導航:首頁 > 裝置知識 > 電動絞車傳動裝置課程設計摘要

電動絞車傳動裝置課程設計摘要

發布時間:2024-06-15 00:46:12

機械設計基礎課程設計指導書——設計輸送機傳動裝置課程設計

給你做個參考
一、前言
(一)
設計目的:
通過本課程設計將學過的基礎理論知識進行綜合應用,培養結構設計,計算能力,熟悉一般的機械裝置設計過程。
(二)
傳動方案的分析
機器一般是由原動機、傳動裝置和工作裝置組成。傳動裝置是用來傳遞原動機的運動和動力、變換其運動形式以滿足工作裝置的需要,是機器的重要組成部分。傳動裝置是否合理將直接影響機器的工作性能、重量和成本。合理的傳動方案除滿足工作裝置的功能外,還要求結構簡單、製造方便、成本低廉、傳動效率高和使用維護方便。
本設計中原動機為電動機,工作機為皮帶輸送機。傳動方案採用了兩級傳動,第一級傳動為帶傳動,第二級傳動為單級直齒圓柱齒輪減速器。
帶傳動承載能力較低,在傳遞相同轉矩時,結構尺寸較其他形式大,但有過載保護的優點,還可緩和沖擊和振動,故布置在傳動的高速級,以降低傳遞的轉矩,減小帶傳動的結構尺寸。
齒輪傳動的傳動效率高,適用的功率和速度范圍廣,使用壽命較長,是現代機器中應用最為廣泛的機構之一。本設計採用的是單級直齒輪傳動。
減速器的箱體採用水平剖分式結構,用HT200灰鑄鐵鑄造而成。
二、傳動系統的參數設計
原始數據:運輸帶的工作拉力F=0.2 KN;帶速V=2.0m/s;滾筒直徑D=400mm(滾筒效率為0.96)。
工作條件:預定使用壽命8年,工作為二班工作制,載荷輕。
工作環境:室內灰塵較大,環境最高溫度35°。
動力來源:電力,三相交流380/220伏。
1
、電動機選擇
(1)、電動機類型的選擇: Y系列三相非同步電動機
(2)、電動機功率選擇:
①傳動裝置的總效率:
=0.98×0.99 ×0.96×0.99×0.96
②工作機所需的輸入功率:
因為 F=0.2 KN=0.2 KN= 1908N
=FV/1000η
=1908×2/1000×0.96
=3.975KW
③電動機的輸出功率:
=3.975/0.87=4.488KW
使電動機的額定功率P =(1~1.3)P ,由查表得電動機的額定功率P = 5.5KW 。
⑶、確定電動機轉速:
計算滾筒工作轉速:
=(60×v)/(2π×D/2)
=(60×2)/(2π×0.2)
=96r/min
由推薦的傳動比合理范圍,取圓柱齒輪傳動一級減速器傳動比范圍I』 =3~6。取V帶傳動比I』 =2~4,則總傳動比理時范圍為I』 =6~24。故電動機轉速的可選范圍為n』 =(6~24)×96=576~2304r/min
⑷、確定電動機型號
根據以上計算在這個范圍內電動機的同步轉速有1000r/min和1500r/min,綜合考慮電動機和傳動裝置的情況,同時也要降低電動機的重量和成本,最終可確定同步轉速為1500r/min ,根據所需的額定功率及同步轉速確定電動機的型號為Y132S-4 ,滿載轉速 1440r/min 。
其主要性能:額定功率:5.5KW,滿載轉速1440r/min,額定轉矩2.2,質量68kg。
2
、計算總傳動比及分配各級的傳動比
(1)、總傳動比:i =1440/96=15
(2)、分配各級傳動比:
根據指導書,取齒輪i =5(單級減速器i=3~6合理)
=15/5=3
3
、運動參數及動力參數計算
⑴、計算各軸轉速(r/min)
=960r/min
=1440/3=480(r/min)
=480/5=96(r/min)
⑵計算各軸的功率(KW)
電動機的額定功率Pm=5.5KW
所以
P =5.5×0.98×0.99=4.354KW
=4.354×0.99×0.96 =4.138KW
=4.138×0.99×0.99=4.056KW
⑶計算各軸扭矩(N•mm)
TI=9550×PI/nI=9550×4.354/480=86.63N•m
=9550×4.138/96 =411.645N•m
=9550×4.056/96 =403.486N•m
三、傳動零件的設計計算
(一)齒輪傳動的設計計算
(1)選擇齒輪材料及精度等級
考慮減速器傳遞功率不大,所以齒輪採用軟齒面。小齒輪選用40Cr調質,齒面硬度為240~260HBS。大齒輪選用45#鋼,調質,齒面硬度220HBS;根據指導書選7級精度。齒面精糙度R ≤1.6~3.2μm
(2)確定有關參數和系數如下:
傳動比i
取小齒輪齒數Z =20。則大齒輪齒數:
=5×20=100
,所以取Z
實際傳動比
i =101/20=5.05
傳動比誤差:(i -i)/I=(5.05-5)/5=1%<2.5% 可用
齒數比:
u=i
取模數:m=3 ;齒頂高系數h =1;徑向間隙系數c =0.25;壓力角 =20°;

h *m=3,h )m=3.75
h=(2 h )m=6.75,c= c
分度圓直徑:d =×20mm=60mm
d =3×101mm=303mm
由指導書取
φ
齒寬:
b=φ =0.9×60mm=54mm
=60mm ,
b
齒頂圓直徑:d )=66,
d
齒根圓直徑:d )=52.5,
d )=295.5
基圓直徑:
d cos =56.38,
d cos =284.73
(3)計算齒輪傳動的中心矩a:
a=m/2(Z )=3/2(20+101)=181.5mm 液壓絞車≈182mm
(二)軸的設計計算
1
、輸入軸的設計計算
⑴、按扭矩初算軸徑
選用45#調質,硬度217~255HBS
根據指導書並查表,取c=110
所以 d≥110 (4.354/480) 1/3mm=22.941mm
d=22.941×(1+5%)mm=24.08mm
∴選d=25mm
⑵、軸的結構設計
①軸上零件的定位,固定和裝配
單級減速器中可將齒輪安排在箱體中央,相對兩軸承對稱分布,齒輪左面由軸肩定位,右面用套筒軸向固定,聯接以平鍵作過渡配合固定,兩軸承分別以軸肩和大筒定位,則採用過渡配合固定
②確定軸各段直徑和長度
Ⅰ段:d =25mm
, L =(1.5~3)d ,所以長度取L
∵h=2c
c=1.5mm
+2h=25+2×2×1.5=31mm
考慮齒輪端面和箱體內壁,軸承端面和箱體內壁應有一定距離。取套筒長為20mm,通過密封蓋軸段長應根據密封蓋的寬度,並考慮聯軸器和箱體外壁應有一定矩離而定,為此,取該段長為55mm,安裝齒輪段長度應比輪轂寬度小2mm,故II段長:
L =(2+20+55)=77mm
III段直徑:
初選用30207型角接觸球軸承,其內徑d為35mm,外徑D為72mm,寬度T為18.25mm.
=d=35mm,L =T=18.25mm,取L
Ⅳ段直徑:
由手冊得:c=1.5
h=2c=2×1.5=3mm
此段左面的滾動軸承的定位軸肩考慮,應便於軸承的拆卸,應按標准查取由手冊得安裝尺寸h=3.該段直徑應取:d =(35+3×2)=41mm
因此將Ⅳ段設計成階梯形,左段直徑為41mm
+2h=35+2×3=41mm
長度與右面的套筒相同,即L
Ⅴ段直徑:d =50mm. ,長度L =60mm
取L
由上述軸各段長度可算得軸支承跨距L=80mm
Ⅵ段直徑:d =41mm, L
Ⅶ段直徑:d =35mm, L <L3,取L
2
、輸出軸的設計計算
⑴、按扭矩初算軸徑
選用45#調質鋼,硬度(217~255HBS)
根據課本P235頁式(10-2),表(10-2)取c=110
=110× (2.168/76.4) =38.57mm
考慮有鍵槽,將直徑增大5%,則
d=38.57×(1+5%)mm=40.4985mm
∴取d=42mm
⑵、軸的結構設計
①軸的零件定位,固定和裝配
單級減速器中,可以將齒輪安排在箱體中央,相對兩軸承對稱分布,齒輪左面用軸肩定位,右面用套筒軸向定位,周向定位採用鍵和過渡配合,兩軸承分別以軸承肩和套筒定位,周向定位則用過渡配合或過盈配合,軸呈階狀,左軸承從左面裝入,齒輪套筒,右軸承和皮帶輪依次從右面裝入。
②確定軸的各段直徑和長度
初選30211型角接球軸承,其內徑d為55mm,外徑D=100mm,寬度T為22.755mm。考慮齒輪端面和箱體內壁,軸承端面與箱體內壁應有一定矩離,則取套筒長為20mm,則該段長42.755mm,安裝齒輪段長度為輪轂寬度為2mm。

d =42mm
L
= 50mm
L
= 55mm
L
= 60mm
L
= 68mm
L
=55mm
L
四、滾動軸承的選擇
1
、計算輸入軸承
選用30207型角接觸球軸承,其內徑d為35mm,外徑D為72mm,寬度T為18.25mm.
2
、計算輸出軸承
選30211型角接球軸承,其內徑d為55mm,外徑D=100mm,寬度T為22.755mm
五、鍵聯接的選擇
1
、輸出軸與帶輪聯接採用平鍵聯接
鍵的類型及其尺寸選擇:
帶輪傳動要求帶輪與軸的對中性好,故選擇C型平鍵聯接。
根據軸徑d =42mm ,L =65mm
查手冊得,選用C型平鍵,得: 卷揚機
裝配圖中22號零件選用GB1096-79系列的鍵12×56
則查得:鍵寬b=12,鍵高h=8,因軸長L =65,故取鍵長L=56
2
、輸出軸與齒輪聯接用平鍵聯接
=60mm,L
查手冊得,選用C型平鍵,得:
裝配圖中 赫格隆36號零件選用GB1096-79系列的鍵18×45
則查得:鍵寬b=18,鍵高h=11,因軸長L =53,故取鍵長L=45
3
、輸入軸與帶輪聯接採用平鍵聯接
=25mm
L
查手冊
選A型平鍵,得:
裝配圖中29號零件選用GB1096-79系列的鍵8×50
則查得:鍵寬b=8,鍵高h=7,因軸長L =62,故取鍵長L=50
4
、輸出軸與齒輪聯接用平鍵聯接
=50mm
L
查手冊
選A型平鍵,得:
裝配圖中26號零件選用GB1096-79系列的鍵14×49
則查得:鍵寬b=14,鍵高h=9,因軸長L =60,故取鍵長L=49
六、箱體、箱蓋主要尺寸計算
箱體採用水平剖分式結構,採用HT200灰鑄鐵鑄造而成。箱體主要尺寸計算如下:
七、軸承端蓋
主要尺寸計算
軸承端蓋:HT150 d3=8
n=6 b=10
八、減速器的
減速器的附件的設計
1
、擋圈 :GB886-86
查得:內徑d=55,外徑D=65,擋圈厚H=5,右肩軸直徑D1≥58
2
、油標 :M12:d =6,h=28,a=10,b=6,c=4,D=20,D
3
、角螺塞
M18
×
1.5 :JB/ZQ4450-86
九、
設計參考資料目錄
1、吳宗澤、羅聖國主編.機械設計課程設計手冊.北京:高等教育出版社,1999.6
2、解蘭昌等編著.緊密儀器儀表機構設計.杭州:浙江大學出版社,1997.11

❷ 電動絞車傳動系統是帶傳動還是鏈傳動

帶傳動。
電動絞車由電動機直接帶動行星齒輪傳動裝置,從而帶動絞車運行。該設計簡化了系統傳動過程,省略了液壓環節。

❸ 課程設計帶式輸送機傳動裝置

本次畢業設計是關於礦用固定式帶式輸送機的設計。首選膠帶輸送機作了簡單的內概述:接著分析了帶式輸送容機的選型原則及計算方法;然後根據這些設計准則與計算選型方法按照給定參數要求進行選型設計;接著對所選擇的輸送機各主要零部件進行了校核。普通帶式輸送機由六個主要部件組成:傳動裝置,機尾和導回裝置,中部機架,拉緊裝置以及膠帶。最後簡單的說明了輸送機的安裝與維護。目前,膠帶輸送機正朝著長距離,高速度,低摩擦的方向發展,近年來出現的氣墊式膠帶輸送機就是其中的一中。在膠帶輸送機的設計、製造以及應用方面,目前我國與國外先進水平相比仍有較大差距,國內在設計製造帶式輸送機過程中存在著很多不足。
關鍵詞:帶式輸送機,選型設計,主要部件

以上資料來自「三人行設計網」 我只是復制了一部分給你看 但願能對你有所幫助 他的還算比較全 你可以去看看 呵呵

❹ 電動絞車中的蝸桿蝸輪減速器的課程設計

機械設計課程設計說明書

前言
課程設計是考察學生全面在掌握基本理論知識的重要環節。根據學院的教學環節,在2006年6月12日-2006年6月30日為期三周的機械設計課程設計。本次是設計一個蝸輪蝸桿減速器,減速器是用於電動機和工作機之間的獨立的閉式傳動裝置。本減速器屬單級蝸桿減速器(電機——聯軸器——減速器——聯軸器——帶式運輸機),本人是在周知進老師指導下獨立完成的。該課程設計內容包括:任務設計書,參數選擇,傳動裝置總體設計,電動機的選擇,運動參數計算,蝸輪蝸桿傳動設計,蝸桿、蝸輪的基本尺寸設計,蝸輪軸的尺寸設計與校核,減速器箱體的結構設計,減速器其他零件的選擇,減速器的潤滑等和A0圖紙一張、A3圖紙三張。設計參數的確定和方案的選擇通過查詢有關資料所得。
該減速器的設計基本上符合生產設計要求,限於作者初學水平,錯誤及不妥之處望老師批評指正。

設計者:殷其中
2006年6月30日

參數選擇:
總傳動比:I=35 Z1=1 Z2=35
捲筒直徑:D=350mm
運輸帶有效拉力:F=6000N
運輸帶速度:V=0.5m/s
工作環境:三相交流電源
有粉塵
常溫連續工作
一、 傳動裝置總體設計:
根據要求設計單級蝸桿減速器,傳動路線為:電機——連軸器——減速器——連軸器——帶式運輸機。(如圖2.1所示) 根據生產設計要求可知,該蝸桿的圓周速度V≤4——5m/s,所以該蝸桿減速器採用蝸桿下置式見(如圖2.2所示),採用此布置結構,由於蝸桿在蝸輪的下邊,嚙合處的冷卻和潤滑均較好。蝸輪及蝸輪軸利用平鍵作軸向固定。蝸桿及蝸輪軸均採用圓錐滾子軸承,承受徑向載荷和軸向載荷的復合作用,為防止軸外伸段箱內潤滑油漏失以及外界灰塵,異物侵入箱內,在軸承蓋中裝有密封元件。 圖2.1
該減速器的結構包括電動機、蝸輪蝸桿傳動裝置、蝸輪軸、箱體、滾動軸承、檢查孔與定位銷等附件、以及其他標准件等。

二、 電動機的選擇:
由於該生產單位採用三相交流電源,可考慮採用Y系列三相非同步電動機。三相非同步電動機的結構簡單,工作可靠,價格低廉,維護方便,啟動性能好等優點。一般電動機的額定電壓為380V
根據生產設計要求,該減速器捲筒直徑D=350mm。運輸帶的有效拉力F=6000N,帶速V=0.5m/s,載荷平穩,常溫下連續工作,工作環境多塵,電源為三相交流電,電壓為380V。
1、 按工作要求及工作條件選用三相非同步電動機,封閉扇冷式結構,電壓為380V,Y系列
2、 傳動滾筒所需功率
3、 傳動裝置效率:(根據參考文獻《機械設計課程設計》 劉俊龍 何在洲 主編 機械工業出版社 第133-134頁表12-8得各級效率如下)其中:
蝸桿傳動效率η1=0.70
攪油效率η2=0.95
滾動軸承效率(一對)η3=0.98
聯軸器效率ηc=0.99
傳動滾筒效率ηcy=0.96
所以:
η=η1•η2•η33•ηc2•ηcy =0.7×0.99×0.983×0.992×0.96 =0.633
電動機所需功率: Pr= Pw/η =3.0/0.633=4.7KW
傳動滾筒工作轉速: nw=60×1000×v / ×350
=27.9r/min
根據容量和轉速,根據參考文獻《機械零件設計課程設計》 毛振揚 陳秀寧 施高義 編 浙江大學出版社 第339-340頁表附表15-1可查得所需的電動機Y系列三相非同步電動機技術數據,查出有四種適用的電動機型號,因此有四種傳動比方案,如表3-1:
表3-1
方案 電動機型號 額定功率
Ped kw 電動機轉速 r/min 額定轉矩
同步轉速 滿載轉速
1 Y132S1-2 5.5 3000 2900 2.0
2 Y132S-4 5.5 1500 1440 2.2
3 Y132M2-6 5.5 1000 960 2.0
4 Y160M-8 5.5 750 720 2.0

綜合考慮電動機和傳動裝置的尺寸、重量、價格和減速器的傳動比,可見第3方案比較適合。因此選定電動機機型號為Y132M2-6其主要性能如下表3-2:
表3-2
中心高H 外形尺寸
L×(AC/2+AD)×HD 底角安裝尺寸
A×B 地腳螺栓孔直徑K 軸身尺寸
D×E 裝鍵部位尺寸
F×G×D
132 515×(270/2+210)×315 216×178 12 38×80 10×33×38
四、運動參數計算:
4.1蝸桿軸的輸入功率、轉速與轉矩
P0 = Pr=4.7kw
n0=960r/min
T0=9.55 P0 / n0=4.7×103=46.7N .m
4.2蝸輪軸的輸入功率、轉速與轉矩
P1 = P0•η01 = 4.7×0.99×0.99×0.7×0.992 =3.19 kw
nⅠ= = = 27.4 r/min
T1= 9550 = 9550× = 1111.84N•m
4.3傳動滾筒軸的輸入功率、轉速與轉矩
P2 = P1•ηc•ηcy=3.19×0.99×0.99=3.13kw
n2= = = 27.4 r/min
T2= 9550 = 9550× = 1089.24N•m
運動和動力參數計算結果整理於下表4-1:
表4-1
類型 功率P(kw) 轉速n(r/min) 轉矩T(N•m) 傳動比i 效率η
蝸桿軸 4.7 960 46.75 1 0.679
蝸輪軸 3.19 27.4 1111.84 35
傳動滾筒軸 3.13 27.4 1089.24

五、蝸輪蝸桿的傳動設計:
蝸桿的材料採用45鋼,表面硬度>45HRC,蝸輪材料採用ZCuA110Fe3,砂型鑄造。
以下設計參數與公式除特殊說明外均以參考由《機械設計 第四版》 邱宣懷主編 高等教育出版社出版 1996年 第13章蝸桿傳動為主要依據。
具體如表3—1:

表5—1蝸輪蝸桿的傳動設計表
項 目 計算內容 計算結果
中心距的計算
蝸桿副的相對滑動速度
參考文獻5第37頁(23式) 4m/s<Vs<7m/s
當量摩擦
系數 4m/s<Vs<7m/s
由表13.6取最大值

選[ ]值
在圖13.11的i=35的線上,查得[ ]=0.45
[ ]=0.45

蝸輪轉矩

使用系數 按要求查表12.9

轉速系數

彈性系數 根據蝸輪副材料查表13.2

壽命系數

接觸系數 按圖13.12I線查出

接觸疲勞極限 查表13.2

接觸疲勞最小安全系數 自定

中心距

傳動基本尺寸
蝸桿頭數
Z1=1
蝸輪齒數模數

m=10
蝸桿分度圓 直徑


蝸輪分度圓
直徑
mm

蝸桿導程角
表13.5

變位系數 x=(225-220)/10=0.5 x=0.5
蝸桿齒頂圓 直徑 表13.5
mm

蝸桿齒根圓 直徑 表13.5
mm

蝸桿齒寬
mm

蝸輪齒根圓直徑
mm

蝸輪齒頂圓直徑(吼圓直徑)
mm

蝸輪外徑
mm

蝸輪咽喉母圓半徑

蝸輪齒寬 B =82.5

B=82mm
mm

蝸桿圓周速度
=4.52 m/s

相對滑動速度
m/s

當量摩擦系數 由表13.6查得

輪齒彎曲疲勞強度驗算
許用接觸應力

最大接觸應力

合格
齒根彎曲疲勞強度 由表13.2查出

彎曲疲勞最小安全系數 自取

許用彎曲疲勞應力

輪齒最大彎曲應力

合格
蝸桿軸擾度驗算
蝸桿軸慣性矩

允許蝸桿擾度

蝸桿軸擾度

合格
溫度計算
傳動嚙合效率

攪油效率 自定

軸承效率 自定

總效率

散熱面積估算

箱體工作溫度
此處取 =15w/(m²c)

合格
潤滑油粘度和潤滑方式
潤滑油粘度 根據 m/s由表13.7選取

潤滑方法 由表13.7採用浸油潤滑

六、蝸桿、蝸輪的基本尺寸設計
6.1蝸桿基本尺寸設計
根據電動機的功率P=5.5kw,滿載轉速為960r/min,電動機軸徑 ,軸伸長E=80mm
軸上鍵槽為10x5。
1、 初步估計蝸桿軸外伸段的直徑
d=(0.8——10) =30.4——38mm
2、 計算轉矩
Tc=KT=K×9550× =1.5×9550×5.5/960=82.1N.M
由Tc、d根據《機械零件設計課程設計》 毛振揚 陳秀寧 施高義 編 浙江大學出版社第334頁表14-13可查得選用HL3號彈性柱銷聯軸器(38×83)。
3、 確定蝸桿軸外伸端直徑為38mm。
4、 根據HL3號彈性柱銷聯軸器的結構尺寸確定蝸桿軸外伸端直徑為38mm的長度為80mm。
5、 由參考文獻《機械零件設計課程設計》 毛振揚 陳秀寧 施高義 編 浙江大學出版社的第305頁表10-1可查得普通平鍵GB1096—90A型鍵10×70,蝸桿軸上的鍵槽寬 mm,槽深為 mm,聯軸器上槽深 ,鍵槽長L=70mm。
6、 初步估計d=64mm。
7、 由參考文獻《機械零件設計課程設計》 毛振揚 陳秀寧 施高義 編 浙江大學出版社第189頁圖7-19,以及蝸桿上軸承、擋油盤,軸承蓋,密封圈等組合設計,蝸桿的尺寸如零件圖1(蝸桿零件圖)
6.2蝸輪基本尺寸表(由參考文獻《機械零件設計課程設計》 毛振揚 陳秀寧 施高義 編 浙江大學出版社第96頁表4-32及第190頁圖7-20及表5—1蝸輪蝸桿的傳動設計表可計算得)
表6—1蝸輪結構及基本尺寸
蝸輪採用裝配式結構,用六角頭螺栓聯接( 100mm),輪芯選用灰鑄鐵 HT200 ,輪緣選用鑄錫青銅ZcuSn10P1+* 單位:mm

a=b C x B
160 128 12 36 20 15 2 82
e n

10 3 35 380 90º 214 390 306

七、蝸輪軸的尺寸設計與校核
蝸輪軸的材料為45鋼並調質,且蝸輪軸上裝有滾動軸承,蝸輪,軸套,密封圈、鍵,軸的大致結構如圖7.1:

圖7.1 蝸輪軸的基本尺寸結構圖

7.1 軸的直徑與長度的確定
1.初步估算軸的最小直徑(外伸段的直徑)
經計算D6>51.7>100mm
又因軸上有鍵槽所以D6增大3%,則D6=67mm
計算轉矩
Tc=KT=K×9550× =1.5×9550×3.19/27.4=1667.76N.M<2000 N.M
所以蝸輪軸與傳動滾筒之間選用HL5彈性柱銷聯軸器65×142,
因此 =65m m
2.由參考文獻《機械零件設計課程設計》 毛振揚 陳秀寧 施高義 編 浙江大學出版社的第305頁表10-1可查得普通平鍵GB1096—90A型鍵20×110,普通平鍵GB1096—90A型鍵20×70,聯軸器上鍵槽深度 ,蝸輪軸鍵槽深度 ,寬度為 由參考文獻《機械設計基礎》(下冊) 張瑩 主編 機械工業出版社 1997年的第316頁—321頁計算得:如下表:
圖中表注 計算內容 計算結果
L1 (由參考文獻《機械設計課程設計》 劉俊龍 何在洲 主編 機械工業出版社第182頁表15-1查得滾動軸承6216的基本結構) L1=25
L2 自定 L2=20
L3 根據蝸輪 L3=128
L4 自定 L4=25
L5 (由參考文獻《機械設計課程設計》 劉俊龍 何在洲 主編 機械工業出版社第182頁表15-1查得滾動軸承6216的基本結構) L5=25
L6 自定 L6=40
L7 選用HL5彈性柱銷聯軸器65×142 L7=80
D1 (由參考文獻《機械設計課程設計》 劉俊龍 何在洲 主編 機械工業出版社第182頁表15-1查得滾動軸承6216的基本結構) D1=80
D2 便於軸承的拆卸 D2=84
D3 根據蝸輪 D3=100
D4 便於軸承的拆卸 D4=84
D5 自定 D5=72
D6 D6>51.7>100mm
又因軸上有鍵槽所以D6增大3%,則D6=67mm D6=67
7.2軸的校核
7.2.1軸的受力分析圖

圖7.1
X-Y平面受力分析

圖7.2
X-Z平面受力圖:

圖7.3

水平面彎矩
1102123.7

521607

97 97 119

圖7.4
垂直面彎矩 714000

圖7.5
436150.8
合成彎矩

1184736.3
714000
681175.5

圖7.6
當量彎矩T與aT
T=1111840Nmm
aT=655985.6Nmm

圖7.7

7.2.2軸的校核計算如表5.1
軸材料為45鋼, , ,
表7.1
計算項目 計算內容 計算結果
轉矩

Nmm

圓周力 =20707.6N

=24707.6N

徑向力
=2745.3N

軸向力 =24707.6×tan 20º
Fr =8992.8N
計算支承反力
=1136.2N

=19345.5N

垂直面反力
=4496.4N
水平面X-Y受力圖 圖7.2
垂直面X-Z受力 圖7.3
畫軸的彎矩圖
水平面X-Y彎矩圖 圖7.4

垂直面X-Z彎矩圖 圖7.5

合成彎矩 圖7.6

軸受轉矩T T= =1111840Nmm
T=1111840Nmm
許用應力值 表16.3,查得

應力校正系數a a=

a=0.59
當量彎矩圖
當量彎矩 蝸輪段軸中間截面
=947628.6Nmm
軸承段軸中間截面處
=969381.2Nmm

947628.6Nmm
=969381.2Nmm

當量彎矩圖 圖7.7
軸徑校核

驗算結果在設計范圍之內,設計合格
軸的結果設計採用階梯狀,階梯之間有圓弧過度,減少應力集中,具體尺寸和要求見零件圖2(蝸輪中間軸)。
7.3裝蝸輪處軸的鍵槽設計及鍵的選擇
當軸上裝有平鍵時,鍵的長度應略小於零件軸的接觸長度,一般平鍵長度比輪轂長度短5—10mm,由參考文獻1表2.4—30圓整,可知該處選擇鍵2.5×110,高h=14mm,軸上鍵槽深度為 ,輪轂上鍵槽深度為 ,軸上鍵槽寬度為 輪轂上鍵槽深度為
八、減速器箱體的結構設計
參照參考文獻〈〈機械設計課程設計》(修訂版) 鄂中凱,王金等主編 東北工學院出版社 1992年第19頁表1.5-1可計算得,箱體的結構尺寸如表8.1:

表8.1箱體的結構尺寸
減速器箱體採用HT200鑄造,必須進行去應力處理。
設計內容 計 算 公 式 計算結果
箱座壁厚度δ =0.04×225+3=12mm
a為蝸輪蝸桿中心距 取δ=12mm
箱蓋壁厚度δ1 =0.85×12=10mm
取δ1=10mm
機座凸緣厚度b b=1.5δ=1.5×12=18mm b=18mm
機蓋凸緣厚度b1 b1=1.5δ1=1.5×10=15mm b1=18mm
機蓋凸緣厚度P P=2.5δ=2.5×12=30mm P=30mm
地腳螺釘直徑dØ dØ==20mm dØ=20mm
地腳螺釘直徑d`Ø d`Ø==20mm d`Ø==20mm
地腳沉頭座直徑D0 D0==48mm D0==48mm
地腳螺釘數目n 取n=4個 取n=4
底腳凸緣尺寸(扳手空間) L1=32mm L1=32mm
L2=30mm L2=30mm
軸承旁連接螺栓直徑d1 d1= 16mm d1=16mm
軸承旁連接螺栓通孔直徑d`1 d`1=17.5 d`1=17.5
軸承旁連接螺栓沉頭座直徑D0 D0=32mm D0=32mm
剖分面凸緣尺寸(扳手空間) C1=24mm C1=24mm
C2=20mm C2=20mm
上下箱連接螺栓直徑d2 d2 =12mm d2=12mm
上下箱連接螺栓通孔直徑d`2 d`2=13.5mm d`2=13.5mm
上下箱連接螺栓沉頭座直徑 D0=26mm D0=26mm
箱緣尺寸(扳手空間) C1=20mm C1=20mm
C2=16mm C2=16mm
軸承蓋螺釘直徑和數目n,d3 n=4, d3=10mm n=4
d3=10mm
檢查孔蓋螺釘直徑d4 d4=0.4d=8mm d4=8mm
圓錐定位銷直徑d5 d5= 0.8 d2=9mm d5=9mm
減速器中心高H H=340mm H=340mm
軸承旁凸台半徑R R=C2=16mm R1=16mm
軸承旁凸台高度h 由低速級軸承座外徑確定,以便於扳手操作為准。 取50mm
軸承端蓋外徑D2 D2=軸承孔直徑+(5~5.5) d3 取D2=180mm
箱體外壁至軸承座端面距離K K= C1+ C2+(8~10)=44mm K=54mm
軸承旁連接螺栓的距離S 以Md1螺栓和Md3螺釘互不幹涉為准盡量靠近一般取S=D2 S=180
蝸輪軸承座長度(箱體內壁至軸承座外端面的距離) L1=K+δ=56mm L1=56mm
蝸輪外圓與箱體內壁之間的距離 =15mm
取 =15mm

蝸輪端面與箱體內壁之間的距離 =12mm
取 =12mm

機蓋、機座肋厚m1,m m1=0.85δ1=8.5mm, m=0.85δ=10mm m1=8.5mm, m=10mm
以下尺寸以參考文獻《機械設計、機械設計基礎課程設計》 王昆等主編 高等教育出版社 1995年表6-1為依據
蝸桿頂圓與箱座內壁的距離 =40mm
軸承端面至箱體內壁的距離 =4mm
箱底的厚度 20mm
軸承蓋凸緣厚度 e=1.2 d3=12mm 箱蓋高度 220mm 箱蓋長度
(不包括凸台) 440mm
蝸桿中心線與箱底的距離 115mm 箱座的長度
(不包括凸台) 444mm 裝蝸桿軸部分的長度 460mm
箱體寬度
(不包括凸台) 180mm 箱底座寬度 304mm 蝸桿軸承座孔外伸長度 8mm
蝸桿軸承座長度 81mm 蝸桿軸承座內端面與箱體內壁距離 61mm

九、減速器其他零件的選擇
經箱體、蝸桿與蝸輪、蝸輪軸以及標准鍵、軸承、密封圈、擋油盤、聯軸器、定位銷的組合設計,經校核確定以下零件:
表9-1鍵 單位:mm
安裝位置 類型 b(h9) h(h11) L9(h14)
蝸桿軸、聯軸器以及電動機聯接處 GB1096-90
鍵10×70 10 8 70
蝸輪與蝸輪軸聯接處 GB1096-90
鍵25×110 25 14 110
蝸輪軸、聯軸器及傳動滾筒聯接處 GB1096-90
鍵20×110 20 12 110
表9-2圓錐滾動軸承 單位:mm
安裝位置 軸承型號 外 形 尺 寸
d D T B C
蝸 桿 GB297-84
7312(30312) 60 130 33.5 31 26
蝸輪軸 GB/T297-94
30216 80 140 28.25 26 22

表9-3密封圈(GB9877.1-88) 單位:mm
安裝位置 類型 軸徑d 基本外徑D 基本寬度
蝸桿 B55×80×8 55 80 8
蝸輪軸 B75×100×10 75 100 10

表9-4彈簧墊圈(GB93-87)
安裝位置 類型 內徑d 寬度(厚度) 材料為65Mn,表面氧化的標准彈簧墊圈
軸承旁連接螺栓 GB93-87-16 16 4
上下箱聯接螺栓 GB93-87-12 12 3

表9-5擋油盤
參考文獻《機械設計課程設計》(修訂版) 鄂中凱,王金等主編 東北工學院出版社 1992年第132頁表2.8-7
安裝位置 外徑 厚度 邊緣厚度 材料
蝸桿 129mm 12mm 9mm Q235

定位銷為GB117-86 銷8×38 材料為45鋼

十、減速器附件的選擇
以下數據均以參考文獻《機械零件設計課程設計》 毛振揚 陳秀寧 施高義 編 浙江大學出版社的P106-P118
表10-1視孔蓋(Q235) 單位mm
A A1 A。 B1 B B0 d4 h
150 190 170 150 100 125 M 8 1.5

表10-2吊耳 單位mm
箱蓋吊耳 d R e b
42 42 42 20
箱座吊耳 B H h
b
36 19.2 9..6 9 24

表10-3起重螺栓 單位mm
d D L S d1

C d2 h
M16 35 62 27 16 32 8 4 2 2 22 6

表10-4通氣器 單位mm
D d1 d2 d3 d 4 D a b s
M18×1.5 M33×1.5 8 3 16 40 12 7 22
C h h1 D1 R k e f
16 40 8 25.4 40 6 2 2

表10-5軸承蓋(HT150) 單位mm
安 裝
位 置 d3 D d 0 D0 D2 e e1 m D4 D5 D6 b1 d1
蝸桿 10 130 11 155 180 12 13 35.5 120 125 127 8 80
蝸輪軸 10 140 11 165 190 12 13 20 130 135 137 10 100
表10-6油標尺 單位mm

d1 d2 d3 h a b c D D1
M16 4 16 6 35 12 8 5 26 22
表10-7油塞(工業用革) 單位mm
d D e L l a s d1 H
M1×1.5 26 19.6 23 12 3 17 17 2

十一、減速器的潤滑
減速器內部的傳動零件和軸承都需要有良好的潤滑,這樣不僅可以減小摩擦損失,提高傳動效率,還可以防止銹蝕、降低雜訊。
本減速器採用蝸桿下置式,所以蝸桿採用浸油潤滑,蝸桿浸油深度h大於等於1個螺牙高,但不高於蝸桿軸軸承最低滾動中心。
蝸輪軸承採用刮板潤滑。
蝸桿軸承採用脂潤滑,為防止箱內的潤滑油進入軸承而使潤滑脂稀釋而流走,常在軸承內側加擋油盤。
1、《機械設計課程設計》(修訂版) 鄂中凱,王金等主編 東北工學院出版社 1992年
2、《機械設計 第四版》 邱宣懷主編 高等教育出版社出版 1996年
3、《機械設計、機械設計基礎課程設計》 王昆等主編 高等教育出版社 1995年
4、《機械設計課程設計圖冊》(第三版) 龔桂義主編 高等教育出版社 1987年
5、《機械設計課程設計指導書》(第二版) 龔桂義主編 高等教育出版社 1989年
6、簡明機械設計手冊(第二版) 唐金松主編 上海科學技術出版社 2000年
《機械設計課程設計》 劉俊龍 何在洲 主編 機械工業出版社 1993年
《機械零件設計課程設計》 毛振揚 陳秀寧 施高義 編 浙江大學出版社1989
《機械設計 第四版》 邱宣懷主編 高等教育出版社出版 1996年

❺ 機械設計課程設計---設計盤磨機傳動裝置!!!

我也在做這個題也 老兄
我只能提供樣本給你哈 具體的還是得靠你自己啦
目 錄

一 課程設計書 2

二 設計要求 2

三 設計步驟 2

1. 傳動裝置總體設計方案 3
2. 電動機的選擇 4
3. 確定傳動裝置的總傳動比和分配傳動比 5
4. 計算傳動裝置的運動和動力參數 5
6. 齒輪的設計 8
7. 滾動軸承和傳動軸的設計 19
8. 鍵聯接設計 26
9. 箱體結構的設計 27
10.潤滑密封設計 30
11.聯軸器設計 30

四 設計小結 31
五 參考資料 32

一. 課程設計書
設計課題:
設計一用於帶式運輸機上的兩級齒輪減速器.運輸機連續單向運轉,載荷有輕微沖擊,工作環境多塵,通風良好,空載起動,捲筒效率為0.96(包括其支承軸承效率的損失),減速器小批量生產,使用期限10年(300天/年),三班制工作,滾筒轉速容許速度誤差為5%,車間有三相交流,電壓380/220V。
參數:
皮帶有效拉力F(KN) 3.2
皮帶運行速度V(m/s) 1.4
滾筒直徑D(mm) 400

二. 設計要求
1.減速器裝配圖1張(0號)。
2.零件工作圖2-3張(A2)。
3.設計計算說明書1份。
三. 設計步驟
1. 傳動裝置總體設計方案
2. 電動機的選擇
3. 確定傳動裝置的總傳動比和分配傳動比
4. 計算傳動裝置的運動和動力參數
5. 齒輪的設計
6. 滾動軸承和傳動軸的設計
7. 鍵聯接設計
8. 箱體結構設計
9. 潤滑密封設計
10. 聯軸器設計
1.傳動裝置總體設計方案:
1. 組成:傳動裝置由電機、減速器、工作機組成。
2. 特點:齒輪相對於軸承不對稱分布,故沿軸向載荷分布不均勻,
要求軸有較大的剛度。
3. 確定傳動方案:考慮到電機轉速高,傳動功率大,將V帶設置在高速級。
其傳動方案如下:

圖一:(傳動裝置總體設計圖)
初步確定傳動系統總體方案如:傳動裝置總體設計圖所示。
選擇V帶傳動和二級圓柱斜齒輪減速器。
傳動裝置的總效率
為V帶的傳動效率, 為軸承的效率,
為對齒輪傳動的效率,(齒輪為7級精度,油脂潤滑)
為聯軸器的效率, 為滾筒的效率
因是薄壁防護罩,採用開式效率計算。
取 =0.96 =0.98 =0.95 =0.99 =0.96
=0.96× × ×0.99×0.96=0.760;
2.電動機的選擇
電動機所需工作功率為: P =P/η =3200×1.4/1000×0.760=3.40kW
滾筒軸工作轉速為n= = =66.88r/min,
經查表按推薦的傳動比合理范圍,V帶傳動的傳動比i =2~4,二級圓柱斜齒輪減速器傳動比i =8~40,
則總傳動比合理范圍為i =16~160,電動機轉速的可選范圍為n =i ×n=(16~160)×66.88=1070.08~10700.8r/min。
綜合考慮電動機和傳動裝置的尺寸、重量、價格和帶傳動、減速器的傳動比,
選定型號為Y112M—4的三相非同步電動機,額定功率為4.0
額定電流8.8A,滿載轉速 1440 r/min,同步轉速1500r/min。

方案 電動機型號 額定功 率
P
kw 電動機轉速

電動機重量
N 參考價格
元 傳動裝置的傳動比
同步轉速 滿載轉速 總傳動 比 V帶傳 動 減速器
1 Y112M-4 4 1500 1440 470 230 125.65 3.5 35.90

3.確定傳動裝置的總傳動比和分配傳動比

(1)總傳動比
由選定的電動機滿載轉速n 和工作機主動軸轉速n,可得傳動裝置總傳動比為 =n /n=1440/66.88=17.05
(2)分配傳動裝置傳動比
= ×
式中 分別為帶傳動和減速器的傳動比。
為使V帶傳動外廓尺寸不致過大,初步取 =2.3(實際的傳動比要在設計V帶傳動時,由所選大、小帶輪的標準直徑之比計算),則減速器傳動比為
= =17.05/2.3=7.41
根據展開式布置,考慮潤滑條件,為使兩級大齒輪直徑相近,查圖得高速級傳動比為 =3.24,則 = =2.29

4.計算傳動裝置的運動和動力參數
(1) 各軸轉速
= =1440/2.3=626.09r/min
= =626.09/3.24=193.24r/min
= / =193.24/2.29=84.38 r/min
= =84.38 r/min
(2) 各軸輸入功率
= × =3.40×0.96=3.26kW
= ×η2× =3.26×0.98×0.95=3.04kW
= ×η2× =3.04×0.98×0.95=2.83kW
= ×η2×η4=2.83×0.98×0.99=2.75kW
則各軸的輸出功率:
= ×0.98=3.26×0.98=3.19 kW
= ×0.98=3.04×0.98=2.98 kW
= ×0.98=2.83×0.98=2.77kW
= ×0.98=2.75×0.98=2.70 kW
(3) 各軸輸入轉矩
= × × N•m
電動機軸的輸出轉矩 =9550 =9550×3.40/1440=22.55 N•m
所以: = × × =22.55×2.3×0.96=49.79 N•m
= × × × =49.79×3.24×0.96×0.98=151.77 N•m
= × × × =151.77×2.29×0.98×0.95=326.98N•m
= × × =326.98×0.95×0.99=307.52 N•m
輸出轉矩: = ×0.98=49.79×0.98=48.79 N•m
= ×0.98=151.77×0.98=148.73 N•m
= ×0.98=326.98×0.98=320.44N•m
= ×0.98=307.52×0.98=301.37 N•m
運動和動力參數結果如下表
軸名 功率P KW 轉矩T Nm 轉速r/min
輸入 輸出 輸入 輸出
電動機軸 3.40 22.55 1440
1軸 3.26 3.19 49.79 48.79 626.09
2軸 3.04 2.98 151.77 148.73 193.24
3軸 2.83 2.77 326.98 320.44 84.38
4軸 2.75 2.70 307.52 301.37 84.38
5.齒輪的設計
(一)高速級齒輪傳動的設計計算
1. 齒輪材料,熱處理及精度
考慮此減速器的功率及現場安裝的限制,故大小齒輪都選用硬齒面漸開線斜齒輪
(1)齒輪材料及熱處理
① 材料:高速級小齒輪選用45#鋼調質,齒面硬度為小齒輪 280HBS 取小齒齒數 =24
高速級大齒輪選用45#鋼正火,齒面硬度為大齒輪 240HBS Z = ×Z =3.24×24=77.76 取Z =78.
② 齒輪精度
按GB/T10095-1998,選擇7級,齒根噴丸強化。

2.初步設計齒輪傳動的主要尺寸
按齒面接觸強度設計

確定各參數的值:
①試選 =1.6
查課本 圖10-30 選取區域系數 Z =2.433
由課本 圖10-26

②由課本 公式10-13計算應力值環數
N =60n j =60×626.09×1×(2×8×300×8)
=1.4425×10 h
N = =4.45×10 h #(3.25為齒數比,即3.25= )
③查課本 10-19圖得:K =0.93 K =0.96
④齒輪的疲勞強度極限
取失效概率為1%,安全系數S=1,應用 公式10-12得:
[ ] = =0.93×550=511.5

[ ] = =0.96×450=432
許用接觸應力

⑤查課本由 表10-6得: =189.8MP
由 表10-7得: =1
T=95.5×10 × =95.5×10 ×3.19/626.09
=4.86×10 N.m
3.設計計算
①小齒輪的分度圓直徑d

=
②計算圓周速度

③計算齒寬b和模數
計算齒寬b
b= =49.53mm
計算摸數m
初選螺旋角 =14
=
④計算齒寬與高之比
齒高h=2.25 =2.25×2.00=4.50
= =11.01
⑤計算縱向重合度
=0.318 =1.903
⑥計算載荷系數K
使用系數 =1
根據 ,7級精度, 查課本由 表10-8得
動載系數K =1.07,
查課本由 表10-4得K 的計算公式:
K = +0.23×10 ×b
=1.12+0.18(1+0.6 1) ×1+0.23×10 ×49.53=1.42
查課本由 表10-13得: K =1.35
查課本由 表10-3 得: K = =1.2
故載荷系數:
K=K K K K =1×1.07×1.2×1.42=1.82
⑦按實際載荷系數校正所算得的分度圓直徑
d =d =49.53× =51.73
⑧計算模數
=
4. 齒根彎曲疲勞強度設計
由彎曲強度的設計公式

⑴ 確定公式內各計算數值
① 小齒輪傳遞的轉矩 =48.6kN•m
確定齒數z
因為是硬齒面,故取z =24,z =i z =3.24×24=77.76
傳動比誤差 i=u=z / z =78/24=3.25
Δi=0.032% 5%,允許
② 計算當量齒數
z =z /cos =24/ cos 14 =26.27
z =z /cos =78/ cos 14 =85.43
③ 初選齒寬系數
按對稱布置,由表查得 =1
④ 初選螺旋角
初定螺旋角 =14
⑤ 載荷系數K
K=K K K K =1×1.07×1.2×1.35=1.73
⑥ 查取齒形系數Y 和應力校正系數Y
查課本由 表10-5得:
齒形系數Y =2.592 Y =2.211
應力校正系數Y =1.596 Y =1.774
⑦ 重合度系數Y
端面重合度近似為 =[1.88-3.2×( )] =[1.88-3.2×(1/24+1/78)]×cos14 =1.655
=arctg(tg /cos )=arctg(tg20 /cos14 )=20.64690
=14.07609
因為 = /cos ,則重合度系數為Y =0.25+0.75 cos / =0.673
⑧ 螺旋角系數Y
軸向重合度 = =1.825,
Y =1- =0.78
⑨ 計算大小齒輪的
安全系數由表查得S =1.25
工作壽命兩班制,8年,每年工作300天
小齒輪應力循環次數N1=60nkt =60×271.47×1×8×300×2×8=6.255×10
大齒輪應力循環次數N2=N1/u=6.255×10 /3.24=1.9305×10
查課本由 表10-20c得到彎曲疲勞強度極限
小齒輪 大齒輪
查課本由 表10-18得彎曲疲勞壽命系數:
K =0.86 K =0.93
取彎曲疲勞安全系數 S=1.4
[ ] =
[ ] =

大齒輪的數值大.選用.
⑵ 設計計算
① 計算模數

對比計算結果,由齒面接觸疲勞強度計算的法面模數m 大於由齒根彎曲疲勞強度計算的法面模數,按GB/T1357-1987圓整為標准模數,取m =2mm但為了同時滿足接觸疲勞強度,需要按接觸疲勞強度算得的分度圓直徑d =51.73 來計算應有的齒數.於是由:
z = =25.097 取z =25
那麼z =3.24×25=81
② 幾何尺寸計算
計算中心距 a= = =109.25
將中心距圓整為110
按圓整後的中心距修正螺旋角
=arccos
因 值改變不多,故參數 , , 等不必修正.
計算大.小齒輪的分度圓直徑
d = =51.53
d = =166.97
計算齒輪寬度
B=
圓整的

(二) 低速級齒輪傳動的設計計算
⑴ 材料:低速級小齒輪選用45鋼調質,齒面硬度為小齒輪 280HBS 取小齒齒數 =30
速級大齒輪選用45鋼正火,齒面硬度為大齒輪 240HBS z =2.33×30=69.9 圓整取z =70.
⑵ 齒輪精度
按GB/T10095-1998,選擇7級,齒根噴丸強化。
⑶ 按齒面接觸強度設計
1. 確定公式內的各計算數值
①試選K =1.6
②查課本由 圖10-30選取區域系數Z =2.45
③試選 ,查課本由 圖10-26查得
=0.83 =0.88 =0.83+0.88=1.71
應力循環次數
N =60×n ×j×L =60×193.24×1×(2×8×300×8)
=4.45×10
N = 1.91×10
由課本 圖10-19查得接觸疲勞壽命系數
K =0.94 K = 0.97
查課本由 圖10-21d
按齒面硬度查得小齒輪的接觸疲勞強度極限 ,
大齒輪的接觸疲勞強度極限
取失效概率為1%,安全系數S=1,則接觸疲勞許用應力
[ ] = =
[ ] = =0.98×550/1=517
[ 540.5
查課本由 表10-6查材料的彈性影響系數Z =189.8MP
選取齒寬系數
T=95.5×10 × =95.5×10 ×2.90/193.24
=14.33×10 N.m
=65.71
2. 計算圓周速度
0.665
3. 計算齒寬
b= d =1×65.71=65.71
4. 計算齒寬與齒高之比
模數 m =
齒高 h=2.25×m =2.25×2.142=5.4621
=65.71/5.4621=12.03
5. 計算縱向重合度

6. 計算載荷系數K
K =1.12+0.18(1+0.6 +0.23×10 ×b
=1.12+0.18(1+0.6)+ 0.23×10 ×65.71=1.4231
使用系數K =1
同高速齒輪的設計,查表選取各數值
=1.04 K =1.35 K =K =1.2
故載荷系數
K= =1×1.04×1.2×1.4231=1.776
7. 按實際載荷系數校正所算的分度圓直徑
d =d =65.71×
計算模數
3. 按齒根彎曲強度設計
m≥
一確定公式內各計算數值
(1) 計算小齒輪傳遞的轉矩 =143.3kN•m
(2) 確定齒數z
因為是硬齒面,故取z =30,z =i ×z =2.33×30=69.9
傳動比誤差 i=u=z / z =69.9/30=2.33
Δi=0.032% 5%,允許
(3) 初選齒寬系數
按對稱布置,由表查得 =1
(4) 初選螺旋角
初定螺旋角 =12
(5) 載荷系數K
K=K K K K =1×1.04×1.2×1.35=1.6848
(6) 當量齒數
z =z /cos =30/ cos 12 =32.056
z =z /cos =70/ cos 12 =74.797
由課本 表10-5查得齒形系數Y 和應力修正系數Y

(7) 螺旋角系數Y
軸向重合度 = =2.03
Y =1- =0.797
(8) 計算大小齒輪的

查課本由 圖10-20c得齒輪彎曲疲勞強度極限

查課本由 圖10-18得彎曲疲勞壽命系數
K =0.90 K =0.93 S=1.4
[ ] =
[ ] =
計算大小齒輪的 ,並加以比較

大齒輪的數值大,選用大齒輪的尺寸設計計算.
① 計算模數

對比計算結果,由齒面接觸疲勞強度計算的法面模數m 大於由齒根彎曲疲勞強度計算的法面模數,按GB/T1357-1987圓整為標准模數,取m =3mm但為了同時滿足接觸疲勞強度,需要按接觸疲勞強度算得的分度圓直徑d =72.91 來計算應有的齒數.
z = =27.77 取z =30
z =2.33×30=69.9 取z =70
② 初算主要尺寸
計算中心距 a= = =102.234
將中心距圓整為103
修正螺旋角
=arccos
因 值改變不多,故參數 , , 等不必修正
分度圓直徑
d = =61.34
d = =143.12
計算齒輪寬度

圓整後取

低速級大齒輪如上圖:

齒輪各設計參數附表
1. 各軸轉速n
(r/min)
(r/min)
(r/min)
(r/min)

626.09 193.24 84.38 84.38

2. 各軸輸入功率 P
(kw)
(kw)
(kw)
(kw)

3.26 3.04 2.83 2.75

3. 各軸輸入轉矩 T
(kN•m)
(kN•m)
(kN•m)
(kN•m)

49.79 151.77 326.98 307.52

6.傳動軸承和傳動軸的設計
1. 傳動軸承的設計
⑴. 求輸出軸上的功率P ,轉速 ,轉矩
P =2.83KW =84.38r/min
=326.98N.m
⑵. 求作用在齒輪上的力
已知低速級大齒輪的分度圓直徑為
=143.21
而 F =
F = F
F = F tan =4348.16×0.246734=1072.84N
圓周力F ,徑向力F 及軸向力F 的方向如圖示:
⑶. 初步確定軸的最小直徑
先按課本15-2初步估算軸的最小直徑,選取軸的材料為45鋼,調質處理,根據課本 取

輸出軸的最小直徑顯然是安裝聯軸器處的直徑 ,為了使所選的軸與聯軸器吻合,故需同時選取聯軸器的型號
查課本 ,選取

因為計算轉矩小於聯軸器公稱轉矩,所以
查《機械設計手冊》
選取LT7型彈性套柱銷聯軸器其公稱轉矩為500Nm,半聯軸器的孔徑
⑷. 根據軸向定位的要求確定軸的各段直徑和長度
① 為了滿足半聯軸器的要求的軸向定位要求,Ⅰ-Ⅱ軸段右端需要制出一軸肩,故取Ⅱ-Ⅲ的直徑 ;左端用軸端擋圈定位,按軸端直徑取擋圈直徑 半聯軸器與 為了保證軸端擋圈只壓在半聯軸器上而不壓在軸端上, 故Ⅰ-Ⅱ的長度應比 略短一些,現取
② 初步選擇滾動軸承.因軸承同時受有徑向力和軸向力的作用,故選用單列角接觸球軸承.參照工作要求並根據 ,由軸承產品目錄中初步選取0基本游隙組 標准精度級的單列角接觸球軸承7010C型.

D B

軸承代號
45 85 19 58.8 73.2 7209AC
45 85 19 60.5 70.2 7209B
45 100 25 66.0 80.0 7309B
50 80 16 59.2 70.9 7010C
50 80 16 59.2 70.9 7010AC
50 90 20 62.4 77.7 7210C
2. 從動軸的設計
對於選取的單向角接觸球軸承其尺寸為的 ,故 ;而 .
右端滾動軸承採用軸肩進行軸向定位.由手冊上查得7010C型軸承定位軸肩高度 mm,
③ 取安裝齒輪處的軸段 ;齒輪的右端與左軸承之間採用套筒定位.已知齒輪 的寬度為75mm,為了使套筒端面可靠地壓緊齒輪,此軸段應略短於輪轂寬度,故取 . 齒輪的左端採用軸肩定位,軸肩高3.5,取 .軸環寬度 ,取b=8mm.
④ 軸承端蓋的總寬度為20mm(由減速器及軸承端蓋的結構設計而定) .根據軸承端蓋的裝拆及便於對軸承添加潤滑脂的要求,取端蓋的外端面與半聯軸器右端面間的距離 ,故取 .
⑤ 取齒輪距箱體內壁之距離a=16 ,兩圓柱齒輪間的距離c=20 .考慮到箱體的鑄造誤差,在確定滾動軸承位置時,應距箱體內壁一段距離 s,取s=8 ,已知滾動軸承寬度T=16 ,
高速齒輪輪轂長L=50 ,則

至此,已初步確定了軸的各端直徑和長度.
5. 求軸上的載荷
首先根據結構圖作出軸的計算簡圖, 確定頂軸承的支點位置時,
查《機械設計手冊》20-149表20.6-7.
對於7010C型的角接觸球軸承,a=16.7mm,因此,做為簡支梁的軸的支承跨距.

傳動軸總體設計結構圖:

(從動軸)

(中間軸)

(主動軸)
從動軸的載荷分析圖:

6. 按彎曲扭轉合成應力校核軸的強度
根據
= =
前已選軸材料為45鋼,調質處理。
查表15-1得[ ]=60MP
〈 [ ] 此軸合理安全
7. 精確校核軸的疲勞強度.
⑴. 判斷危險截面
截面A,Ⅱ,Ⅲ,B只受扭矩作用。所以A Ⅱ Ⅲ B無需校核.從應力集中對軸的疲勞強度的影響來看,截面Ⅵ和Ⅶ處過盈配合引起的應力集中最嚴重,從受載來看,截面C上的應力最大.截面Ⅵ的應力集中的影響和截面Ⅶ的相近,但是截面Ⅵ不受扭矩作用,同時軸徑也較大,故不必做強度校核.截面C上雖然應力最大,但是應力集中不大,而且這里的直徑最大,故C截面也不必做強度校核,截面Ⅳ和Ⅴ顯然更加不必要做強度校核.由第3章的附錄可知,鍵槽的應力集中較系數比過盈配合的小,因而,該軸只需膠合截面Ⅶ左右兩側需驗證即可.
⑵. 截面Ⅶ左側。
抗彎系數 W=0.1 = 0.1 =12500
抗扭系數 =0.2 =0.2 =25000
截面Ⅶ的右側的彎矩M為
截面Ⅳ上的扭矩 為 =311.35
截面上的彎曲應力

截面上的扭轉應力
= =
軸的材料為45鋼。調質處理。
由課本 表15-1查得:


經插入後得
2.0 =1.31
軸性系數為
=0.85
K =1+ =1.82
K =1+ ( -1)=1.26
所以

綜合系數為: K =2.8
K =1.62
碳鋼的特性系數 取0.1
取0.05
安全系數
S = 25.13
S 13.71
≥S=1.5 所以它是安全的
截面Ⅳ右側
抗彎系數 W=0.1 = 0.1 =12500
抗扭系數 =0.2 =0.2 =25000
截面Ⅳ左側的彎矩M為 M=133560
截面Ⅳ上的扭矩 為 =295
截面上的彎曲應力
截面上的扭轉應力
= = K =
K =
所以
綜合系數為:
K =2.8 K =1.62
碳鋼的特性系數
取0.1 取0.05
安全系數
S = 25.13
S 13.71
≥S=1.5 所以它是安全的
8.鍵的設計和計算
①選擇鍵聯接的類型和尺寸
一般8級以上精度的尺寸的齒輪有定心精度要求,應用平鍵.
根據 d =55 d =65
查表6-1取: 鍵寬 b =16 h =10 =36
b =20 h =12 =50
②校和鍵聯接的強度
查表6-2得 [ ]=110MP
工作長度 36-16=20
50-20=30
③鍵與輪轂鍵槽的接觸高度
K =0.5 h =5
K =0.5 h =6
由式(6-1)得:
<[ ]
<[ ]
兩者都合適
取鍵標記為:
鍵2:16×36 A GB/T1096-1979
鍵3:20×50 A GB/T1096-1979
9.箱體結構的設計
減速器的箱體採用鑄造(HT200)製成,採用剖分式結構為了保證齒輪佳合質量,
大端蓋分機體採用 配合.
1. 機體有足夠的剛度
在機體為加肋,外輪廓為長方形,增強了軸承座剛度
2. 考慮到機體內零件的潤滑,密封散熱。
因其傳動件速度小於12m/s,故採用侵油潤油,同時為了避免油攪得沉渣濺起,齒頂到油池底面的距離H為40mm
為保證機蓋與機座連接處密封,聯接凸緣應有足夠的寬度,聯接表面應精創,其表面粗糙度為
3. 機體結構有良好的工藝性.
鑄件壁厚為10,圓角半徑為R=3。機體外型簡單,拔模方便.
4. 對附件設計
A 視孔蓋和窺視孔
在機蓋頂部開有窺視孔,能看到 傳動零件齒合區的位置,並有足夠的空間,以便於能伸入進行操作,窺視孔有蓋板,機體上開窺視孔與凸緣一塊,有便於機械加工出支承蓋板的表面並用墊片加強密封,蓋板用鑄鐵製成,用M6緊固
B 油螺塞:
放油孔位於油池最底處,並安排在減速器不與其他部件靠近的一側,以便放油,放油孔用螺塞堵住,因此油孔處的機體外壁應凸起一塊,由機械加工成螺塞頭部的支承面,並加封油圈加以密封。
C 油標:
油標位在便於觀察減速器油麵及油麵穩定之處。
油尺安置的部位不能太低,以防油進入油尺座孔而溢出.
D 通氣孔:
由於減速器運轉時,機體內溫度升高,氣壓增大,為便於排氣,在機蓋頂部的窺視孔改上安裝通氣器,以便達到體內為壓力平衡.
E 蓋螺釘:
啟蓋螺釘上的螺紋長度要大於機蓋聯結凸緣的厚度。
釘桿端部要做成圓柱形,以免破壞螺紋.
F 位銷:
為保證剖分式機體的軸承座孔的加工及裝配精度,在機體聯結凸緣的長度方向各安裝一圓錐定位銷,以提高定位精度.
G 吊鉤:
在機蓋上直接鑄出吊鉤和吊環,用以起吊或搬運較重的物體.
減速器機體結構尺寸如下:

名稱 符號 計算公式 結果
箱座壁厚

10
箱蓋壁厚

9
箱蓋凸緣厚度

12
箱座凸緣厚度

15
箱座底凸緣厚度

25
地腳螺釘直徑

M24
地腳螺釘數目
查手冊 6
軸承旁聯接螺栓直徑

M12
機蓋與機座聯接螺栓直徑
=(0.5~0.6)
M10
軸承端蓋螺釘直徑
=(0.4~0.5)
10
視孔蓋螺釘直徑
=(0.3~0.4)
8
定位銷直徑
=(0.7~0.8)
8
, , 至外機壁距離
查機械課程設計指導書表4 34
22
18
, 至凸緣邊緣距離
查機械課程設計指導書表4 28
16
外機壁至軸承座端面距離
= + +(8~12)
50
大齒輪頂圓與內機壁距離
>1.2
15
齒輪端面與內機壁距離
>
10
機蓋,機座肋厚

9 8.5

軸承端蓋外徑
+(5~5.5)
120(1軸)125(2軸)
150(3軸)
軸承旁聯結螺栓距離

120(1軸)125(2軸)
150(3軸)
10. 潤滑密封設計
對於二級圓柱齒輪減速器,因為傳動裝置屬於輕型的,且傳速較低,所以其速度遠遠小於 ,所以採用脂潤滑,箱體內選用SH0357-92中的50號潤滑,裝至規定高度.
油的深度為H+
H=30 =34
所以H+ =30+34=64
其中油的粘度大,化學合成油,潤滑效果好。
密封性來講為了保證機蓋與機座聯接處密封,聯接
凸緣應有足夠的寬度,聯接表面應精創,其表面粗度應為
密封的表面要經過刮研。而且,凸緣聯接螺柱之間的距離不宜太
大,國150mm。並勻均布置,保證部分面處的密封性。
11.聯軸器設計
1.類型選擇.
為了隔離振動和沖擊,選用彈性套柱銷聯軸器.
2.載荷計算.
公稱轉矩:T=9550 9550 333.5
查課本 ,選取
所以轉矩
因為計算轉矩小於聯軸器公稱轉矩,所以
查《機械設計手冊》
選取LT7型彈性套柱銷聯軸器其公稱轉矩為500Nm

❻ 帶式輸送機傳動裝置畢業設計的每一步驟做簡要說明(怎麼完成)。

參考如下: 機械設計基礎課程設計任務書………………………………. 題目名稱帶式運輸機傳動裝置 學生學院 專業班級 姓 名 學 號 一、課程設計的內容設計一帶式運輸機傳動裝置(見圖1)。設計內容應包括:傳動裝置的總體設計;傳動零件、軸、軸承、聯軸器等的設計計算和選擇;減速器裝配圖和零件工作圖設計;設計計算說明書的編寫。圖2為參考傳動方案。 二、課程設計的要求與數據已知條件: 1.運輸帶工作拉力: F = 2.6 kN; 2.運輸帶工作速度: v = 2.0 m/s; 3.捲筒直徑: D = 320 mm; 4.使用壽命: 8年; 5.工作情況:兩班制,連續單向運轉,載荷較平穩; 6.製造條件及生產批量:一般機械廠製造,小批量。三、課程設計應完成的工作1.減速器裝配圖1張;2.零件工作圖 2張(軸、齒輪各1張);3.設計說明書 1份。四、課程設計進程安排序號設計各階段內容地點起止日期一設計准備: 明確設計任務;准備設計資料和繪圖用具教1-201第18周一二傳動裝置的總體設計: 擬定傳動方案;選擇電動機;計算傳動裝置運動和動力參數傳動零件設計計算:帶傳動、齒輪傳動主要參數的設計計算教1-201第18周一至第18周二 三減速器裝配草圖設計: 初繪減速器裝配草圖;軸系部件的結構設計;軸、軸承、鍵聯接等的強度計算;減速器箱體及附件的設計教1-201第18周二至第19周一四完成減速器裝配圖: 教1-201第19周二至第20周一五零件工作圖設計教1-201第20周周二六整理和編寫設計計算說明書教1-201第20周周三至周四七課程設計答辯工字2-617第20周五五、應收集的資料及主要參考文獻1 孫桓, 陳作模. 機械原理[M]. 北京:高等教育出版社,2001.2 濮良貴, 紀名剛. 機械設計[M]. 北京:高等教育出版社,2001.3 王昆, 何小柏, 汪信遠. 機械設計/機械設計基礎課程設計[M]. 北京:高等教育出版社,1995.4 機械制圖、機械設計手冊等書籍。發出任務書日期: 年 月 日 指導教師簽名: 計劃完成日期: 年 月 日 基層教學單位責任人簽章:主管院長簽章:目錄一、傳動方案的擬定及說明………………………………….3二、電動機的選擇…………………………………………….3三、計算傳動裝置的運動和動力參數……………………….4四、傳動件的設計計算………………………………………..6五、軸的設計計算…………………………………………….15六、滾動軸承的選擇及計算………………………………….23七、鍵聯接的選擇及校核計算……………………………….26八、高速軸的疲勞強度校核……………………………….….27九、鑄件減速器機體結構尺寸計算表及附件的選擇…..........30十、潤滑與密封方式的選擇、潤滑劑的選擇……………….31參考資料目錄

❼ 設計絞車傳動裝置的單級圓柱齒輪減速器。

由於裝置用於運輸機,原動機為電動機,所以工作情況系數為 ,
計算轉矩為
所以考慮選用彈性柱銷聯軸器TL4(GB4323-84) 材料HT200
公稱轉矩
軸孔直徑 ,
軸孔長 ,
裝配尺寸
半聯軸器厚
([1]P163表17-3)(GB4323-84
三、第二個聯軸器的設計計算
由於裝置用於運輸機,原動機為電動機,所以工作情況系數為 ,
計算轉矩為
所以選用彈性柱銷聯軸器TL10(GB4323-84)
其主要參數如下:
材料HT200
公稱轉矩
軸孔直徑
軸孔長 ,
裝配尺寸
半聯軸器厚
([1]P163表17-3)(GB4323-84
減速器附件的選擇
通氣器
由於在室內使用,選通氣器(一次過濾),採用M18×1.5
油麵指示器
選用游標尺M16
起吊裝置
採用箱蓋吊耳、箱座吊耳
放油螺塞
選用外六角油塞及墊片M16×1.5
潤滑與密封
一、齒輪的潤滑
採用浸油潤滑,由於低速級周向速度為,所以浸油高度約為六分之一大齒輪半徑,取為35mm。
二、滾動軸承的潤滑
由於軸承周向速度為,所以宜開設油溝、飛濺潤滑。
三、潤滑油的選擇
齒輪與軸承用同種潤滑油較為便利,考慮到該裝置用於小型設備,選用L-AN15潤滑油。
四、密封方法的選取
選用凸緣式端蓋易於調整,採用悶蓋安裝骨架式旋轉軸唇型密封圈實現密封。
密封圈型號按所裝配軸的直徑確定為(F)B25-42-7-ACM,(F)B70-90-10-ACM。
軸承蓋結構尺寸按用其定位的軸承的外徑決定

❽ 機械設計課設 電動絞車傳動裝置,(二級減速器)

我做好的這份是這樣的花了一個禮拜,圖和文稿都做好了

❾ 機械設計課程設計的章節目錄

?序言
前言
第一章 概述
第一節 課程設計的目的
第二節 課程設計的內容和步驟
第三節 機械設計課程設計任務書
第四節 課程設計應注意的問題
第二章 傳動裝置的總體設計
第一節 減速器的主要型式、特點及應用
第二節 初步確定減速器結構和零部件類型
第三節 擬定傳動方案
第四節 電動機的選擇
第五節 確定傳動裝置的總傳動比和分配各級傳動比
第六節 傳動裝置的運動參數和動力參數的計算
第三章 傳動零件的設計
第一節 箱外傳動件的設計要點
第二節 箱內傳動件的設計要點
第三節 軸徑初選
第四章 軸系部件設計
第一節 軸承類型的選擇
第二節 軸的結構設計及軸、軸承、鍵的強度校核
第三節 滾動軸承的組合設計
第四節 齒輪結構設計
第五章 減速器的結構
第一節 標准減速器簡介
第二節 通用減速器的結構
第三節 減速器箱體的結構設計
第四節 減速器附件設計
第六章 減速器的潤滑及密封
第一節 減速器的潤滑
第二節 減速器的密封
第七章 減速器的裝配圖設計
第一節 裝配圖的設計和繪制
第二節 裝配圖總成設計的完成
第八章 零件工作圖繪制
第一節 概述
第二節 軸類零件
第三節 齒輪類零件
第四節 箱體
第九章 編制設計計算說明書及准備答辯
第一節 設計計算說明書的內容、要求
第二節 准備答辯
第十章 參考圖例
一、典型減速器圖例
二、零件工作圖參考圖例
第十一章 一般設計資料
一、常用數據
二、課程設計常用的一般性資料
第十二章 常用材料
第十三章 常用緊固件和聯接件
一、螺栓、螺釘、螺柱
二、螺母、墊圈、擋圈
三、螺紋零件的結構要素
四、鍵聯接和銷聯接
第十四章 滾動軸承
一、常用滾動軸承
二、滾動軸承的配合
第十五章 潤滑和密封的標准和規范
一、潤滑劑
二、油杯
三、標准密封件
第十六章 聯軸器
第十七章 公差與配合
一、公差配合
二、形狀和位置公差
三、表面粗糙度
四、漸開線圓柱齒輪精度(GB10095-88)
五、蝸桿傳動精度
第十八章 電動機
主要參考文獻

閱讀全文

與電動絞車傳動裝置課程設計摘要相關的資料

熱點內容
如何保障工務設備的標准化 瀏覽:224
噴淋塔自動加葯裝置廠家 瀏覽:169
看美國的用什麼網站 瀏覽:373
手機看韓國推理片 瀏覽:69
你這個棒槌電影名叫什麼 瀏覽:804
學生公寓內有哪些設備設施 瀏覽:897
多功能工具箱安卓 瀏覽:113
永康電動工具轉子繞線招聘 瀏覽:190
南關標准件五金機電總經銷怎麼樣 瀏覽:917
愛情與靈葯130分鍾完整版 瀏覽:259
比趕屍艷譚還要好看的電影 瀏覽:977
午馬,電影推薦 瀏覽:972
有那些電影帶黃 瀏覽:377
中華駿捷frv自動落鎖裝置線路圖 瀏覽:932
寶馬528改裝液晶儀表盤多少錢 瀏覽:334
好看的國產三幾片 瀏覽:179
韓國關於偷窺樓下 瀏覽:927
汽車儀表上面那個殼叫什麼 瀏覽:936
邵氏大尺度電影 瀏覽:157
怎麼在網上看電影院的電影 瀏覽:50