導航:首頁 > 裝置知識 > 液壓傳動裝置其執行機構

液壓傳動裝置其執行機構

發布時間:2024-07-03 15:26:09

① 液壓傳動知識

(一)液壓傳動概述

液壓傳動是以液體為工作介質來傳遞動力和運動的一種傳動方式。液壓泵將外界所輸入的機械能轉變為工作液體的壓力能,經過管道及各種液壓控制元件輸送到執行機構→油缸或油馬達,再將其轉變為機械能輸出,使執行機構能完成各種需要的運動。

(二)液壓傳動的工作原理及特點

1.液壓傳動基本原理

如圖2-62所示為一簡化的液壓傳動系統,其工作原理如下:

液壓泵由電動機驅動旋轉,從油箱經過過濾器吸油。當控制閥的閥心處於圖示位置時,壓力油經溢流閥、控制閥和管道(圖2-62之9)進入液壓缸的左腔,推動活塞向右運動。液壓缸右腔的油液經管道(圖2-62之6)、控制閥和管道(圖2-62之10)流回油箱。改變控制閥的閥心的位置,使之處於左端時,液壓缸活塞將反向運動。

改變流量控制閥的開口,可以改變進入液壓缸的流量,從而控制液壓缸活塞的運動速度。液壓泵排出的多餘油液經限壓閥和管道(圖2-62之12)流回油箱。液壓缸的工作壓力取決於負載。液壓泵的最大工作壓力由溢流閥調定,其調定值應為液壓缸的最大工作壓力及系統中油液經閥和管道的壓力損失之總和。因此,系統的工作壓力不會超過溢流閥的調定值,溢流閥對系統還起著過載保護作用。

在圖2-62所示液壓系統中,各元件以結構符號表示。所構成的系統原理圖直觀性強,容易理解;但圖形復雜,繪制困難。

工程實際中,均採用元件的標准職能符號繪制液壓系統原理圖。職能符號僅表示元件的功能,而不表示元件的具體結構及參數。

圖2-63所示即為採用標准職能符號繪制的液壓系統工作原理圖,簡稱液壓系統圖。

圖2-62 液壓傳動系統結構原理圖

1—油箱;2—過濾器;3—液壓泵;4—溢流閥;5—控制閥;6,9,10,12—液壓管道;7—液壓缸;8—工作台;11—限壓閥

圖2-63 液壓傳動系統工作原理圖

1—油箱;2—過濾器;3—液壓泵;4—溢流閥;5—控制閥;6,9,10,12—液壓管道;7—液壓缸;8—工作台;11—限壓閥

2.液壓傳動的特點

(1)液壓傳動的主要優點

1)能夠方便地實現無級調速,調速范圍大。

2)與機械傳動和電氣傳動相比,在相同功率情況下,液壓傳動系統的體積較小,質量較輕。

3)工作平穩,換向沖擊小,便於實現頻繁換向。

4)便於實現過載保護,而且工作油液能使傳動零件實現自潤滑,因此使用壽命較長。

5)操縱簡單,便於實現自動化,特別是與電氣控制聯合使用時,易於實現復雜的自動工作循環。

6)液壓元件實現了系列化、標准化和通用化,易於設計、製造和推廣應用。

(2)液壓傳動的主要缺點

1)液壓傳動中不可避免地會出現泄漏,液體也不可能絕對不可壓縮,故無法保證嚴格的傳動比。

2)液壓傳動有較多的能量損失(泄漏損失、摩擦損失等),故傳動效率不高,不宜作遠距離傳動。

3)液壓傳動對油溫的變化比較敏感,不宜在很高和很低的溫度下工作。

4)液壓傳動出現故障時不易找出原因。

(三)液壓傳動系統的組成及圖形符號

1.液壓傳動系統的組成

由上述例子可以看出,液壓傳動系統除了工作介質外,主要由四大部分組成:

1)動力元件——液壓泵。它將機械能轉換成壓力能,給系統提供壓力油。

2)執行元件——液壓缸或液壓馬達。它將壓力能轉換成機械能,推動負載做功。

3)控制元件——液壓閥(流量、壓力、方向控制閥等)。它們對系統中油液的壓力、流量和流動方向進行控制和調節。

4)輔助元件——系統中除上述三部分以外的其他元件,如油箱、管路、過濾器、蓄能器、管接頭、壓力表開關等。由這些元件把系統連接起來,以支持系統的正常工作。

液壓系統各組成部分及作用如表2-6所示。

表2-6 液壓系統組成部分的作用

2.液壓元件的圖形符號

圖2-64是液壓千斤頂的結構原理示意圖。它直觀性強,易於理解,但難於繪制。特別是當液壓系統中元件較多時更是如此。

圖2-64 液壓千斤頂的結構原理圖

1—杠桿;2—泵體;3,11—活塞;4,10—油腔;5,7—單向閥;6—油箱;8—放油閥;9—油管;12—缸體

為了簡化原理圖的繪制,液壓系統中的元件可採用符號來表示,並代表元件的職能。使用這些圖形符號可使系統圖即簡單明了又便於繪制,如果有些液壓元件職能無法用這些符號表達時,仍可採用它的結構示意圖形式。如表27為液壓泵的圖形符號;表2-8為常用控制方式的圖形符號。欲了解更多液壓元件的圖形符號,可參閱相關書籍。

表2-7 液壓泵的圖形符號

表2-8 常用控制方式圖形符號

(四)液壓傳動的主要元件

1.液壓泵

是一種能量轉換裝置。它將機械能轉換為液壓能,為液壓系統提供一定流量的壓力油液,是系統的動力元件。

液壓泵的結構類型有齒輪式、葉片式和柱塞式等。目前鑽探設備的液壓系統中主要採用前兩種形式。

(1)齒輪泵

齒輪泵分為外嚙合和內嚙合兩種形式。外嚙合式齒輪泵由於結構簡單,價格低廉,體積小質量輕,自吸性能好,工作可靠且對油液污染不敏感,所以應用比較廣泛。

1)齒輪泵的工作原理。齒輪泵由泵殼體,兩側端蓋及由各齒間形成密封的工作空間組成。齒輪的嚙合線把容腔分隔為兩個互不相通的吸油腔和排油腔。當齒輪按圖示方向旋轉時吸油一側的輪齒逐漸分離,工作空間的容腔逐步增大,形成局部真空。此時油箱中的油液在外界大氣壓的作用下進入吸油容腔,隨著齒輪的旋轉,齒間的油液帶到排油一側。由於此側的輪齒是逐步嚙合,工作空間的容腔縮小,油液受擠壓獲得能量排出油口並輸入液壓系統。

2)齒輪泵的結構。YBC-45/80齒輪泵是鑽探設備常用的一種液壓泵,額定流量45L/min,額定泵壓8MPa(圖2-65)。該泵主要由泵體、泵蓋、主動齒輪、被動齒輪及幾個軸套等組成。齒輪與軸呈一體,以4隻鋁合金軸套支撐於泵體內,泵蓋與泵體用螺栓緊固,端面及泵軸處均以密封圈密封,兩個軸套(圖2-65之7與19)在壓力油的作用下有一定的軸向游動量,油泵運轉時與齒輪端面貼緊,減少軸向間隙同時在軸套和泵蓋之間有封嚴板等,將吸排油腔嚴格分開,防止竄通以提高泵的容積效率。在軸套靠近齒輪嚙合處開有卸荷槽。泵主軸伸出端以半圓鍵與傳動裝置連接,接受動力。

圖2-65 YBC—45/80齒輪泵

1—卡圈;2—油封;3—螺栓;4—泵蓋;5,13,20—O型密封圈;6—封嚴板;7,10,17,19—軸套;8—潤滑油槽;9—主動齒輪;11—進油口;12—泵體;14—油槽;15—排油口;16—定位鋼絲;18—被動齒輪;21—油孔;22—壓力油腔

3)齒輪泵的流量。齒輪泵的流量可看作是兩個齒輪的齒槽容積之和。若齒輪齒數為z,模數為m,節圓直徑為D(D=z·m),有效齒高h=2m,齒寬為b時,泵的流量Q為

Q=πDhb=2πzm2b

考慮齒間槽比輪齒的體積稍大一些,通常取π為3.33加以修正,還應考慮泵的容積效率ηv,則齒輪泵每分鍾的流量為

地勘鑽探工:基礎知識

(2)葉片泵

葉片泵與齒輪泵相比較具有結構緊湊,外形尺寸小,流量均勻,工作平穩噪音小,輸出壓力較高等優點,但結構較復雜,自吸性能差,對油液污染較敏感。在液壓鑽機中也有採用。

葉片泵分為單作用和雙作用兩種。前者可作為變數泵,後者只能作定量泵。

2.液壓馬達

液壓馬達是將液壓能轉換為機械能的裝置,是液壓系統的執行元件。其結構與液壓泵基本相同,但由於功能和工作條件不同,一般液壓泵和液壓馬達不具有可逆性。

液壓馬達按結構特點分為齒輪式、葉片式和柱塞式三類。鑽探設備中常用柱塞式液壓馬達。

如圖2-66所示,當壓力油經配油盤進入缸體的柱塞時,柱塞受油的作用向外伸出,並緊緊抵在斜盤上,這時斜盤對柱塞產生一法向反作用力F。由於斜盤中心線與缸體軸線傾斜角為δM,所以F可分解為兩個分力,其中水平分力Fx與柱塞推力相平衡,而垂直分力Fg則對缸體產生轉矩,驅動缸體及馬達軸旋轉。若從配油盤的另一側輸入壓力油,則液壓馬達朝反方向旋轉。

圖2-66 軸向柱塞式液壓馬達工作原理

1—斜盤;2—缸體;3—柱塞;4—配油盤;5—主盤

若液壓馬達的排量為Q,輸入液壓馬達的液壓力為P,機械效率為ηm,則液壓馬達的輸出轉矩M為:M=PQηm/2π。

3.液壓缸

液壓缸是液壓系統的執行元件。它的作用是將液壓能轉變為機械能,使運動部件實現往復直線運動或擺動。液壓缸結構簡單,使用方便,運動平穩,工作可靠,在鑽探設備中應用十分廣泛。液壓缸的種類很多,按結構類型可分為活塞式、柱塞式和擺動式三種。其中活塞式液壓缸最常用。活塞或液壓缸可分為單出桿式和雙出桿式兩種。其固定方式可以是缸體固定或活塞桿固定。

(1)單出桿活塞式液壓缸

如圖2-67所示為液壓式鑽機給進油缸的結構。它由活塞、活塞桿、缸筒、上蓋、下蓋、密封圈和壓緊螺母等組成。活塞桿與活塞以螺紋連接成一體。活塞環槽中配裝的活塞環及上蓋處的密封圈等用以保證缸內具有良好的密封性。在液缸的上下蓋上設有輸油口,壓力油經輸油口進入液缸的上、下腔,即推動活塞移動,並通過活塞桿頂端的連接螺母帶動立軸上行或下行。由圖示結構可知,單出桿液壓缸活塞兩側容腔的有效工作面積是不相等的,因此當向兩腔分別輸入壓力和流量相等的油液時,活塞在兩個方向的推力和運行速度是不相等的。

圖2-67 鑽機給進油缸的結構

(2)雙活塞桿式液壓缸

雙活塞桿式液壓缸結構,組成件與單活塞桿液壓缸基本相同,所不同的是活塞左右兩端都有活塞桿伸出,可以連接工作部件,實現往復運動。由圖示結構可知,

兩側活塞桿直徑相同,當兩腔的供油壓力和流量都相等時,兩個方向的推力和運行速度也相等。

4.液壓控制閥

液壓控制閥是液壓系統中的控制元件,用於控制系統的油液流動方向及壓力和流量的大小,以保證各執行機構工作的可靠、協調和安全性。

液壓控制閥按其用途和工作特點不同,通常可分為方向控制閥(如單向閥和換向閥等)、壓力控制閥(如溢流閥、減壓閥和順序閥等)和流量控制閥(如節流閥和調速閥等)。這3種閥可根據需要互相組合成為集成式控制閥,如液壓式鑽機或其他工程機械就是將一個或多個換向閥、調壓溢流閥和流量閥等組裝在一起成為集中手柄控制的液壓操縱閥。

(五)液壓傳動系統的基本迴路簡介

1.壓力控制迴路

主要是利用壓力控制閥來控制系統壓力,實現增壓、減壓、卸荷、順序動作等,以滿足工作機構對力或力矩的要求。如圖2-68所示為一減壓迴路,由於油缸G往返時所需的壓力比主系統低,所以在支路上設置減壓閥,實現分支油路減壓。

圖2-68 減壓迴路

2.速度控制迴路

主要有定量泵的節流調速、變數泵和節流閥的調速、容積調速等迴路,可以實現執行機構不同運動速度(或轉速)的要求。在定量泵的節流調速迴路中,採用節流閥,調速閥或溢流調速閥來調節進入液壓缸(或液壓馬達)的流量。根據閥在迴路中的安裝位置,分為進口節流、出口節流和旁路節流3種。

3.換向控制迴路

換向控制迴路是利用各種換向閥或單向閥組成的控制執行元件的啟動、停止或換向的迴路。常見的有換向迴路、閉鎖迴路、時間制動的換向迴路和行程制動的換向迴路等。

如圖2-69所示是簡化的工作台作往復直線運動的液壓系統圖。為了控制工作台的往復運動,在這個系統中設置了一個手動換向閥,用來改變液流進入液壓缸的方向。當手動換向閥的閥心在最右端時(圖2-69a),壓力油由P—A,進入液壓缸左腔。此時,右腔中的油液由B—O流回油箱,因而推動了活塞連同工作台一起向右運動。

若把手動換向閥的閥心扳到中間位置(圖2-69b),壓力油的進油口P與回油口O都被閥心封閉,工作台停止運動。

如果把閥心扳到最左端,壓力油從P—B進入液壓缸右腔(圖2-69c),左腔中的油液由A—O回油箱,從而推動活塞連同工作台向左運動,完成換向動作。

圖2-69 換向工作原理圖

4.同步迴路

當液壓設備上有兩個或兩個以上的液壓油缸,在運動時要求能保持相同的位移和速度,或要求以一定的速度比運動時,可採用同步迴路。

5.順序動作迴路

當用一個液壓泵驅動幾個要求按照一定順序依次動作的工作機構時,可採用順序動作迴路。實現順序動作可以採用壓力控制、行程式控制制和時間控制等方法。

② 液壓傳動裝置由什麼4部分組成

由動力源,各種控制閥,執行機構和各種輔助原件組成
在支路上安裝溢流閥,溢流閥的設定壓力低於主油路壓力,也可安裝一單向閥防止逆流
液壓缸是執行原件
順序閥可通過壓力變化改變油路順序

③ 挖掘機液壓結構及工作原理

挖掘機主要由發動機、傳動系統、行駛系統、制動系統、工作裝置、液壓系統、電氣系統等組成,如圖2-11所示。

圖2-11 挖掘機的結構

(1)發動機

發動機一般為四沖程、水冷(或風冷)、多缸、直噴式柴油機發動機。少數挖掘機採用電控柴油機。

(2)傳動系統

傳動泵有機械傳動式、半液壓傳動式和全液壓傳動式3種,其中機械傳動式和半液壓傳動式應用較廣。

(3)行駛系統

液壓挖掘機行駛系統是整個機器的支撐部分,承受機器的全部質量和工作裝置的反力,同時能使挖掘機作短距離行駛。按結構不同,行駛系統可分為履帶式和輪胎式兩類。

①履帶式行駛系統。由履帶、支重輪、托鏈輪、驅動輪、導向輪、張緊裝置、行走架、油馬達、減速機等組成。

液壓挖掘機的行駛系統採用液壓驅動。驅動裝置主要包括液壓馬達、減速機和驅動輪,每條履帶有各自的液壓馬達和減速機。由於兩個液壓馬達可獨立操作,因此機器的左右履帶可以同步前進或後退,也可以通過一條履帶制動來實現轉彎,還可以通過兩條履帶朝相反方向驅動來實現原地轉向,其操作十分簡單、方便、靈活。

②輪胎式行駛系統。通常由車架、轉向前橋、後橋、行車機構及支腿等組成。

後橋通過螺栓與機架剛性固定連接。前橋通過懸掛平衡裝置與機架鉸接連接。懸掛平衡裝置的作用是當挖掘機行駛時,利用支承板的擺動和兩懸掛油缸的浮動,保證4個車輪充分著地,減輕機體不平均承載、擺跳、道路沖擊及機架扭曲,提高挖掘機的越野性能;當挖掘機作業時,將兩懸掛油缸閉鎖,保證挖掘作業時整機的穩定性。

(4)轉向系統

輪胎式挖掘機,其轉向系統通常採用全液壓、偏轉前輪式轉向系統,主要由油箱(與工作裝置液壓系統共用)、轉向油泵、轉向器、濾油器、流量控制閥、轉向油缸、油管和轉向盤等組成。

履帶式挖掘機,其轉向系統比較簡單,通過切斷驅動鏈輪動力來實現。其轉向裝置為濕式、多片彈簧壓緊、液壓分離、手動液壓操作方式轉向離合器。

(5)制動系統

腳制動裝置的制動器為凸輪張開蹄式制動器。制動傳動器機構採用氣壓式,主要由空氣壓縮機、氣體控制閥、腳制動閥、儲氣筒、雙向逆止閥、快速放氣閥、手操縱氣開關、制動汽缸及氣壓表等組成。

手制動裝置的制動器為凸輪張開蹄式制動器,傳動機構為機械式。制動底板通過螺釘固定在上傳動箱蓋上;制動鼓用螺栓固定在接盤上,接盤則通過花鍵和上傳動箱的從動軸連接。

當挖掘機作業時,必須解除手制動,否則,將損壞手制動器或回轉液壓馬達。

(6)工作裝置

工作裝置是液壓挖掘機的主要組成部分之一。由於工作性質的不同,工作裝置的種類很多,常用的有反鏟、正鏟、裝載和起重等裝置,而且一種裝置也可以有很多形式。

(7)液壓系統

液壓挖掘機的主要運動有整機行走、轉台回轉、動臂升降、斗桿收放、鏟斗轉動等,根據以上工作要求,把各液壓元件用管路有機地連接起來的組合體叫作液壓挖掘機的液壓系統。液壓系統的功能是把發動機的機械能以油液為介質,利用油泵轉變為液壓能,傳送給油缸、油馬達等,然後轉變為機械能,再傳給各種執行機械,實現各種運動。液壓挖掘機的液壓系統常用的有定量系統、分功率變數系統和總功率變數系統。我國規定,單斗液壓挖掘機重8t以下的,採用定量系統;機重32t以上的,採用變數系統;機重8~32t的,定量和變數系統均可用。

全功率變數系統是目前液壓挖掘機普遍採用的液壓系統,通常選用恆功率變數雙泵。液壓泵的型號不同,採用的恆功率調節機構也不相同。

液壓系統主要由油路系統、先導控制油路系統和控制系統構成。

(8)電氣系統

液壓挖掘機的電氣系統包括啟動線路、發電線路、照明、儀表以及由感測器和壓力開關、電磁閥組成的控制電路,另外還有附屬電路(如空調、收音機等)。啟動電機按所配套的主機不同,分12V、24V兩種,啟動功率分3kW、3.7kW、4.8kW等。

發電線路主要包括交流發電機、電壓調節器、充電指示燈及啟動開關等。

為了保證安全、高效、節能及正常地工作,根據需要,挖掘機的電氣系統都安裝了各種信號裝置,如機油溫度報警、充電指示燈、機油壓力報警、轉向信號燈等,以警告操作者。為了使操作者隨時掌握機器的運轉情況,駕駛室中安裝了各種儀表,如機油壓力表、機油溫度表、液壓油溫度表、水溫表。現代進口挖掘機都採用了先進的電控裝置,這種設備便於維修人員在挖掘機出現故障時能及時、准確地判斷故障位置,及時修復。

④ 液壓傳動裝置由哪些基本部分組成

1.
動力裝置:將機械抄能轉換為液壓能;
2.
執行裝置:包括將液壓能轉換為機械能的液壓執行器;
3.
控制裝置:控制液體的壓力、流量和方向的各種液壓閥;
4.
輔助裝置:包括儲存液體的液壓箱,輸送液位的管路和接頭,保證液體清潔的過濾器等;
5.
工作介質:液壓液,是動力傳遞的載體。

⑤ 液壓傳動機構不能動作的原因有哪些

(1)液壓系統外部不清潔。不清潔物在加油或檢查油量時被帶入系統,或通過損壞的油封或密封環而進入系統;
(2) 內部清洗不徹底。在油箱或部件內仍留有微量的污物殘渣;
(3) 加油容器或用具不潔;
(4) 製造時因熱彎油管而在管內產生銹皮;
(5) 油液儲存不當,在加入系統前就不潔或已變質;
(6) 已逐漸變質的油會腐蝕零件。被腐蝕金屬可能成為游離分子懸浮在油中。
污物會造成零件的磨損與腐蝕,尤其是對於精加工的零件,它們會擦傷膠皮管的內壁、油封環和填料,而這些東西損傷後又會導致更多的污物進入系統中,這樣就形成惡性循環的損壞。
過熱
造成系統過熱可能由以下一種或多種原因造成:
(1) 油中進入空氣或水分,當液壓泵把油液轉變為壓力油時,空氣和水分就會助長熱的增加而引起過熱;
(2) 容器內的油平面過高,油液被強烈攪動,從而引起過熱;
(3) 質量差的油可能變稀,使外來物質懸浮著,或與水有親合力,這也會引起生熱;
(4) 工作時超過了額定工作能力,因而產生熱;
(5) 回油閥調整不當,或未及時更換已損零件,有時也會產生熱。
過熱將使油液迅速氧化,氧化又會釋放出難溶的樹脂、污泥與酸類等,而這些物質聚積油中造成零件的加速磨損和腐蝕,且它們粘附在精加工零件表面上還會使零件失去原有功能。油液因過熱變稀還會使傳動工作變遲緩。
上述過熱的結果,常反映在操縱時傳動動作遲緩和回油閥被卡死。
進入空氣
油液中進入空氣的原因有下列幾種:
(1) 加油時不適當地向下傾倒,致使有氣泡混入油內而帶入管路中;
(2) 接頭鬆了或油封損壞了,空氣被吸入;
(3) 吸油管路被磨穿、擦破或腐蝕,因而空氣進入。
空氣進入油中除引起過熱外,也會有相當數量空氣在壓力下被溶於油內。如果被壓縮的體積大約有10%是屬於被溶的空氣,則壓力下降時便會形成泡沫。而工作液壓缸在減壓回油時,帶泡沫的油液就會形成「海綿」的性質。此外,油中含有許多泡沫會增加總體積,將造成油箱或儲油器的溢油現象。
含有空氣的工作油,在傳遞動力時會產生急跳的痙攣現象,使動力傳遞不均勻,由此產生的壓力波動和應力,將會使零部件損壞,嚴重時會導致整個系統損壞。

⑥ 鑽機液壓傳動系統

(一)功用

1)用以完成主軸的上升、下降、停止,鑽機移動,松開卡盤,擰卸鑽桿等工作。

圖4-63 XY-4型鑽機機架

1—擋鐵;2—右機腿;3—前機架;4—機座;5—左機腿;6—防護罩;7—移動油缸;8,9,13—壓板;10—後機架;11,12—調整墊;14—調整墊

2)可實現鑽進過程中的加壓、減壓鑽進和強力起拔等工藝要求。

3)可以控制立軸下降速度。系統中的油壓由壓力表反映,鑽進壓力、加減壓力值及鑽具質量由鑽壓表反映,如圖4-64所示。

(二)液壓系統的組成

XY-4型鑽機的液壓系統由以下四部分組成:

1)動力機構。由齒輪式油泵構成,它是液壓系統的「心臟」液壓能的動力源。

2)控制機構。控制和調整系統內油液的壓力,流量和方向,將液壓能分配給各執行機構。由液壓操縱閥,可調節流閥等組成。

3)執行機構。將液壓能轉換為機械能(往復和旋轉運動),由油缸,液壓馬達等組成。

4)輔助裝置。由油箱、過濾器、油表、油管、接頭等組成。

(三)液壓傳動系統工作原理

1.鑽機前後移動

如圖4-65所示,由手動控制彈簧復位三位六通換向閥與鑽機前後移動油缸等構成了鑽機移動迴路。其工作原理是:油液由油箱經過濾器通過油泵獲得液壓能,壓力表反映系統壓力,用溢流閥控制系統壓力並實現過載保護。換向閥各位置工作狀況如下:

圖4-64 XY-4型鑽機液壓傳動系統組成圖

1—油箱;2—閥門;3—接頭螺釘;4—接頭體;5—單聯齒輪泵;6,7,8—接頭螺釘;9—接頭體;10—ZFS四聯多路換向閥;11—螺帽;12,13—接頭螺釘;14—回油接頭體;15—給進油缸下油管;16—接頭體;17—給進油缸上油管;18—給進控制閥;19—鑽壓表;20—接頭螺釘;21—接頭體;22—直通接頭;23—液控單向閥;24—D型膠管接頭;25—C型膠管接頭;26—壓力表

圖4-65 XY-4型鑽機液壓系統

1—壓力表;2—單向閥;3—油泵;4—過濾器;5—油箱;6—溢流閥;7—鑽機前後移動操縱閥(三位六通);8—備用操縱閥(三位六通);9—卡盤松緊操縱閥(三位六通);10—立軸升降操縱閥(四位六通);11—給進控制閥(節流閥);12—三通換向閥(梭閥);13—鑽壓表;14—立軸油缸;15—液壓卡盤;16—單向閥;17—鑽機前後移動油缸(單出桿油缸)

1)處於第二位置(零位)時,壓力油經常態回油道直接流回油箱,此時鑽機處於停止狀態。

2)處於第一位置時,常態回油道封閉,壓力油進入移動油缸左腔,油缸體左移並帶動鑽機左移(後退);油缸右腔油液經回油道流回油箱。

3)處於第三位置時,常態回油道封閉,壓力油進入移動油缸右腔,油缸體右移並帶動鑽機右移(前進),油缸左腔油液經回油道流回油箱。

2.松開液壓卡盤

由卡盤松緊操縱閥與液壓卡盤內油缸等構成液壓卡盤松緊迴路。由於該鑽機液壓卡盤採用碟形彈簧卡緊,液壓力松開的方式,所以只需一條工作油路,而另一條油路接在液壓擰管機的供油路上。換向閥各位置工作狀況如下:

1)處於第二位置時,壓力油經常態回油道直接流回油箱,此時處於停止狀態。

2)處於第一位置時,常態回油道封閉,壓力油進入卡盤環形油缸,推動活塞下移,壓縮碟形彈簧,卡盤松開。

3)處於第三位置時,壓力油進入擰管機供油路,此時擰管機即可工作,同時卡盤油缸內油液卸荷,碟形彈簧復位,卡盤卡緊。

3.立軸的下降、停止、上升與稱重

由立軸升降操縱閥、立軸升降油缸(給進油缸)及給進控制閥等構成立軸給進迴路。換向閥各位置工作狀況如下:

1)處於第二位置時,壓力油經常態回油道直接流回油箱,立軸處於停止狀態。

2)處於第一位置時,常態回油道封閉,壓力油進入給進油缸上腔,推動活塞下移,立軸下降;給進油缸下腔油液與回油道接通,流回油箱。下腔油路上串聯著給進控制閥,可以調節油缸下腔回油量,從而控制立軸下降速度,實現加、減壓鑽進。

3)處於第三位置時,常態回油道封閉,壓力油通過給進控制閥之單向閥進入給進油缸下腔,推動活塞上行,立軸上升;油缸上腔油液與回油道接通卸荷。

4)處於第四位置時,常態回油道的油道封閉,油缸上腔開始卸荷,由於油缸下腔處於封閉狀態,下腔油壓力與鑽具質量相平衡,從鑽壓表上可讀出鑽具在孔內的質量值,油泵輸出的壓力油克服溢流閥彈簧壓力頂開閥心流回油箱。

(四)主要液壓元件的構造

1.油箱

油箱的用途主要是儲油、散熱、分離油中的空氣和沉澱雜物等。

XY-4型鑽機油箱為開式,容量為40L。裝於鑽機前機架的右側。其構造如圖4-66所示。

油箱由鋼板焊接製成,中間用帶孔的隔板分成回油沉澱和吸油兩個工作室,可消除泡沫,沉澱雜物,冷卻油液。油箱上端有加油口及過濾網,透氣孔等,油箱側面有圓形油標,用於觀察油麵高度。

2.油泵

該系統採用外嚙式齒輪油泵,型號為CB33/80。其主要技術參數如下:

圖4-66 XY-4型鑽機油箱

1—接頭組件;2—接頭;3—蓋板;4—膠墊;5—加油口蓋;6—加油口;7—過濾板;8—後提手;9—回油管接頭;10—箱體;11—觀察口;12—鏡片;13—膠墊;14—墊圈;15—油標板;16—前提手;17—隔板;18—接頭;19—過濾器

工作壓力8MPa;最高壓力12MPa;轉速1500r/min;排量33L/min;容積效率70.95;進油管絲扣尺寸G7/8in;排油管絲扣尺寸G3/4in。

油泵傳動裝置如圖4-67所示。主要由三角皮帶輪、軸承、油泵座、傳動軸及橡膠油封等組成。傳動軸一端以平鍵連接三角皮帶輪,另一端則以兩副207軸承裝於油泵座內孔。齒輪泵軸的外花鍵插於傳動軸的內花鍵中,從而避免三角帶傳動過程中的拉力直接作用在油泵軸上。

圖4-67 油泵傳動裝置

1—B型三角皮帶;2,10—彈簧墊圈;3,9—六角頭螺栓;4—紙墊;5,6—襯套;7—傳動軸;8—207軸承;11—油泵座;12—壓注油嘴;13—橡膠油封;14—密封螺塞;15—襯套;16—三角皮帶輪;17—平鍵;18—止退墊圈;19—圓螺母

3.液壓操縱閥

液壓操縱閥是鑽機液壓傳動系統的控制中樞,屬集成式一組多路換向閥。如圖4-68所示,主要由調壓溢流閥、鑽機移動控制閥、卡盤及擰管機控制閥、立軸給進控制閥和回油側蓋五部分組合而成。下面分別介紹各閥的構造及工作原理。

圖4-68 XY-4型鑽機液壓操縱閥

1—微調手輪;2—圓錐銷;3—撥環;4—手輪套;5—密封圈;6—調壓螺桿;7—防轉銷;8調壓螺母;9—限位套;10—調壓套筒;11—限位螺母;12—密封圈;13—調壓溢流閥殼體;14—調壓彈簧;15—調壓閥體;16—閥座;17—螺母;18—彈簧座;19—彈簧;20—彈簧罩;21—彈簧壓板;22—密封蓋;23—內六角螺釘;24—定位器體;25—內六角螺釘;26—定位套筒;27—定位鋼球;28—鎖緊彈簧;29—回油後蓋;30—連接螺桿;31—連接板;32—墊圈;33—銷;34—操縱桿座;35—快速增壓手柄;36—撥叉;37—操縱桿;38—立軸給進控制閥桿;39—卡盤及擰管機控制閥桿;40—鑽機移動控制閥桿

(1)調壓溢流閥

該閥由微調手輪、快速增壓手柄、調壓螺桿、調壓螺母調壓彈簧、調壓閥體及閥座等組成(圖4-68)。閥體與閥的圓錐結合面經相互研磨有良好的密封性能,在調壓彈簧張力的作用下,將壓力油道P和回油道O隔開。一旦系統壓力升高至限定值,即可克服彈簧張力頂開閥體,壓力油便經閥座孔油道O2流回油箱。

調壓溢流閥壓力值是由調整彈簧張力的大小而實現的,既可微調,也可速調。微調手輪及套用圓錐銷與調壓螺桿連接為一體,螺桿前端左旋螺紋與調壓螺母相配合,螺母上固定有防轉銷,調整彈簧裝在閥體與調壓螺母之間,正時針旋轉微調手輪,調壓螺母向前移動壓縮彈簧,增強對閥體的壓力,則調壓閥壓力增高;反之壓力減小。為使系統壓力不超過最大值,在調壓筒內裝有限位套並用限位螺母限位。這就限制了調壓螺母的移動距離,同時也限制了彈簧對閥體的最大壓力,從而實現控制系統壓力的目的。在鑽機操作中,有時需要液壓系統快速增壓,為此特裝有快速增壓手柄,並以銷軸支撐在調壓套面上,其前端撥叉卡在撥環上,撥環又套在手輪上,所以扳動手柄時,通過手輪套、圓錐銷、使調壓螺桿迅速前移而壓縮彈簧,達到快速增壓目的。松開手柄後,彈簧復位,恢復到原調壓值。

(2)鑽機移動控制閥

該閥主要由鑽機移動控制閥桿、閥殼和復位彈簧等構成(見圖4-68)。閥殼通孔中配裝有帶四段柱塞的閥桿,閥桿頭部裝有彈簧,彈簧壓板等零件,並用密封蓋罩住。閥桿底部的螺旋孔旋入閥桿接頭,以鎖母鎖緊,閥桿接頭的銷軸連接操縱桿座,此座用連接板鉸鏈連接於密封蓋支架上,座孔中插入操縱桿,扳動操縱桿時,閥桿即在閥體中滑動,同時壓縮彈簧,扳動力消失後靠彈簧張力使閥桿復位。

液壓操縱閥總成內共有5條油道,中間是由壓力油道P和回油道O直通連接的常態回油道;P1P2為壓力油道;O1O2為卸荷油道;在移動控制閥片中有兩個接執行油缸的工作油孔A1B1,其中A1接移動油缸後腔;B1接前腔,滑閥桿移動時,當其中一個工作油孔接通壓力油道,另一工作油孔即接通卸荷油道,從而形成鑽機前後移動迴路。

(3)液壓卡盤及擰管機控制閥

該閥構造除定位裝置與鑽機移動控制閥不同外,其他部分完全相同(圖4-68)。定位裝置由定位套筒,定位鋼球和鎖緊彈簧等組成。定位套筒用內六角螺釘擰在閥桿頭部,其上有三道環形凹槽。在定位器體上也開有環形凹槽,槽內均布8個小孔,孔中裝有定位鋼球、其外用鎖緊彈簧壓住,當定位套筒的凹槽與定位鋼球相對時,即被鋼球卡住而實現定位。閥內油道A0與液壓卡盤的環形油缸接通,B0與液壓擰管機的供油路接通。

(4)立軸給進控制閥

該閥的定位裝置與液壓卡盤及擰管機控制閥相似,只是多了一個閥位(圖4-68)。閥中油道A0通給進油缸上腔;油道B0通下腔(油路流通狀況見本節液壓系統工作原理敘述)。鑽具稱質量時將滑閥桿下移到極限位置,使柱塞將油道B0封閉,柱塞將常態回油道封閉,A0—O0相通,此時處於油缸上腔卸荷,下腔封閉狀態。

4.給進控制閥

給進控制閥為一單向可調節流閥。主要由球閥(單向閥)、針閥(節流閥)、閥體及手輪等組成,其構造如圖4-69所示。

圖4-69 給進控制閥

1—管接頭;2—球閥;3—針閥;4—閥體;5—手輪;6—錐銷;7—彈簧;8—螺塞

當給進油缸活塞下移時,油缸下腔油液迫使球閥關閉,油液只能從針閥的環形間隙中流出,回油量的大小可通過轉動手輪使針閥軸向移動,從而控制立軸的下降速度。加壓鑽進時,可使針閥全部開啟以降低回油阻力。減壓鑽進時應根據工藝要求控制針閥開啟大小,以保持立軸下降速度均勻。

立軸上升時,油液從右側油孔進入而頂開單向閥從下油口流出,直接進入給進油缸下腔,活塞快速向上移動,完成倒桿作業。

5.限壓切斷閥

該閥串聯在三通換向閥與鑽壓表之間(圖4-70)。主要由接頭、閥體、閥芯、彈簧、調節螺絲等組成。接頭接高壓油道,上螺孔接鑽壓表,當液壓油超過限定值時,閥芯大端承受的壓力超過彈簧張力,於是閥芯壓縮彈簧而右移,其錐面將油道封閉,油壓不能傳遞到表內從而保護鑽壓表不受損害。

圖4-70 限壓切斷閥

1—接頭;2—墊片;3—閥體;4—閥芯;5—彈簧座;6—彈簧套;7—彈簧;8—調節座;9—調節螺絲

6.三通換向閥

該閥在液壓傳動系統中的位置見圖4-65,其作用是接通給進油缸上腔或下腔與鑽壓表之間的高壓油道,同時封閉低壓道與鑽壓表的通路。其構造如圖4-71所示,主要由閥體、管接頭、閥等組成。當給進油缸上腔為壓力油,下腔卸荷時,閥右移,b和c接通,a孔封閉,鑽壓表反映加壓鑽進讀數,反之a和c接通,b孔封閉,鑽壓表反映減壓鑽進讀數。

圖4-71 三通換向閥

1—閥體;2—管接頭;3—密封圈;4—管接頭;5—閥;6—螺釘;7—管接頭;a—給進油缸下腔介面;b—給進油缸上腔介面;c—限壓切斷閥介面

7.壓力表和鑽壓表

(1)壓力表

壓力表為1.5級的標准簧管式表,最大壓力為16MPa。該表裝於油泵與液壓操縱閥之間(在液壓系統中的位置見圖4-65之1),用以觀察整個液壓系統工作壓力,亦可判斷各元件在工作過程中的故障,以便及時排除隱患。其構造如圖4-72所示。

其工作原理是:當壓力油從進油孔進入彈簧管後,在壓力油作用下簧管由於變形而使自由端產生位移,此位移通過扇形齒輪及齒桿帶動指針旋轉,當油壓產生的作用力和簧管變形而產生的彈性力相平衡時,指針便停留在某一固定位置。利用靜盤及動盤上的刻度,就可以反映出鑽進時的加壓值、平衡鑽具質量值或鑽具稱重值。此種壓力指示器因簧管容易產生永久變形,且抗沖擊、震動性能差,故使用壽命較短。

(2)鑽壓表

鑽壓表又稱孔底壓力指示器,在液壓系統中的位置見圖4-65之13。此表是用外經為100mm最大壓力為9.8MPa的1.5級普通簧管式表改制而成的。表的接頭處裝有緩沖裝量。該表並聯在給進油缸油路上,反映出給進油缸壓力腔的壓力,從而測出鑽具質量及加壓和減壓鑽進值。

目前國內常用的孔底壓力指示器主要有兩種類型:簧管式和柱塞式。XY-4型鑽機採用的是簧管式孔底壓力指示器。鑽壓表構造如圖4-72所示,表盤有靜盤、動盤,靜盤上有順時針方向從0~10t(即100kN)的總刻度值。每噸刻度分為5小格,即每小格0.2t(2000N)。靜盤上各刻度值是以壓力表相應壓力乘以兩個給進油缸圓面積得出的,動盤有旋鈕突出表面,可以旋轉記數。動盤上有加壓和減壓兩種刻度,加壓刻度為紅色,從0~4t(40kN)按順時針方向增加,其刻度值是以壓力表相應壓力乘以兩個油缸上腔活塞面積減去活塞桿斷面後的面積得出的。減壓刻度是黑字,從0~7t(70kN)按逆時針方向增加,其刻度原理與靜盤相同。

圖4-72 鑽壓表構造

1—進油孔;2—簧管;3—靜盤;4—動盤;5—有機玻璃罩;6—指針

鑽壓表使用方法如下:

稱重。將鑽具提離孔底,將立軸給進控制閥手柄扳至「稱重」位置,指針在靜盤上指示的刻度值即是鑽具質量。

加壓鑽進。當鑽具質量小於鑽進工藝所需要的鑽壓時,應給鑽具附加一定的壓力。操作時應首先將鑽具質量稱出,假設稱出的質量為1t(10kN)而鑽具壓力需要2t(20kN)則需將動盤紅圈上1t的刻度值對准靜盤的零位,然後將操縱閥手柄扳到「下降」位置,順時針調節溢流閥微調手輪,增加給進油缸上腔壓力,使指針對准動盤紅色刻度2t值時,即是鑽壓值。此時表盤各刻度數據的含義是,動盤加壓(紅色)刻度1t是鑽具質量,2t是鑽壓,其差值1t是加壓數。加壓鑽進表盤狀態見圖4-73a。

減壓鑽進。當鑽具質量大於鑽進工藝所需的鑽壓時,就應由給進油缸下腔形成一個向上的作用力以抵消一部分鑽具質量。使其差值為鑽壓值。操作時應先稱出鑽具質量,若稱出鑽具質量為3.5t(35kN),而鑽壓只需要2t,應減去1.5t。此時應將鑽壓表上動盤黑圈3.5t的刻度值對准靜盤上的「零位」並扳動操縱閥手柄至「上升」位置,順時針凋節溢流閥調壓手輪進行「減壓」,增加給進油缸下腔油壓。直至表針對准動盤黑圈(減壓)上2t刻度。此時表盤各數據的含義是:動盤減壓鑽進刻度值3.5t是鑽具質量,刻度2t值是鑽進壓力,靜盤1.5t刻度值是減壓差值。減壓鑽進表盤狀態見圖4-73b。

圖4-73 鑽壓表加壓、減壓狀態示意圖

(五)液壓傳動系統操作使用注意事項

1)在鑽進和提升過程中,不得板動鑽機移動操縱閥手柄。

2)液壓操縱閥各手柄不能同時板到工作位置,當一個手柄處於工作位置時,其他手柄應置於「停止」位置。

3)板動操縱閥手柄應迅速准確到位。不能用力過猛,避免出現壓力沖擊、蹩泵、拉壞定位裝置和沖壞儀表。

4)松開液壓卡盤時,應先將操縱閥扳到「松開」位量,後扳動溢流閥快速調壓手柄至極限位置,卡盤卡緊時須放鬆快速調壓手柄。

5)液壓操縱閥各閥片之間出廠前已調整密封好並用螺栓緊固成一整體。在機台不準隨意拆卸,以免影響正常工作和漏油。

6)各軟、硬油管不得擠壓、碰傷和發生扭轉現象,油管曲率半徑應不小於外經尺寸的7倍。

7)應使用規定牌號的液壓油,注意保持油液清潔,防止油液中混入雜質污物。野外搬遷鑽機,應將擰開的油管接頭用干凈軟布堵死,防止雜質進入系統造成故障。

8)應定期檢查油箱中油位高度,使其符合油標刻線。油液工作溫度應保持在35~60℃。

⑦ 液壓傳動系統由哪幾部分組成

一個完整的、能夠正常工作的液壓系統,應該由以下五個主要部分來組成: 1.動力裝置:它是供給液壓系統壓力油,把機械能轉換成液壓能的裝置。最常見的是液壓泵。 2.執行裝置:它是把液壓能轉換成機械能的裝置。其形式有作直線運動的液壓缸,有作回轉運動的液壓馬達,它們又稱為液壓系統的執行元件。 3.控制調節裝置:它是對系統中的壓力、流量或流動方向進行控制或調節的裝置。如溢流閥、節流閥、換向閥、截止閥等。 4.輔助裝置:例如油箱,濾油器,油管等。它們對保證系統正常工作是必不可少的。 5.工作介質:傳遞能量的流體,即液壓油等。 自18世紀末英國製成世界上第一台水壓機算起,液壓傳動技術已有二三百年的歷史。直到20世紀30年代它才較普遍地用於起重機、機床及工程機械。在第二次世界大戰期間,由於戰爭需要,出現了由響應迅速、精度高的液壓控制機構所裝備的各種軍事武器。第二次世界大戰結束後,戰後液壓技術迅速轉向民用工業,液壓技術不斷應用於各種自動機及自動生產線。 本世紀60年代以後,液壓技術隨著原子能、空間技術、計算機技術的發展而迅速發展。因此,液壓傳動真正的發展也只是近三四十年的事。當前液壓技術正向迅速、高壓、大功率、高效、低雜訊握拍明、經久耐用、高度集成化的方賀改向發展。同時,新型液壓元件和液壓系統的計算機輔助設計(CAD)、計算機輔助測試(CAT)、計算機直接控制(CDC)、機電一體化技術、可靠性技術等方面也是當前液壓傳動及控制技術發展和研究的方向。我國的液壓技術最初應用於機床和鍛壓設備上,後來又用於拖拉機和工程機械。現段告在,我國的液壓元件隨著從國外引進一些液壓元件、生產技術以及進行自行設計,現已形成了系列,並在各種機械設備上得到了廣泛的使用。

閱讀全文

與液壓傳動裝置其執行機構相關的資料

熱點內容
管道閥門開關狀態標識裝置 瀏覽:466
天錦車邊燈儀表霧燈不亮是怎麼了 瀏覽:169
博大和東成電動工具 瀏覽:766
超聲波熔接頭是什麼材料 瀏覽:155
雅虎工具箱 瀏覽:693
機械表怎麼看快了多少 瀏覽:706
激光數控加工裝置設計及應用 瀏覽:578
儀表上一個感嘆號是什麼故障 瀏覽:445
企業生產製冷是干什麼的 瀏覽:280
氧氣逆止閥門怎麼用 瀏覽:894
軸承1026什麼意思 瀏覽:690
實驗室電滲析裝置電極材料 瀏覽:240
安全閥門屬於什麼閥 瀏覽:236
如何管理王者榮耀登陸設備 瀏覽:115
小明用如圖的實驗裝置 瀏覽:407
氟利昂為什麼長期用於製冷劑 瀏覽:219
電子煙機械桿正品怎麼看 瀏覽:324
廁所閥門關不緊漏水怎麼辦 瀏覽:194
如何選擇柴油機的軸承 瀏覽:62
生活中哪些設備需要上網 瀏覽:252