料後再停車。
4.停車後,將輸送機上的污物清理干凈,並關閉電源。
5.若設備停止使用較長時間,在啟動前應檢查設備上是否有異物影響運動部件的運動。

八、維護保養
1.減速電機按其使用說明書定期更換潤滑油。
2.各滾筒的軸承座及軸承每半年清洗一次,並重新加註鋰基潤滑脂ZL-2。
3.張緊裝置的螺桿每3—6個月表面塗一次鋰基潤滑脂ZY-2。
4.根據設備使用情況,各部件和結構件應定期清理污物和除銹,並塗油或噴漆進行防腐處理。

『捌』 小型裝置藝術作品,配設計說明

tps://wenku..com/view/.html
它可能對你有用!
它是一個網址哦!

閱讀全文

與裝置設計說明相關的資料

熱點內容
法蘭閥門里的板學名叫什麼 瀏覽:888
檢測黃金含量的儀器叫什麼 瀏覽:279
長春機械院怎麼樣 瀏覽:837
汽車自動滅火裝置概念股票 瀏覽:566
空調製冷劑沸點是多少度 瀏覽:541
圖紙上沒有閥門強度數值怎麼辦 瀏覽:612
合肥市五金機電市場在哪裡 瀏覽:295
機械制圖中m67h是什麼意思 瀏覽:964
怎麼用pe格式化電腦機械硬碟 瀏覽:660
奧馳d3儀表盤不亮是什麼原因 瀏覽:225
化工蒸餾各個裝置的作用 瀏覽:286
儀表台用什麼洗膠水 瀏覽:352
儀表台雙面膠如何取下 瀏覽:878
2206軸承配什麼瓦座 瀏覽:872
機械鍵盤拆開怎麼裝回去 瀏覽:154
冰箱的製冷效果為什麼會變得很差 瀏覽:627
儀表施工方案怎麼做 瀏覽:861
什麼是鑄造鑄造如何分類 瀏覽:485
cad怎麼從機械改為建築 瀏覽:798
手按自動下水裝置的安裝圖 瀏覽:54