導航:首頁 > 裝置知識 > 單向導通裝置設計規范

單向導通裝置設計規范

發布時間:2024-06-18 21:45:45

Ⅰ 住二樓,擔心下水道堵塞污水倒灌怎麼辦

可以先安裝止抄回閥或者單向閥,襲是氣水迴路中一種截止閥,能起到單向導通的作用。或者是把自家的污水管道改造成獨立的,直接走管子到樓外,再到一樓,挖槽把管子走進污水井,保持了下水道的通暢,就不會發生下水道堵塞污水倒灌的情況了。

Ⅱ 老工程師總結的開關電源設計心得

首先從開關電源的設計及生產工藝開始描述吧,先說說印製板的設計。開關電源工作在高頻率,高脈沖狀態,屬於模擬電路中的一個比較特殊種類。布板時須遵循高頻電路布線原則。

1、布局: 脈沖電壓連線盡可能短,其中輸入開關管到變壓器連線,輸出變壓器到整流管連接線。脈沖電流環路盡可能小如輸入濾波電容正到變壓器到開關管返回電容負。輸出部分變壓器出端到整流管到輸出電感到輸出電容返回變壓器電路中X電容要盡量接 近開關電源輸入端,輸入線應避免與其他電路平行,應避開。Y電容應放置在機殼接地端子或FG連接端。共摸電感應與變壓器保持一定距離,以避免磁偶合。如不好處理可在共摸電感與變壓器間加一屏蔽,以上幾項對開關電 源的EMC性能影響較大。

輸出電容一般可採用兩只一隻靠近整流管另一隻應靠近輸出端子,可影響電源輸出紋波指標,兩只小容量電容並聯效果應優於用一隻大容量電容。發熱器件要和電解電容保持一定距離,以延長整機壽命,電解電容是開關電源壽命的瓶勁,如變壓器、功率管、大功率電阻要和電解保持距離,電解之間也須留出散熱空間,條件允許 可將其放置在進風口。

控制部分要注意:高阻抗弱信號電路連線要盡量短如取樣反饋環路,在處理時要盡量避免其受干擾、電流取樣信號電路,特別是電流控制型電路,處理不好易出現一些想不到的意外,其中有一些技巧,現以3843電路舉例見圖(1)圖一效果要好於圖二,圖二在滿載時用示波器觀測電流波形上明顯疊加尖刺,由於干擾限流點比設計值偏低,圖一則沒有這種現象、還有開關管驅動信號電路,開關管驅動電阻要靠近開關管,可提高開關管工作可靠性,這和功率MOSFET高直流阻抗電壓驅動特性有關。

下面談一談印製板布線的一些原則。

線間距: 隨著印製線路板製造工藝的不斷完善和提高,一般加工廠製造出線間距等於甚至小於0.1mm已經不存在什麼問題,完全能夠滿足大多數應用場合。考慮到開關電源所採用的元器件及生產工藝,一般雙面板最小線間距設為0.3mm,單面板最小線間距設為0.5mm,焊盤與焊盤、焊盤與過孔或過孔與過孔,最小 間距設為0.5mm,可避免在焊接操作過程中出現「橋接」現象。,這樣大多數制板廠都能夠很輕松滿足生產要求,並可以把成品率控製得非常高,亦可實現合理的布線密度及有一個較經濟的成本。

最小線間距只適合信號控制電路和電壓低於63V的低壓電路,當線間電壓大於該值時一般可按照500V/1mm經驗值取線間距。

鑒於有一些相關標准對線間距有較明確的規定,則要嚴格按照標准執行,如交流入口端至熔斷器端連線。某些電源對體積要求很高,如模塊電源。一般變壓器輸入側線間距為1mm實踐證明是可行的。對交流輸入,(隔離)直流輸出的電源產品,比較嚴格的規定為安全間距要大於等於6mm,當然這由相關的標准及執行方法 確定。一般安全間距可由反饋光耦兩側距離作為參考,原則大於等於這個距離。也可在光耦下面印製板上開槽,使爬電距離加大以滿足絕緣要求。一般開關電源交流輸入側走線或板上元件距非絕緣的外殼、散熱器間距要大於5mm,輸出側走線或器件距外殼或散熱器間距要大於2mm,或嚴格按照安全規范執行。

常用方法: 上文提到的線路板開槽的方法適用於一些間距不夠的場合,順便提一下,該法也常用來作為保護放電間隙,常見於電視機顯象管尾板和電源交流輸入處。該法在模塊電源中得到了廣泛的應用,在灌封的條件下可獲得很好的效果。

方法二: 墊絕緣紙,可採用青殼紙、聚脂膜、聚四氟乙烯定向膜等絕緣材料。一般通用電源用青殼紙或聚脂膜墊在線路板於金屬機殼間,這種材料有機械強度高,有有一定抗潮濕的能力。聚四氟乙烯定向膜由於具有耐高溫的特性在模塊電源中得到廣泛的應用。在元件和周圍導體間也可墊絕緣薄膜來提高絕緣抗電性能。

注意:某些器件絕緣被覆套不能用來作為絕緣介質而減小安全間距,如電解電容的外皮,在高溫條件下,該外皮有可能受熱收縮。大電解防爆槽前端要留出空間,以確保電解電容在非常情況時能無阻礙地瀉壓.

談一談印製板銅皮走線的一些事項:

走線電流密度: 現在多數電子線路採用絕緣板縛銅構成。常用線路板銅皮厚度為35μm,走線可按照1A/mm經驗值取電流密度值,具體計算可參見教科書。為保證走線機械強度原則線寬應大於或等於0.3mm(其他非電源線路板可能最小線寬會小一些)。銅皮厚度為70μm線路板也常見於開關電源,那麼電流密度可更高些。

補充一點,現常用線路板設計工具軟體一般都有設計規范項,如線寬、線間距,旱盤過孔尺寸等參數都可以進行設定。在設計線路板時,設計軟體可自動按照規范執行,可節省許多時間,減少部分工作量,降低出錯率。

一般對可靠性要求比較高的線路或布線線密度大可採用雙面板。其特點是成本適中,可靠性高,能滿足大多數應用場合。

模塊電源行列也有部分產品採用多層板,主要便於集成變壓器電感等功率器件,優化接線、功率管散熱等。具有工藝美觀一致性好,變壓器散熱好的優點,但其缺點是成本較高,靈活性較差,僅適合於工業化大規模生產。

單面板,市場流通通用開關電源幾乎都採用了單面線路板,其具有低成本的優勢,在設計,及生產工藝上採取一些措施亦可確保其性能。

談談單面印製板設計的一些體會,由於單面板具有成本低廉,易於製造的特點,在開關電源線路中得到廣泛應用,由於其只有一面縛銅,器件的電器連接,機械固定都要依靠那層銅皮,在處理時必須小心。

為保證良好的焊接機械結構性能,單面板焊盤應稍微大一些,以確保銅皮和基板的良好縛著力,而不至於受到震動時銅皮剝離、斷脫。一般焊環寬度應大於0.3mm。焊盤孔直徑應略大於器件引腳直徑,但不宜過大,保證管腳與焊盤間由焊錫連接距離最短,盤孔大小以不妨礙正常查件為度,焊盤孔直徑一般大於管腳直徑0.1-0.2mm。多引腳器件為保證順利查件,也可更大一些。

電氣連線應盡量寬,原則寬度應大於焊盤直徑,特殊情況應在連線於與焊盤交匯必須將線加寬(俗稱生成淚滴),避免在某些條件線與焊盤斷裂。原則最小線寬應大於0.5mm。

單面板上元器件應緊貼線路板。需要架空散熱的器件,要在器件與線路板之間的管腳上加套管,可起到支撐器件和增加絕緣的雙重作用,要最大限度減少或避免外力沖擊對焊盤與管腳連接處造成的影響,增強焊接的牢固性。線路板上重量較大的部件可增加支撐連接點,可加強與線路板間連接強度,如變壓器,功率器件散熱器。

單面板焊接面引腳在不影響與外殼間距的前題條件下,可留得長一些,其優點是可增 加焊接部位的強度,加大焊接面積、有虛焊現象可即時發現。引腳長剪腿時,焊接部位受力較小。在台灣、日本常採用把器件引腳在焊接面彎成與線路板成45度 角,然後再焊接的工藝,的其道理同上。今天談一談雙面板設計中的一些事項,在一 些要求比較高,或走線密度比較大的應用環境中採用雙面印製板,其性能及各方面指標要比單面板好很多。

雙面板焊盤由於孔已作金屬化處理強度較高,焊環可比單面板小一些,焊盤孔孔徑可 比管腳直徑略微大一些,因為在焊接過程中有利於焊錫溶液通過焊孔滲透到頂層焊盤,以增加焊接可靠性。但是有一個弊端,如果孔過大,波峰焊時在射流錫沖擊下部分器件可能上浮,產生一些缺陷。

大電流走線的處理,線寬可按照前帖處理,如寬度不夠,一般可採用在走線上鍍錫增加厚度進行解決,其方法有好多種

1, 將走線設置成焊盤屬性,這樣在線路板製造時該走線不會被阻焊劑覆蓋,熱風整平時會被鍍上錫。

2, 在布線處放置焊盤,將該焊盤設置成需要走線的形狀,要注意把焊盤孔設置為零。

3, 在阻焊層放置線,此方法最靈活,但不是所有線路板生產商都會明白你的意圖,需用文字說明。在阻焊層放置線的部位會不塗阻焊劑。

線路鍍錫的幾種方法如上,要注意的是,如果很寬的的走線全部鍍上錫,在焊接以後,會粘接大量焊錫,並且分布很不均勻,影響美觀。一般可採用細長條鍍錫寬度在1~1.5mm,長度可根據線路來確定,鍍錫部分間隔0.5~1mm雙面線路板為布局、走線提供了很大的選擇性,可使布線更趨於合理。關於接地,功率地與信號地一定要分開,兩個地可在濾波電容處匯合,以避免大脈沖電流通過信號地連線而導致出現不穩定的意外因素,信號控制迴路盡量採用一點接地法,有一個技巧,盡量把非接地的走線放置在同一布線層,最後在另外一層鋪地線。輸出 線一般先經過濾波電容處,再到負載,輸入線也必須先通過電容,再到變壓器,理論依據是讓紋波電流都通過旅濾波電容。

電壓反饋取樣,為避免大電流通過走線的影響,反饋電壓的取樣點一定要放在電源輸出最末梢,以提高整機負載效應指標。

走線從一個布線層變到另外一個布線層一般用過孔連通,不宜通過器件管腳焊盤實現,因為在插裝器件時有可能破壞這種連接關系,還有在每1A電流通過時,至少應有2個過孔,過孔孔徑原則要大於0.5mm,一般0.8mm可確保加工可靠性。

器件散熱,在一些小功率電源中,線路板走線也可兼散熱功能,其特點是走線盡量寬大,以增加散熱面積,並不塗阻焊劑,有條件可均勻放置過孔,增強導熱性能。

談談鋁基板在開關電源中的應用和多層印製板在開關電源電路中的應用。

鋁基板由其本身構造,具有以下特點:導熱性能非常優良、單面縛銅、器件只能放置在縛銅面、不能開電器連線孔所以不能按照單面板那樣放置跳線。

鋁基板上一般都放置貼片器件,開關管,輸出整流管通過基板把熱量傳導出去,熱阻很低,可取得較高可靠性。變壓器採用平面貼片結構,也可通過基板散熱,其溫升比常規要低,同樣規格變壓器採用鋁基板結構可得到較大的輸出功率。鋁基板跳線可以採用搭橋的方式處理。鋁基板電源一般由由兩塊印製板組成,另外一塊板放 置控制電路,兩塊板之間通過物理連接合成一體。

由於鋁基板優良的導熱性,在小量手工焊接時比較困難,焊料冷卻過快,容易出現問題現有一個簡單實用的方法,將一個燙衣服的普通電熨斗(最好有調溫功能),翻過來,熨燙面向上,固定好,溫度調到150℃左右,把鋁基板放在熨鬥上面,加溫一段時間,然後按照常規方法將元件貼上並焊接,熨斗溫度以器件易於焊接為宜,太高有可能時器件損壞,甚至鋁基板銅皮剝離,溫度太低焊接效果不好,要靈活掌握。

最近幾年,隨著多層線路板在開關電源電路中應用,使得印製線路變壓器成為可能,由於多層板,層間距較小,也可以充分利用變壓器窗口截面,可在主線路板上再加一到兩片由多層板組成的印製線圈達到利用窗口,降低線路電流密度的目的,由於採用印製線圈,減少了人工干預,變壓器一致性好,平面結構,漏感低,偶合 好。開啟式磁芯,良好的散熱條件。由於其具有諸多的優勢,有利於大批量生產,所以得到廣泛的應用。但研製開發初期投入較大,不適合小規模生。

開關電源分為,隔離與非隔離兩種形式,在這里主要談一談隔離式開關電源的拓撲形式,在下文中,非特別說明,均指隔離電源。隔離電源按照結構形式不同,可分為兩大類:正激式和反激式。反激式指在變壓器原邊導通時副邊截止,變壓器儲能。原邊截止時,副邊導通,能量釋放到負載的工作狀態,一般常規反激式電源單管 多,雙管的不常見。正激式指在變壓器原邊導通同時副邊感應出對應電壓輸出到負載,能量通過變壓器直接傳遞。按規格又可分為常規正激,包括單管正激,雙管正激。半橋、橋式電路都屬於正激電路。

正激和反激電路各有其特點,在設計電路的過程中為達到最優性價比,可以靈活運用。一般在小功率場合可選用反激式。稍微大一些可採用單管正激電路,中等功率可採用雙管正激電路或半橋電路,低電壓時採用推挽電路,與半橋工作狀態相同。大功率輸出,一般採用橋式電路,低壓也可採用推挽電路。

反激式電源因其結構簡單,省掉了一個和變壓器體積大小差不多的電感,而在中小功率電源中得到廣泛的應用。在有些介紹中講到反激式電源功率只能做到幾十瓦,輸出功率超過100瓦就沒有優勢,實現起來有難度。本人認為一般情況下是這樣的,但也不能一概而論,PI公司的TOP晶元就可做到300瓦,有文章介紹反激電源可做到上千瓦,但沒見過實物。輸出功率大小與輸出電壓高低有關。

反激電源變壓器漏感是一個非常關鍵的參數,由於反激電源需要變壓器儲存能量,要 使變壓器鐵芯得到充分利用,一般都要在磁路中開氣隙,其目的是改變鐵芯磁滯回線的斜率,使變壓器能夠承受大的脈沖電流沖擊,而不至於鐵芯進入飽和非線形狀態,磁路中氣隙處於高磁阻狀態,在磁路中產生漏磁遠大於完全閉合磁路。

變壓器初次極間的偶合,也是確定漏感的關鍵因素,要盡量使初次極線圈靠近,可採用三明治繞法,但這樣會使變壓器分布電容增大。選用鐵芯盡量用窗口比較長的磁芯,可減小漏感,如用EE、EF、EER、PQ型磁芯效果要比EI型的好。

關於反激電源的占空比,原則上反激電源的最大占空比應該小於0.5,否則環路不容易補償,有可能不穩定,但有一些例外,如美國PI公司推出的TOP系列晶元是可以工作在占空比大於0.5的條件下。 占空比由變壓器原副邊匝數比確定,本人對做反激的看法是,先確定反射電壓(輸出電壓通過變壓器耦合反映到原邊的電壓值),在一定電壓范圍內反射電壓提高則工作占空比增大,開關管損耗降低。反射電壓降低則工作占空比減小,開關管損耗增大。當然這也是有前提條件,當占空比增大,則意味著輸出二極體導通時間縮 短,為保持輸出穩定,更多的時候將由輸出電容放電電流來保證,輸出電容將承受更大的高頻紋波電流沖刷,而使其發熱加劇,這在許多條件下是不允許的。占空比增大,改變變壓器匝數比,會使變壓器漏感加大,使其整體性能變,當漏感能量大到一定程度,可充分抵消掉開關管大占空帶來的低損耗,時就沒有再增大占 空比的意義了,甚至可能會因為漏感反峰值電壓過高而擊穿開關管。由於漏感大,可能使輸出紋波,及其他一些電磁指標變差。當占空比小時,開關管通過電流有效值高,變壓器初級電流有效值大,降低變換器效率,但可改善輸出電容的工作條件,降低發熱。

如何確定變壓器反射電壓(即占空比)

有網友提到開關電源的反饋環路的參數設置,工作狀態分析。由於在上學時高數學的比較差,《自動控制原理》差一點就補考了,對於這一門現在還感覺恐懼,到現在也不能完整寫出閉環系統傳遞函數,對於系統零點、極點的概念感覺很模糊,看波德圖也只是大概看出是發散還是收斂,所以對於反饋補償不敢胡言亂語,但有有 一些建議。如果有一些數學功底,再有一些學習時間可以再把大學的課本《自動控制原理》找出來仔細的消化一下,並結合實際的開關電源電路,按工作狀態進行分析。一定會有所收獲,論壇有一個帖子《拜師求學反饋環路設計、調式》其中CMG回答得很好,我覺得可以參考。

接著談關於反激電源的占空比(本人關注反射電壓,與占空比一致),占空比還與選擇開關管的耐壓有關,有一些早期的反激電源使用比較低耐壓開關管,如600V或650V作為交流220V輸入電源的開關管,也許與當時生產工藝有關,高耐壓管子,不易製造,或者低耐壓管子有更合理的導通損耗及開關特性,像這種線路反射電壓不能太高,否則為使開關管工作在安全范圍內,吸收電路損耗的功率也是相當可觀的。 實踐證明600V管子反射電壓不要大於100V,650V管子反射電壓不要大於120V,把漏感尖峰電壓值鉗位在50V時管子還有50V的工作餘量。現在 由於MOS管製造工藝水平的提高,一般反激電源都採用700V或750V甚至800-900V的開關管。像這種電路,抗過壓的能力強一些開關變壓器反射電壓也可以做得比較高一些,最大反射電壓在150V比較合適,能夠獲得較好的綜 合性能。PI公司的TOP晶元推薦為135V採用瞬變電壓抑制二極體鉗位。但他的評估板一般反射電壓都要低於這個數值在110V左右。這兩種類型各有優缺點:

第一類:缺點抗過壓能力弱,占空比小,變壓器初級脈沖電流大。優點:變壓器漏感小,電磁輻射低,紋波指標高,開關管損耗小,轉換效率不一定比第二類低。

第二類:缺點開關管損耗大一些,變壓器漏感大一些,紋波差一些。優點:抗過壓能力強一些,占空比大,變壓器損耗低一些,效率高一些。

反激電源反射電壓還有一個確定因素

反激電源的反射電壓還與一個參數有關,那就是輸出電壓,輸出電壓越低則變壓器匝數比越大,變壓器漏感越大,開關管承受電壓越高,有可能擊穿開關管、吸收電路消耗功率越大,有可能使吸收迴路功率器件永久失效(特別是採用瞬變電壓抑制二極體的電路)。在設計低壓輸出小功率反激電源的優化過程中必須小心處理,其 處理方法有幾個:

1、 採用大一個功率等級的磁芯降低漏感,這樣可提高低壓反激電源的轉換效率,降低損耗,減小輸出紋波,提高多路輸出電源的交差調整率,一般常見於家電用開關電源,如光碟機、DVB機頂盒等。

2、如果條件不允許加大磁芯,只能降低反射電壓,減小占空比。降低反射電壓可減小漏感但有可能使電源轉換效率降低,這兩者是一個矛盾,必須要有一個替代過程才能找到一個合適的點,在變壓器替代實驗過程中,可以檢測變壓器原邊的反峰電壓,盡量 降低反峰電壓脈沖的寬度,和幅度,可增加變換器的工作安全裕度。一般反射電壓在110V時比較合適。

3、增強耦合,降低損耗,採用新的技術,和繞線工藝,變壓器為滿足安全規范會在原邊和副邊間採取絕緣措施,如墊絕緣膠帶、加絕緣端空膠帶。這些將影響變壓器漏感性能,現實生產中可採用初級繞組包繞次級的繞法。或者次級用三重絕緣線繞制,取消 初次級間的絕緣物,可以增強耦合,甚至可採用寬銅皮繞制。

文中低壓輸出指小於或等於5V的輸出,像這一類小功率電源,本人的經驗是,功率輸出大於20W輸出可採用正激式,可獲得最佳性價比,當然這也不是決對的, 與個人的習慣,應用的環境有關系。

反激電源變壓器磁芯在工作在單向磁化狀態,所以磁路需要開氣隙,類似於脈動直流電感器。部分磁路通過空氣縫隙耦合。為什麼開氣隙的原理本人理解為:由於功率鐵氧體也具有近似於矩形的工作特性曲線(磁滯回線),在工作特性曲線上Y軸表示磁感應強度(B),現在的生產工藝一般飽和點在400mT以上,一般此值 在設計中取值應該在200-300mT比較合適、X軸表示磁場強度(H)此值與磁化電流強度成比例關系。磁路開氣隙相當於把磁體磁滯回線向X軸向傾斜,在同樣的磁感應強度下,可承受更大的磁化電流,則相當於磁心儲存更多的能量,此能量在開關管截止時通過變壓器次級瀉放到負載電路,反激電源磁芯開氣隙有兩個作用。其一是傳遞更多能量,其二防止磁芯進入飽和狀態。

反激電源的變壓器工作在單向磁化狀態,不僅要通過磁耦合傳遞能量,還擔負電壓變換輸入輸出隔離的多重作用。所以氣隙的處理需要非常小心,氣隙太大可使漏感變大,磁滯損耗增加,鐵損、銅損增大,影響電源的整機性能。氣隙太小有可能使變壓器磁芯飽和,導致電源損壞。

所謂反激電源的連續與斷續模式是指變壓器的工作狀態,在滿載狀態變壓器工作於能量完全傳遞,或不完全傳遞的工作模式。一般要根據工作環境進行設計,常規反激電源應該工作在連續模式,這樣開關管、線路的損耗都比較小,而且可以減輕輸入輸出電容的工作應力,但是這也有一些例外。 需要在這里特別指出:由於反激電源的特點也比較適合設計成高壓電源,而高壓電源變壓器一般工作在斷續模式,本人理解為由於高壓電源輸出需要採用高耐壓的整流二極體。由於製造工藝特點,高反壓二極體,反向恢復時間長,速度低,在電流連續狀態,二極體是在有正向偏壓時恢復,反向恢復時的能量損耗非常大,不利於 變換器性能的提高,輕則降低轉換效率,整流管嚴重發熱,重則甚至燒毀整流管。由於在斷續模式下,二極體是在零偏壓情況下反向偏置,損耗可以降到一個比較低的水平。所以高壓電源工作在斷續模式,並且工作頻率不能太高。 還有一類反激式電源工作在臨界狀態,一般這類電源工作在調頻模式,或調頻調寬雙模式,一些低成本的自激電源(RCC)常採用這種形式,為保證輸出穩定,變 壓器工作頻率隨著,輸出電流或輸入電壓而改變,接近滿載時變壓器始終保持在連續與斷續之間,這種電源只適合於小功率輸出,否則電磁兼容特性的處理會很讓人頭痛。

反激開關電源變壓器應工作在連續模式,那就要求比較大的繞組電感量,當然連續也是有一定程度的,過分追求絕對連續是不現實的,有可能需要很大的磁芯,非常多的線圈匝數,同時伴隨著大的漏感和分布電容,可能得不償失。那麼如何確定這個參數呢,通過多次實踐,及分析同行的設計,本人認為,在標稱電壓輸入時,輸出達到50%~60%變壓器從斷續,過渡到連續狀態比較合適。或者在最高輸入電壓狀態時,滿載輸出時,變壓器能夠過渡到連續狀態就可以了。

Ⅲ 避雷線和避雷針的作用是什麼避雷器的作用是什麼

避雷針作為端引,高於建築等其他設備,在易受雷擊的區域吸收雷擊電能,與避雷線、引下線、泄放區構築防雷網,使建築等設備免受雷擊破壞。避雷器的作用詳細見下屬文章:
避雷器和電涌保護器運用說明

目錄

一、 定義
二、 防雷器與浪涌保護器的比較
三、 線路避雷器運用及其說明
四、 浪涌保護器設計原理、特性、運用范疇
五、 參考依據與文獻

一、定義
1.避雷器
避雷器是變電站保護設備免遭雷電沖擊波襲擊的設備。當沿線路傳入變電站的雷電沖擊波超過避雷器保護水平時,避雷器首先放電,並將雷電流經過良導體安全的引入大地,利用接地裝置使雷電壓幅值限制在被保護設備雷電沖擊水平以下,使電氣設備受到保護。

2.浪涌保護器
也叫防雷器,是一種為各種電力設備、儀器儀表、通訊線路等提供安全防護的裝置。當電氣迴路或者通信線路中因為外界的干擾突然產生尖峰電流或者電壓時,浪涌保護器能在極短的時間內導通分流,從而避免浪涌對迴路中其他設備的損害。

 從以下資料可以看出,浪涌保護器也是防雷器的一種,但是有很大的區別。

二、避雷器與浪涌保護器的比較
避雷器指建築物避雷器,與避雷針、接地排等一起形成一個法拉第籠,防止建築物被損壞,避雷器的基本原理是把雷擊電磁脈沖(LEMP)導入地進行消解。但是為什麼在安裝避雷器後仍有大量的建築物及其裡面的設備被雷擊損壞呢?
首先,避雷器的導線採用銅鐵合金,因此其導線性能是有限的,反應速度僅為200微妙(uS)。而LEMP的半峰速度(能量達到最大值)為20微妙(uS),也就是說LEMP的速度快於避雷器,這樣避雷器把第一次直擊雷導入地後,對於二次雷、三次雷往往反應不過來,直接泄漏打在設備上。也就是說,避雷器對二次雷、三次雷幾乎不起作用。
其次,LEMP導入地後,會從地返回形成感應雷。感應雷會從所有含有金屬的導線上泄漏到設備(網線、電源線、信號線、傳輸線等)。由於避雷器是單向作用的,因此它對感應雷不起作用,感應雷可以直接打壞設備。更何況,導線部分往往不會安裝避雷器。
再次,浪涌只有20%來自雷擊等外部環境,80%來自系統內部運行,避雷器對這80%是不起任何作用的。
根據分析來回答電涌保護器(SPD,有的稱浪涌保護器)和避雷器的區別:
1、應用范圍不同(電壓):避雷器范圍廣泛,有很多電壓等級,一般從0.4kV低壓到500kV超高壓都有(詳見樓上分析),而SPD一般指1kV以下使用的過電壓保護器;
2、保護對象不同:避雷器是保護電氣設備的,而SPD浪涌保護器一般是保護二次信號迴路或給電子儀器儀表等末端供電迴路。
3、絕緣水平或耐壓水平不同:電器設備和電子設備的耐壓水平不在一個數量級上,過電壓保護裝置的殘壓應與保護對象的耐壓水平匹配。
4、安裝位置不同:避雷器一般安裝在一次系統上,防止雷電波的直接侵入,保護架空線路及電器設備;而SPD浪涌保護器多安裝於二次系統上,是在避雷器消除了雷電波的直接侵入後,或避雷器沒有將雷電波消除干凈時的補充措施;所以避雷器多安裝在進線處;SPD多安裝於末端出線或信號迴路處。
5、通流容量不同:避雷器因為主要作用是防止雷電過電壓,所以其相對通流容量較大;而對於電子設備,其絕緣水平遠小於一般意義上的電器設備,故需要SPD對雷電過電壓和操作過電壓進行防護,但其通流容量一般不大。(SPD一般在末端,不會直接與架空線路連接,經過上一級的限流作用,雷電流已經被限制到較低值,這樣通流容量不大的SPD完全可以起到保護作用,通流值不重要,重要的是殘壓。)
6、其它絕緣水平、對參數的著眼點等也有較大差異。
7、浪涌保護器適用於低壓供電系統的精細保護,依據不同的交直流電源電床可選擇各種相應的規格。電源浪涌保護器一精細由於終端設備離前級浪涌保護器距離較大,從而使得該線路上容易產生振盪過電壓或感應到其他過電壓。適用於終端設備的精細電源浪涌保護,與前級浪涌保護器配合使用,則保護效果更好。
8、避雷器主材質多為氧化鋅(金屬氧化物變阻器中的一種),而浪涌保護器主材質根據抗浪涌等級、分級防護(IEC61312)的不同是不一樣的,而且在設計上比普通防雷器精密得多。

9、從技術上來說,避雷器在響應時間、限壓效果、綜合防護效果、抗老化特性等方面都達不到浪涌保護器的水平。
共同點:都能防止雷電過電壓
因為上述原因,SPD也就應運而生。
SPD的原理是把LEMP轉化為熱能進行消解,由於不是導通式,反應速度非常快,可低於納秒,可以有效防止二次雷和三次雷。SPD分為電源SPD,精密儀器SPD,數字線路SPD,而且也是雙向作用的,因此可以有效防止感應雷。因此,IEEE標准規定,在安裝避雷器的同時應該加上SPD,以形成防雷的雙保險。
此外,SPD對於內部的80%的浪涌也能起到有效抑製作用,這是避雷器所不能做到的。
總體上講,避雷器是專門針對電氣設備免受雷電沖擊波所設置的防護設備,而浪涌保護器是比避雷器更先進的防護設備,除開雷電沖擊波,還可以極大程度消弱電力系統自身所產生的其它破壞性浪涌沖擊。在用電單位高壓進線系統(10KV及以上)已裝設避雷器的情況下,在低壓系統中就應裝設防護功能更精密的浪涌保護器。

三、避雷器運用與說明
1、線路避雷器防雷的基本原理
雷擊桿塔時,一部分雷電流通過避雷線流到相臨桿塔,另一部分雷電流經桿塔流入大地,桿塔接地電阻呈暫態電阻特性,一般用沖擊接地電阻來表徵。
雷擊桿塔時塔頂電位迅速提高,其電位值為
Ut=iRd L.di/dt(1)
式中i——雷電流;
Rd——沖擊接地電阻;
L.di/dt——暫態分量。

當塔頂電位Ut與導線上的感應電位U1的差值超過絕緣子串50的放電電壓時,將發生由塔頂至導線的閃絡。即Ut-U1>U50,如果考慮線路工頻電壓幅值Um的影響,則為Ut-U1 Um>U50。因此,線路的耐雷水平與3個重要因素有關,即線路絕緣子的50放電電壓、雷電流強度和塔體的沖擊接地電阻。一般來說,線路的50放電電壓是一定的,雷電流強度與地理位置和大氣條件相關,不加裝避雷器時,提高輸電線路耐雷水平往往是採用降低塔體的接地電阻,在山區,降低接地電阻是非常困難的,這也是為什麼輸電線路屢遭雷擊的原因。
加裝避雷器以後,當輸電線路遭受雷擊時,雷電流的分流將發生變化,一部分雷電流從避雷線傳入相臨桿塔,一部分經塔體入地,當雷電流超過一定值後,避雷器動作加入分流。大部分的雷電流從避雷器流入導線,傳播到相臨桿塔。雷電流在流經避雷線和導線時,由於導線間的電磁感應作用,將分別在導線和避雷線上產生耦合分量。因為避雷器的分流遠遠大於從避雷線中分流的雷電流,這種分流的耦合作用將使導線電位提高,使導線和塔頂之間的電位差小於絕緣子串的閃絡電壓,絕緣子不會發生閃絡,因此,線路避雷器具有很好的鉗電位作用,這也是線路避雷器進行防雷的明顯特點。
以往輸電線路防雷主要採用降低塔體接地電阻的方法,在平原地帶相對較容易,對於山區桿塔,則往往在4個塔腳部位採用較長的輻射地線或打深井加降阻劑,以增加地線與土壤的接觸面積降低電阻率,在工頻狀態下接地電阻會有所下降。但遭受雷擊時,因接地線過長會有較大的附加電感值,雷電過電壓的暫態分量L.di/dt會加在塔體電位上,使塔頂電位大大提高,更容易造成塔體與絕緣子串的閃絡,反而使線路的耐雷水平下降。因為線路避雷器具有鉗電位作用,對接地電阻要求不太嚴格,對山區線路防雷比較容易實現。
2線路避雷器使用及動作情況
淄博電業局管轄的110kV龍博1線和35kV南黑線、炭謝線位於丘陵和山地,多年來經常發生雷擊跳閘故障,據統計110kV龍博1線在1989~1996年共發生5次雷擊掉閘,35kV南黑線、炭謝線分別在1994~1997年各發生6次雷擊掉閘,雖然採取了各種措施,效果均不明顯。1997年在易遭雷擊的龍博1線62~64號和南黑線87、89、90號及炭謝線51號分別裝設了7組共20隻線路型氧化鋅避雷器,安裝方式是在龍博1線和南黑線各懸掛3組9隻,在炭謝線51號上相和下相各懸掛1隻(該桿不久前遭雷擊),經過2個雷雨季節的考驗,線路未發生故障及掉閘事故。
3避雷器的選型及安裝維護
線路避雷器有2種類型,即帶串聯間隙和無串聯間隙2種,因運行方式不同和電站避雷器相比在結構設計上也有所區別。
線路避雷器安裝時應注意:(1)選擇多雷區且易遭雷擊的輸電線路桿塔,最好在兩側相臨桿塔上同時安裝;(2)垂直排列的線路可只裝上下2相;(3)安裝時盡量不使避雷器受力,並注意保持足夠的安全距離;(4)避雷器應順桿塔單獨敷設接地線,其截面不小於25mm2,盡量減小接地電阻的影響。
投運後進行必要的維護:(1)結合停電定期測量絕緣電阻,歷年結果不應明顯變化;(2)檢查並記錄計數器的動作情況;(3)對其緊固件進行擰緊,防止松動;(4)5a拆回,進行1次直流1mA及75參考電壓下泄漏電流測量。
四、 浪涌保護器設計原理、特性、運用范疇
 設計原理
在最常見的浪涌保護器中,都有一個稱為金屬氧化物變阻器(Metal Oxide Varistor,MOV)的元件,用來轉移多餘的電壓。如下圖所示,MOV將火線和地線連接在一起。
MOV由三部分組成:中間是一根金屬氧化物材料,由兩個半導體連接著電源和地線。
這些半導體具有隨著電壓變化而改變的可變電阻。當電壓低於某個特定值時,半導體中的電子運動將產生極高的電阻。反之,當電壓超過該特定值時,電子運動會發生變化,半導體電阻會大幅降低。如果電壓正常,MOV會閑在一旁。而當電壓過高時,MOV可以傳導大量電流,消除多餘的電壓。隨著多餘的電流經MOV轉移到地線,火線電壓會恢復正常,從而導致MOV的電阻再次迅速增大。按照這種方式,MOV僅轉移電涌電流,同時允許標准電流繼續為與浪涌保護器連接的設備供電。打個比方說,MOV的作用就類似一個壓敏閥門,只有在壓力過高時才會打開。
另一種常見的浪涌保護裝置是氣體放電管。這些氣體放電管的作用與MOV相同 ——它們將多餘的電流從火線轉移到地線,通過在兩根電線之間使用惰性氣體作為導體實現此功能。當電壓處於某一特定范圍時,該氣體的組成決定了它是不良導體。如果電壓出現浪涌並超過這一范圍,電流的強度將足以使氣體電離,從而使氣體放電管成為非常良好的導體。它會將電流傳導至地線,直到電壓恢復正常水平,隨後它又會變成不良導體。
這兩種方法都是採用並聯電路設計——多餘的電壓從標准電路流入另一個電路。有幾種浪涌保護器產品使用串聯電路設計抑制電涌——它們不是將多餘的電流分流到另一條線路,而是通過降低流過火線的電量。基本上說,這些抑制器在檢測到高電壓時會儲存電能,隨後再逐漸釋放它們。製造這種保護器的公司解釋說該方法可以提供更好的保護,因為它反應速度更快,並且不會向地線分流,但另一方面,這種分流可能會干擾建築物的電力系統。
抑制二極體:抑制二極體具有箝位限壓功能,它是工作在反向擊穿區,由於它具有箝位電壓低和動作響應快的優點,特別適合用作多級保護電路中的最末幾級保護元件。抑制二極體在擊穿區內的伏安特性可用下式表示:I=CUα,上式中α為非線性系數,對於齊納二極體α=7~9,在雪崩二極體α=5~7.
 抑制二極體的技術參數主要有 :
(1)額定擊穿電壓,它是指在指定反向擊穿電流(常為lma)下的擊穿電壓,這於齊納二極體額定擊穿電壓一般在2.9V~4.7V范圍內,而雪崩二極體的額定擊穿電壓常在5.6V~200V范圍內。
(2)最大箝位電壓:它是指管子在通過規定波形的大電流時,其兩端出現的最高電壓。
(3)脈沖功率:它是指在規定的電流波形(如10/1000μs)下,管子兩端的最大箝位電壓與管子中電流等值之積。
(4)反向變位電壓:它是指管子在反向泄漏區,其兩端所能施加的最大電壓,在此電壓下管子不應擊穿。此反向變位電壓應明顯高於被保護電子系統的最高運行電壓峰值,也即不能在系統正常運行時處於弱導通狀態。
(5)最大泄漏電流:它是指在反向變位電壓作用下,管子中流過的最大反向電流。
(6)響應時間:10-11us
作為輔助元件,有些浪涌保護器還配有內置保險絲。保險絲是一種電阻器,當電流低於某個標准時,它的導電性能非常好。反之,當電流超過了可接受的標准,電阻產生的熱量會燒斷保險絲,從而切斷電路。如果MOV不能抑制電涌,過高的電流將燒斷保險絲,保護連接的設備。該保險絲只能使用一次,一旦燒斷就需要更換。
 SPD前端熔斷器應根據避雷器廠家的參數安裝。
如廠家沒有規定,一般選用原則:
根據(浪涌保護器的最大保險絲強度A)和(所接入配電線路最大供電電流B)來確定(開關或熔斷器的斷路電流C)。
確定方法:
當:B>A時 C小於等於A
當:B=A時 C小於A或不安裝C
當:B<A時 C小於B或不安裝C
有些浪涌保護器具有線路調節系統,用於濾除「線路雜訊」,減小電流波動。這種基本浪涌保護器的系統結構非常簡單。火線通過環形扼流線圈接到電源板插座上。扼流線圈只是一個用磁性材料做成的環,外面纏繞著導線——基本的電磁鐵。火線中所流經電流的上下波動會給電磁鐵充電,使其發出電磁能量,從而消除電流的微小波動。這種「經過調節」的電流更加穩定,可使計算機(或其他電子設備)的供電電流更加平緩。
在電子設計中,浪涌主要指的是電源(只是主要指電源)剛開通的那一瞬息產生的強力脈沖,由於電路本身的非線性有可能有高於電源本身的脈沖;或者由於電源或電路中其它部分受到本身或外來尖脈沖干擾叫做浪涌。它很可能使電路在浪涌的一瞬間燒壞,如PN結電容擊穿,電阻燒斷等等。 而浪涌保護就是利用非線性元器件對高頻(浪涌)的敏感設計的保護電路,簡單而常用的是並聯大小電容和串聯電感。
 浪涌保護器(SPD)的分類
按工作原理分:
(1)開關型:其工作原理是當沒有瞬時過電壓時呈現為高阻抗,但一旦響應雷電瞬時過電壓時,其阻抗就突變為低值,允許雷電流通過。用作此類裝置時器件有:放電間隙、氣體放電管、閘流晶體管等。
(2)限壓型:其工作原理是當沒有瞬時過電壓時為高阻擾,但隨電涌電流和電壓的增加其阻抗會不斷減小,其電流電壓特性為強烈非線性。用作此類裝置的器件有:氧化鋅、壓敏電阻、抑制二極體、雪崩二極體等。
(3)分流型或扼流型
分流型:與被保護的設備並聯,對雷電脈沖呈現為低阻抗,而對正常工作頻率呈現為高阻抗。
扼流型:與被保護的設備串聯,對雷電脈沖呈現為高阻抗,而對正常的工作頻率呈現為低阻抗。 用作此類裝置的器件有:扼流線圈、高通濾波器、低通濾波器、1/4波長短路器等。
按用途分:
(1)電源保護器:交流電源保護器、直流電源保護器、開關電源保護器等。
(2)信號保護器:低頻信號保護器、高頻信號保護器、天饋保護器等。
 浪涌保護器及其應用
1、浪涌電壓
電路在遭雷擊和在接通、斷開電感負載或大型負載時常常會產生很高的操作過電壓,這種瞬時過電壓(或過電流)稱為浪涌電壓(或浪涌電流),是一種瞬變干擾:例如直流6V繼電器線圈斷開時會出現300V~600V的浪涌電壓;接通白熾燈時會出現8~10倍額定電流的浪涌電流;當接通大型容性負載如補償電容器組時,常會出現大的浪涌電流沖擊,使得電源電壓突然降低;當切斷空載變壓器時也會出現高達額定電壓8~10倍的操作過電壓。浪涌電壓現象日趨嚴重地危及自動化設備安全工作,消除浪涌雜訊干擾、防止浪涌損害一直是關繫到自動化設備安全可靠運行的核心問題。現代電子設備集成化程度在不斷提高,但是它們的抗禦浪涌電壓能力卻在下降。在多數情況下,浪涌電壓會損壞電路及其部件,其損壞程度與元器件的耐壓強度密切相關,並且與電路中可以轉換的能量相關。
為了避免浪涌電壓擊毀敏感的自動化設備,必須使出現這種浪涌電壓的導體在非常短的時間內同電位均衡系統短接(引入大地)。在其放電過程中,放電電流可以高達幾千安,與此同時,人們往往期待保護單元在放電電流很大時也能將輸出電壓限定在盡可能低的數值上。因此,空氣火花間隙、充氣式過電壓放電器、壓敏電阻、雪崩二極體、TVS(Transientvoltagesuppressor)、FLASHTRAB、VALETRAB、SOCKETTRAB、MAINTRAB等元器件,是單獨或以組合電路形式被應用到被保護電路中,因為每個元器件有其各自不同的特性,並且具有不同的性能:放電能力;響應特性;滅弧性能;限壓精度。根據不同的應用場合以及設備對浪涌電壓保護的要求,可根據各類產品的特性來組合出符合應用要求的過電壓保護系統。

2、浪涌電壓吸收器
浪涌雜訊常用浪涌吸收器進行抑制,常用的浪涌吸收器有:
(1)氧化鋅壓敏電阻
氧化鋅壓敏電阻是以氧化鋅為主體材料製成的壓敏電阻,其電壓非線性系數高,容量大、殘壓低、漏電流小、無續流、伏安特性對稱、電壓范圍寬、響應速度快、電壓溫度系數小,且具有工藝簡單、成本低廉等優點,是目前廣泛使用的浪涌電壓保護器件。適用於交流電源電壓的浪涌吸收、各種線圈、接點間浪涌電壓吸收及滅弧,三極體、晶閘管等電力電子器件的浪涌電壓保護。
(2)R、C、D組合浪涌吸收器
R、C、D組合浪涌吸收器比較適用於直流電路,可根據電路的特性對器件進行不同的組合,如圖1(a)適用於高電平直流控制系統,而圖1(b)中採用齊納穩壓管或雙向二極體,適用於正反向需要保護的電路。
圖1R、C、D浪涌保護器 (a)單向保護(b)雙向保護

圖2TVS電壓(電流)時間特性
(3)瞬態電壓抑制器(TVS)
當TVS兩極受到反向高能量沖擊時,它能以10-12s級的速度,將其兩極間的阻抗由高變低,吸收高達數kW的浪涌功率,使兩極的電位箝位於預定值,有效地保護自動化設備中的元器件免受浪涌脈沖的損害。TVS具有響應時間快、瞬態功率大、漏電流低、擊穿電壓偏差小、箝位電壓容易控制、體積小等優點,目前被廣泛應用於電子設備等領域。
①TVS的特性
其正向特性與普通二極體相同,反向特性為典型的PN結雪崩器件。圖2是TVS的電流-時間和電壓-時間曲線。在浪涌電壓的作用下,TVS兩極間的電壓由額定反向關斷電壓VWM上升到擊穿電壓Vbr而被擊穿。隨著擊穿電流的出現,流過TVS的電流將達到峰值脈沖電流IPP,同時在其兩端的電壓被箝位到預定的最大箝位電壓VC以下。其後,隨著脈沖電流按指數衰減,TVS兩極間的電壓也不斷下降,最後恢復到初態,這就是TVS抑制可能出現的浪涌脈沖功率,保護電子元器件的過程。
②TVS與壓敏電阻的比較
目前,國內不少需要進行浪涌保護的設備上應用壓敏電阻較為普遍,TVS與壓敏電阻性能比較如表1所示:
表1TVS與壓敏電阻的比較
參數 TVS 壓敏電阻
反應速度 10-12s 50×10-9s
是否老化 否 是
最高使用溫度 175℃ 115℃
器件極性 單雙極性 單極性
反向漏電流 5μA 200μA
箝位因子VC/Vbr 不大於15 最大7~8
封閉性質 密封 透氣
價格 較貴 便宜
3、綜合浪涌保護系統組合
3.1三級保護
自動控制系統所需的浪涌保護應在系統設計中進行綜合考慮,針對自動控制裝置的特性,應用於該系統的浪涌保護器基本上可以分為三級,對於自動控制系統的供電設備來說,需要雷擊電流放電器、過壓放電器以及終端設備保護器。數據通信和測控技術的介面電路,比各終端的供電系統電路顯然要靈敏得多,所以必須對數據介面電路進行細保護。
自動化裝置的供電設備的第一級保護採用的是雷擊電流放電器,它們不是安裝在建築物的進口處,就是在總配電箱里。為保證後續設備不承受太高的殘壓,必須根據被保護范圍的性質,在下級配電設施中安裝過電壓放電器,作為二級保護措施。第三級保護是為了保護儀器設備,採取的方法是,把過電壓放電器直接安裝在儀器的前端。自動控制系統三級保護布置如圖3所示。在不同等級的放電器之間,必須遵守導線的最小長度規定。供電系統中雷擊電流放電器與過壓放電器之間的距離不得小於10m,過壓放電器同儀器設備保護裝置之間的導線距離則不應小於5m(即一級SPD與二級SPD連接線路間距至少10米,二級SPD與三級SPD連接線路間距至少5米)。
3.2三級保護器件
(1)充有惰性氣體的過電壓放電器是自動控制系統中應用較廣泛的一級浪涌保護器件。充有惰性氣體過電壓放電器,一般構造的這類放電器可以排放20kA(8/20μs)或者2.5kA(10/350μs)以內的瞬變電流。氣體放電器的響應時間處於ns范圍,被廣泛地應用於遠程通信范疇。該器件的一個缺點是它的觸發特性與時間相關,其上升時間的瞬變數同觸發特性曲線在幾乎與時間軸平行的范圍里相交。因此保護電平將同氣體放電器額定電壓相近。而特別快的瞬變數將同觸發曲線在十倍於氣體放電器額定電壓的工作點相交,也就是說,如果某個氣體放電器的最小額定電壓90V,那麼線路中的殘壓可高達900V。它的另一個缺點是可能會產生後續電流。在氣體放電器被觸發的情況下,尤其是在阻抗低、電壓超過24V的電路中會出現下列情況:即原來希望維持幾個ms的短路狀態,會因為該氣體放電器繼續保持下去,由此引起的後果可能是該放電器在幾分之一秒的時間內爆碎。所以在應用氣體放電器的過電壓保護電路中應該串聯一個熔斷器,使得這種電路中的電流很快地被中斷。

圖3放電器分布圖
(2)壓敏電阻被廣泛作為系統中的二級保護器件,因壓敏電阻在ns時間范圍內具有更快的響應時間,不會產生後續電流的問題。在測控設備的保護電路中,壓敏電阻可用於放電電流為2.5kA~5kA(8/20μs)的中級保護裝置。壓敏電阻的缺點是老化和較高的電容問題,老化是指壓敏電阻中二極體的PN部分,在通常過載情況下,PN結會造成短路,其漏電流將因此而增大,其值的大小取決於承載的頻繁程度。其應用於靈敏的測量電路中將造成測量失真,並且器件易發熱。壓敏電阻大電容問題使它在許多場合不能應用於高頻信息傳輸線路,這些電容將同導線的電感一起形成低通環節,從而對信號產生嚴重的阻尼作用。不過,在30kHz以下的頻率范圍內,這一阻尼作用是可以忽略的。
(3)抑制二極體一般用於高靈敏的電子電路,其響應時間可達ps級,而器件的限壓值可達額定電壓的1.8倍。其主要缺點是電流負荷能力很弱、電容相對較高,器件自身的電容隨著器件額定電壓變化,即器件額定電壓越低,電容則越大,這個電容也會同相連的導線中的電感構成低通環節,而對數據傳輸產生阻尼作用,阻尼程度與電路中的信號頻率相關。
五、 參考依據與文獻
1. IEC61643-12:2002 電涌保護器(SPD)第12部分:連接於低壓電力系統的電涌保護器——選型和應用原則。
2. IEC61643-1:1998,IDT :低壓配電系統的電涌保護器(SPD)第一部分:性能要求和試驗方法
3.建築物防雷設計規范(GB50057-94)工程建設標准局部修訂公告 第24號
4.中國氣象局第3號令《防雷減災管理辦法》
北京德曼尼機電技術有限公司 總工程師 曹 原撰

Ⅳ 請問,關於化工工業設計中,法蘭與法蘭之間需要用銅片搭接,遵循的相關規范是哪一本或者哪些

金屬管道法蘭跨接防靜電探討在對企業進行安全生產檢查時,專家或執法人員經常要求輸送可燃、易爆物質的金屬管道法蘭要用導線跨接,防止發生靜電事故。那麼,金屬管道法蘭是否需要跨接?在什麼情況下需要跨接?筆者想就此問題做一下探討。一、工業管道金屬法蘭跨接

國家質量監督檢驗檢疫總局2009年5月8日頒布的特種設備安全技術規範文件《壓力管道安全技術監察規程—工業管道》(TSG
D0001-2009),對工業管道有下列定義:本規程適用於同時具備下列條件的工藝裝置、輔助裝置以及界區內公用工程所屬的工業管道(以下簡稱管道)。

(1)、最高工作壓力大於或等於0.1MPa(表壓,下同)的;(2)、公稱直徑(注1)大於25mm的;

(3)、輸送介質為氣體、蒸汽、液化氣體、最高工作溫度高於或者等於其標准沸點的液體或者可燃、易爆、有毒、有腐蝕性的液體的。

日常檢查中碰見的壓力管道大部分屬於上述工業管道之列。《壓力管道安全技術監察規程—工業管道》(TSG
D0001-2009)第八十條對法蘭跨接防靜電有如下規定:有靜電接地要求的管道,應當測量各連接接頭間的電阻值和管道系統的對地電阻值。當值超過《壓力管道規范—工業管道》(GB/T20801-2006)或者設計文件的規定時,應當設置跨接導線(在法蘭或者螺紋接頭間)和接地引線。從該條可以看出,法蘭是否需要跨接導線,需要測量法蘭之間電阻值,當阻值超過規定時,需要跨接。

《壓力管道規范—工業管道 第4
部分製作與安裝》(GB/T20801.4-2006)第10.12.1條規定:有靜電接地要求的管道,各段間應導電良好。每對法蘭或螺紋接頭間電阻值大於0.03Ω時,應設導線跨接。

另外,《工業金屬管道工程施工規范》(GB
50235—2010)第7.13.1條規定:設計有靜電接地要求的管道,當每對法蘭或其他接頭間電阻值超過0.03歐時,應設導線跨接。由此可以看出,工業管道金屬法蘭是否跨接,需要測量法蘭間電阻值。當法蘭間電阻值超過0.03Ω時,應設導線跨接。二、燃氣管道法蘭跨接

企業使用燃氣較為普遍,燃氣管道法蘭跨接又有什麼規定呢?

《城鎮燃氣設計規范》(GB50028—2006)對法蘭跨接無明文規定,只是在第10.8.5

條第3款規定:燃氣管道及設備的防靜電接地設施的設計應符合國家現行標准《化工企業靜電接地設計技術規程》(HGJ28-90)的規定。

《化工企業靜電接地設計技術規程》(HGJ28-90)目前編號變更為HG/T20675-1990。該規程第2.7.5條規定:當金屬法蘭採用金屬螺栓或卡子相緊固時,一般情況可不必另裝靜電連接線。在腐蝕條件下,應保證至少有兩個螺栓或卡子間的接觸面,在安裝前去銹和除油污,以及在安裝時加防松螺帽等。

《化工企業靜電接地設計技術規程編制說明》對第2.7.5條的解釋如下:從不少單位的實踐經驗來看,用金屬螺栓相連的金屬法蘭之間,單是螺栓相連,已具有足夠的靜電導通性。在有腐蝕條件下的安裝要求,為的是確保導通性。

由此可以看出,當金屬法蘭採用金屬螺栓或卡子相緊固時,燃氣管道法蘭是不需要跨接的。由於燃氣管道大部分屬於工業管道,因此如燃氣管道法蘭發生嚴重腐蝕,電阻值超過0.03Ω時,可以依據《壓力管道安全技術監察規程—工業管道》(TSG
D0001-2009)要求,跨接導線。

三、石油化工管道法蘭跨接

石油行業企業對防靜電要求較高,管道法蘭跨接是否有更嚴格的規定呢?

《石油化工金屬管道工程施工質量驗收規范》(GB50517-2010)第8.9.1條規定,有靜電接地要求的管道,當每對法蘭或螺紋接頭間電阻值大於0.03Ω時,應有導線跨接。《石油化工靜電接地設計規范》(SH
3097-2000)作為企業規范,嚴於國家標准和行業標准。該規范第4.3.3條規定,在管道系統上,當金屬法蘭採用金屬螺栓或卡子緊固時,一般可不必另裝靜電連接線,但應保證至少有兩個螺栓或卡子間具有良好的導電接觸面。《石油化工劇毒、可燃介質管道工程施工及驗收規范》(SH 3501-2001)第6.2.13
條規定:有靜電接地要求的管道,各段間應導電良好。當每對法蘭或螺紋接頭間電阻值大於0.03Ω時,應有導線跨接。

《石油庫設計規范》(GB 50074-2002)第14.2.14
條規定:輸油(油氣)管道的法蘭連接處應跨接。當不少於5根螺栓連接時,在非腐蝕環境下可不跨接。

《汽車加油加氣站設計與施工規范》(GB 50156—2002
)第10.3.3條規定:在爆炸危險區域內的油品、液化石油氣和天然氣管道上的法蘭、膠管兩端等連接處應用金屬線跨接。當法蘭的連接螺栓不少於5根時,在非腐蝕環境下,可不跨接。

《化工企業靜電安全檢查規程》(HG/T23002-92)作為靜電安全檢查的行業標准,第5.1.2條規定:金屬設備與設備之間,管道與管道之間,如用金屬法蘭連接時可不另接跨接線,但必須有兩個以上的螺栓連接。

由此可以看出,石油化工管道法蘭是否需要跨接,取決於其電阻值或其螺栓數量,不是必須強制全部跨接。 四、結論

綜上所述,並不是所有金屬管道法蘭必須全部跨接。是否需要跨接,要看其設計文件是否有靜電接地要求。如果看不到設計文件,只能通過測量電阻值的方式確定,當法蘭間電阻值超過0.03Ω時,需有導線跨接。通過法蘭緊固方式或金屬螺栓數量來判定是否需要跨接,適用於燃氣管道和石化企業內管道,對常見的工業管道不適用。

GB 50235-97《工業金屬管道施工及驗收規范》第6.12.1條有靜電接地要求的管道,各段間有導電良好。當每一對法蘭或螺紋接頭間電阻值大於0.03Ω時,應有導線跨接。

第6.12.2條 管道系統的對地電阻值超過100Ω時,應設兩處接地引線。接地引線宜採用焊接形式。

SH3501-2002《石油化工有毒可燃介質施工及驗收規范》: 第6.2.13條有靜電接地要求的管道,各段間有導電良好。當每一對法蘭或螺紋接頭間電阻值大於0.03Ω時,應有導線跨接。

第6.2.16條 有靜電接地要求的不銹鋼管道,導線跨接或接地引線應採用不銹鋼板過渡,不得與不銹鋼管直接連接。

SH3097-2000《石油化工靜電接地設計規范》: 第4.3.1條 管道在進出裝置區(含生產車間廠房)處、分岔處應進行接地。長距離無分支管道應每隔100米接地一次。

第4.3.2條平行管道凈距小於100mm時,應每隔20米加跨接線。當管道交叉且凈距小於100mm時,應加跨接線。

第4.3.3條當金屬法蘭採用金屬螺栓或卡子緊固時,一般可不必另裝靜電連接線,但應保證至少有兩個螺栓或卡子間具有良好的導電接觸面。

HG 20225-95《化工金屬管道施工及驗收規范》

第6.11.1條~第6.11.5條 同GB 50235-97《工業金屬管道施工及驗收規范》
接地線-安全的生命線 在電工學中,將電氣部分的任何部分與在大地之間作良好的電氣連接稱為接地。接地是電氣防火安全技術的重要內容。在工業生產和日常生活中為保證電力系統設備和人身安全,需要採取各種各樣的接地措施,如防雷接地、防靜電接地、保護接地和工作接地等。接地是保證設備正常工作、防止角正觸電傷亡和火災爆炸事故發生的一種既簡單又有效的方法。 家用電器如空調、洗衣機、微波爐等電源插頭大多是三芯的,分別應接上火線、零線及接地線。對於在正常情況下使用的家電而言,接地線似乎是多餘的,但忽略了這根線又是十分危險的,如果電器內部的電線出現絕緣層破損導致漏電,而發現或救護不及時就會發生事故。許多人的性命就丟在忽視這條接地線上。 在家電使用中不接地線或不會正確接地線的例子是屢見不鮮的,一些人將地線接到自來水管上,但實際上許多自來水管往往是不接地的,無法構成迴路將漏電電流導入大地;還有的將煤氣管道作為接地線,這是絕對禁止的,因為煤氣管道雖然連接到地下但它裡面流動的是可燃氣體,如果發生泄漏與空氣混合達到爆炸濃度極限後遇到漏電電流產生的電火花便會發生爆炸。一般建築物竣工時都留有接地線,只要找到它的位置正確地加以連接就可以了。
在工業生產中良好的接地不僅可以防止觸電事故造成的傷亡,還能防止火災爆炸事故的發生。工廠內通常建築物的金屬部分,例如梁、柱及軌道、布線用的鋼管、電纜,沒有燃燒和爆炸危險的工業管道均可作為接地線。對於管道內因安裝了法蘭墊圈起到絕緣作用的必須用跨接導線將法蘭或管接頭連接起來。對於埋在地下的接地體,除易燃液體和氣體管道外,一些金屬工藝管道、金屬水管等均可以用做接地體。除此之外還應考慮到接地設施的總電阻,接地電阻越小越有利於安全。對於接地設施要經常進行檢查,使它們保持良好的連接狀態。
簡單點兒說,地線就是把火線線上漏的電導到地下,這樣,最起碼你人的安全就有保障了。漏電之後,由
於導線這個介質,首先把電導到大地上,不會傷到人,這只是一個保險措施。
跟火線相對,兩根線中帶電的是火線,另一根就是地線;如果是三相的話,也是只有一根火線,兩根地線
的;火線和地線間接(通過用電器)連接,就形成電流迴路,這樣就安全了;另外地線可以把電荷負載直
接導入地面,防止發生意外觸電。

易燃易爆介質在管道內流動時摩擦管壁產生靜電,靜電荷在法蘭處積聚,所以才使用跨接線,接地線才是
為了防雷;建築防雷接地設計規范中明確規定6個螺栓以上的法蘭不需要做接地。
有關標准要求:有靜電接地要求的管道,每對法蘭或螺紋接頭間電阻值大於0.03歐姆時,應設導線跨接。
但是在現場看到許多法蘭都不進行跨接,詢問後答採用了金屬墊片。②經有關部門檢測管道系統的對地電阻值小於100歐姆時,法蘭間就不需設導線跨接
管道之間螺栓數連接大於等於5個可以不需要跨接,否則一定要用不少於6mm2銅線連接,銅牛鼻子(俗稱)大於500mA
根據《石油化工靜電接地設計規范》SH3097-2000(國家石油和化學工業局2000-06-30批准2000-10―01實施)摘錄如下:4.3 管道系統4.3.1 管道在進出裝置區(含生產車間廠房)處、分岔處應進行接地。長距離無分支管道應每隔100m接地一次。4.3.2 平行管道凈距小於100mm時,應每隔20m加跨接線。當管道交叉且凈距小於100mm時,應加跨接線。4.3.3 當金屬法蘭採用金屬螺栓或卡子緊固時,一般可不必另裝靜電連接線,但應保證至少有兩個螺栓或卡子間具有良好的導電接觸面。4.3.4 工藝管道的加熱伴管,應在伴管進汽口、回水口處與工藝管道等電位連接。4.3.5 風管及保溫層的保護罩當採用薄金屬板製作時,應咬口並利用機械固定的螺栓等電位連接。4.3.6
金屬配管中間的非導體管段,除需做特殊防靜電處理外,兩端的金屬管應分別與接地干線相連,或用截面不小於6mm2的銅芯軟絞線跨接後接地。4.3.7 非導體管段上的所有金屬件均應接地。4.3.8 地下直埋金屬管道可不做靜電接地。

閱讀全文

與單向導通裝置設計規范相關的資料

熱點內容
供熱時樓道閥門怎麼開 瀏覽:241
軸承為什麼會自動脫落 瀏覽:992
中試實驗裝置應急預案 瀏覽:913
風壓遙信自動檢測裝置 瀏覽:87
室內噪音儀器有哪些 瀏覽:418
移動叔叔工具箱zuk 瀏覽:245
卷螺紋管的設備叫什麼 瀏覽:702
閥門wog300是什麼意思 瀏覽:705
地暖停暖氣用不用關閥門 瀏覽:213
西安自動點火裝置 瀏覽:480
宗申大三輪車儀表盤怎麼看 瀏覽:468
真空裝置的組成和作用是什麼 瀏覽:201
留置針的自動消毒裝置 瀏覽:321
gfx工具箱20 瀏覽:611
acr5是什麼儀表 瀏覽:885
早餐店設備大概需要多少錢 瀏覽:162
風扇軸承漏油怎麼辦 瀏覽:219
酒瓶生產機械多少錢 瀏覽:473
什麼叫鑄造技術 瀏覽:240
機械機構的級別有哪些 瀏覽:76