導航:首頁 > 裝置知識 > 年產20萬噸苯乙烯的精餾裝置工藝設計

年產20萬噸苯乙烯的精餾裝置工藝設計

發布時間:2024-07-15 14:35:38

㈠ 鑻涔欑儻鐢熶駭宸ヨ壓嫻佺▼鍥

閫氳繃椋炵掓嫻嬪彂鐜扮敱鑻鍙婁箼鐑鍙戠敓鐑峰熀鍖栧弽搴斿緱鍒扮矖涔欒嫰錛岃繘鍏ヤ箼鑻鍒嗙誨斿皢閲嶇粍鍒嗕簩涔欒嫰錛屼笁涔欒嫰鍙婄劍娌逛粠濉旈嚋鍥炴敹寰鐜錛屽旈《寰楀埌鑻涓庝箼鑻娣峰悎鐗╋紝榪涘叆涔欒嫰綺鵑忓旓紝濉旈《寰楀埌鐨勮嫰榪涜屽洖鏀訛紝鍦ㄧ兎鍩哄寲鍙嶅簲濉斾腑鍐嶆¤繘琛屽弽搴斻
鍦ㄧ簿棣忓斾腑鍒跺緱鐨勪箼鑻錛岃繘鍏ヤ箼鑻鑴辨阿鍙嶅簲鍣錛屽緱鍒拌嫰涔欑儻綺椾駭鍝佸強鍏朵粬鏉傝川銆傝繘鍏ヤ箼鑻/鑻涔欑儻鍒嗙誨旓紝灝嗙矖鑻涔欑儻浠庡斿簳榪涘叆鑻涔欑儻钂擱忓旓紝閫氳繃鑻涔欑儻钂擱忓旓紝寰楀埌絎﹀悎浜у搧瑕佹眰鐨勭簿鍒惰嫰涔欑儻錛屽斿簳鏈夌劍娌圭瓑鏉傝川鎺掑嚭銆備箼鑻/鑻涔欑儻鍒嗙誨斿旈《寰楀埌鐨勬槸綺椾箼鑻錛岃繘鍏ョ敳鑻/涔欒嫰鍒嗙誨旓紝鍙浠ヤ粠鍏跺斿簳寰楀埌杈冮珮綰搴︾殑涔欒嫰錛岄氳繃寰鐜鍥炴敹涔欒嫰錛岃╀箼鑻閲嶆柊榪涘叆鑴辨阿鍙嶅簲鍣ㄣ傜敳鑻/涔欒嫰濉斿旈《寰楀埌鐢茶嫰錛岃繘鍏ヨ嫰/鐢茶嫰濉旇繘琛屽垎紱伙紝濉旈《寰楀埌鑻錛屽斿簳寰楀埌鐢茶嫰銆 濡備笅鍥撅細

㈡ 你對乙苯、苯乙烯裝置、重點部位及設備了解多少

單元組成與工藝流程
1、組成單元
苯乙烯裝置的基本組成單元為:乙苯單元、脫氫單元、苯乙烯精餾單元。
(1)乙苯單元
本單元由烷基化反應、烷基轉移反應和乙苯精餾部分構成。烷基化反應部分的任務是在分子篩催化劑的作用下使乙烯和苯烷基化生成乙苯、多乙苯等物質。烷基轉移反應部分的任務則是在分子篩催化劑的作用下使苯、多乙苯發生烷基轉移反應,生成乙苯。烷基化反應和烷基轉移反應部分的出料中含有乙苯、多乙苯、重質物及未反應的原料苯,都被送到乙苯精餾預分餾塔。由預分餾塔、苯塔、乙苯塔、多乙苯塔、脫非芳塔將反應產物分離成苯、乙苯、多乙苯和重質物。其中回收的苯返回到烷基化反應器和烷基轉移反應器,多乙苯返回到烷基轉移反應器。脫非芳塔則用於脫除進料和反應過程中生成的輕組分和輕非芳烴。

(2)脫氫單元
新鮮乙苯和從乙苯回收塔返回的循環乙苯與工藝凝液混合在一起,乙苯/水的混合物形成一種用來冷凝乙苯/苯乙烯分離塔頂氣相的共沸物。被蒸發的乙苯/水的混合物在乙苯/蒸汽過熱器中經反應物流加熱,與稀釋蒸汽混合,進入第一脫氫反應器。在新smart工藝,三個絕熱徑向反應器連續放在一起。第一反應器、第三反應器只裝脫氫催化劑,而第二反應器裝脫氫催化劑和氧化催化劑。混合物流進入第一反應器,部分乙苯脫氫生成苯乙烯。反應器人口設有高溫報警,當溫度超過650℃時,將停蒸汽過熱爐(正常為610—640℃)。由於反應是吸熱的,所以溫度在反應器中降低。


經過控制的富氧氣體和稀釋蒸汽進入到第一反應器流出物中,混合氣體在進入第二反應器之前,進入一個靜態混合器。在第二反應器,反應物首先經過氧化催化劑,部分氫氣被消耗。反應物在進入第二床層脫氫催化劑之前被氧化反應放出的熱量加熱。在氧化反應床層非常短的停留時間減少了副反應的發生。第二脫氫床層的乙苯生成苯乙烯。混合氣體經過一個靜態混合器進入第三反應器,在第三反應器,反應物首先經過反應器內的中間加熱器加熱反應物料,進入第三脫氫催化劑床層,的乙苯在脫氫催化劑床層轉化成苯乙烯。反應物流進人廢熱鍋爐(乙苯/蒸汽預熱器),進一步換熱,產生中壓和低壓蒸汽,冷卻後的反應物經工藝凝液、空冷器進一步冷卻。


從空冷器中出來的氣相進一步冷卻,未冷凝的氣體在尾氣壓縮機中壓縮,冷卻作為燃料和殘油一起在蒸汽過熱爐中燃燒。一些碳氫化合物在洗滌塔通過殘油洗滌出來,汽提塔頂餾分返回主冷卻器。從主冷卻器和後冷器出來的物料進入脫氫液/水分離罐,脫氫液和水相分離。dm液(脫氫液)直接送到分離系統或儲罐。水相進入工藝凝液汽提塔,微量有機物被汽提出來,部分水用來冷卻從廢熱鍋爐出來的物料。工藝凝液汽提塔頂餾分在塔頂冷卻器冷卻後,進入dm/水分離罐。未冷凝的塔頂餾分排到後冷卻器中,汽提後的冷凝液過濾後,一部分過濾冷凝液用於乙苯和苯乙烯單元發生蒸汽,另外的送到界區外。

(3)苯乙烯精餾單元
在苯乙烯分離單元,dm液分離成循環乙苯,產品甲苯,循環苯,苯乙烯單體產品和焦油。使用4個分離塔和薄膜蒸發器。在乙苯/苯乙烯分離塔頂回收乙苯和輕組分,而苯乙烯產品和重組分在塔釜。塔釜乙苯含量很少,因乙苯是苯乙烯產品中的主要雜質。nsi阻聚劑加到乙苯/苯乙烯分離塔,防止苯乙烯聚合。為了減少聚合物生成,分離塔在負壓下操作。填料結構是為了降低塔的壓降。乙苯/苯乙烯分離塔塔釜物料進到苯乙烯塔,苯乙烯產品從塔頂出來,被冷卻。tbc阻聚劑為了抑制聚合,送到儲罐。苯乙烯塔也在負壓下操作,苯乙烯塔釜中的苯乙烯經薄膜蒸發器回收返回到苯乙烯塔。蒸發器頂部氣相返回到苯乙烯塔釜。苯乙烯單元的焦油和乙苯單元的殘油混合送到儲罐作為燃料或部分過濾後返回到乙苯/苯乙烯分離塔,降低nsi消耗。乙苯/苯乙烯塔頂氣相含有乙苯和輕組分,與乙苯/水的共沸物換熱後冷凝,排出的氣體進一步冷卻回收殘留的有機物,塔頂冷凝液送到乙苯回收塔。未轉化的乙苯返回到反應單元。乙苯回收塔頂餾分是苯和甲苯的混合物,在有些苯乙烯裝置,苯和甲苯混合物被送到界區外進一步分離。其他苯乙烯裝置有一個苯/甲苯分離塔,苯從塔頂分離出來,返回到乙苯單元。甲苯作為副產品。


2、工藝流程
化學反應過程
1.烷基化反應機理:在一定的溫度、壓力下,乙烯與苯在酸性催化劑上進行烷基化反應生成乙苯,同時,生成的乙苯還可以進一步與乙烯反應生成多乙苯。理論上說,可以生成從二乙苯一直到六乙苯。


2.烷基轉移機理
烷基轉移反應是在一定的溫度、壓力條件下,在酸性催化劑的作用下,多乙苯轉化成為乙苯的反應。理論上,所有的多乙苯都可以進行烷基轉移反應,但是實際上四乙苯幾乎不發生烷基轉移反應。烷基轉移反應是可逆的二級反應,受化學平衡限制。同烷基化反應一樣,烷基轉移反應也是發生在分子篩催化劑的酸性活性中心上。除了生成乙基苯外,還可生成重質化合物,從而導致物耗增加,乙苯收率下降。因此應最大可能地減少副反應的發生,維持苯過量可以獲得較高的轉化率和乙苯選擇性。


3.乙苯脫氫反應機理
乙苯在高溫和催化劑作用下,發生脫氫反應生成苯乙烯根據有關資料,上述的乙苯脫氫反應主要受化學平衡的控制,部分還受到擴散因素的控制。由於該反應為氣相的吸熱反應,平衡常數隨溫度升高而增加。


4.氧化反應機理
發生在脫氫床的反應是強吸熱的,並且通過催化劑床層溫降很大。在進入下一脫氫床層之前反應物必須被重新加熱到所需要的反應溫度。傳統的絕熱單元是通過反應出料和高溫蒸汽換熱達到目的的。氧化再加熱工藝通過反應付產物氫氣與氧氣反應釋放出能量實現溫度升高,從而達到反應溫度。氧化反應使用了專有催化劑,氧氣純度為90%,必須嚴格控制其注入速率。反應在氧化催化劑床層進行。此反應將氫氣脫除對生產苯乙烯工藝是有利的,原因有以下幾點:
(1)它為反應物料提供了熱量,使其達到下一級脫氫反應床層所要求的溫度。
(2)反應物中氫氣分壓降低,乙苯轉化率和苯乙烯選擇性提高。
氧化催化劑雖然對氫氣燃燒有很高的選擇性,但同時一小部分烴也被消耗了。

(四)主要操作條件及工藝技術特點
1、主要操作條件:因不同的工藝,操作條件不盡相同,表3—52列出一般生產工藝操作條件
2、工藝技術特點:

(1)與國內外先進水平相比:本裝置工藝路線的特點,在乙苯生產工藝上,採用液相分子篩循環烷基化生產乙苯工藝的原理,較之三氯化鋁法乙苯生產工藝,具有工藝先進、無環境污染、無腐蝕的特點。在苯乙烯生產工藝上,採用美國hunmus—monsanto開發的負壓脫氫和uop的氧化脫氫(smart) 工藝生產苯乙烯,並回收了乙苯/苯乙烯分離塔塔頂冷凝熱,由於採用了先進的脫氫催化劑及氧化催化劑,因此,乙苯轉化率較高,苯乙烯選擇性高,能耗、物耗比較低。


(2)化學反應的影響因素:在烷基化反應過程中,苯烯比(即進料苯與乙烯的分子比)、空速、反應溫度、水含量、反應壓力;在烷基轉移反應過程中,苯與多乙苯分子比、反應溫度、水含量、空速;在脫氫反應過程中,反應溫度、反應壓力、水比;在氧化反應過程中,氫氣的燃燒量、稀釋蒸汽/氧氣的比值均對化學反應產生較大影響,在生產過程中應注意操作和調整。


(五)催化劑及助劑
1.脫氫催化劑
不同的催化劑具有不同的活性和選擇性。一般催化劑有兩種類型:一種是高水比,高活性,低選擇性催化劑,另一種是低水比,活性適中,高選擇性催化劑。前者適用於公用工程便宜而原料較貴的地區,後者適用於公用工程較貴而原料便宜的地區。近年來,發展了一系列低水比,高活性,高選擇性催化劑。如美國聯合催化劑公司生產的g84c。我國上海石化院研製的gs—08,其水比為1.3。轉化率為62.7%,選擇性為94%,基本上達到了g84c的水平。
2.氧化催化劑
當氧化催化劑活性下降以至於達不到需要的床層出口溫度時,可能發生氧氣穿透。在設計時已經考慮了這一點,值得一提的是如果這種情況發生,未轉化的氧氣會離開氧化床進入脫氫床,氧氣將氧化脫氫催化劑表面的鐵,引起乙苯脫氫催化劑暫時失活。如果氧氣穿透終止脫氫催化劑能夠還原恢復活性。發生穿透後一部分氧不是與脫氫催化劑混合,而是無選擇的消耗其他反應物,減少產品產量。

3.無硫阻聚劑ns
無硫阻聚劑nsi的化學名稱為2,4—二硝基酚,分子式為(n02):c6h30h,nsi用tda—401和da—403中防止苯乙烯高溫聚合。nsi的主要質量指標為純度≥98%。當其純度不合格時,配製的nsi溶液有效成分低,將使da—401塔底nsi濃度實際上低於1500x10—6(質量),而影響阻聚效果,嚴重時甚至造成da—401/403塔底物黏度過大,無法加熱,被迫停車置換塔內物料。因此必須嚴格監控nsi內有效成分2,4—二硝基酚的含量。
4.產品阻聚劑tbc
產品阻聚劑tbc的化學名稱為4—特丁基—鄰苯二酚/甲醇溶液。用於苯乙烯產品中,防止或減少在儲運過程中的聚合。tbc的主要質量指標是揮發度,即其中所含甲醇量。當所含甲醇過高時,配製後實際進入苯乙烯產品是4—特丁基—鄰苯二酚量低,影響阻聚劑效果,而造成苯乙烯產品中聚合物含量超標(≤10x10—6)。

提供技術支持 博科原料

㈢ 苯乙烯的生產

生產苯乙烯的原料是乙苯。目前,世界上90%以上的乙苯是由苯和乙烯烷基化生產製得,一分子乙烯在適當條件下與一分子苯作用生成一分子乙苯。
乙苯
乙基苯的俗稱,無色,具有芳香氣味的可燃液體,沸點136.19°C。熔點(℃) -94.9,可由苯通過烷基化或直接從碳八芳烴分離獲得,主要用於製造苯乙烯,少量用於有機合成工業,如製成苯乙酮用於香料、醫葯等方面。

現在工業上約有90%的乙苯是通過苯烷基化生產的。
1.生產工藝方法
液相法 液相法使用的催化劑為三氯化鋁,反應器為塔式,反應溫度范圍在125~140℃,反應壓力在0.2~0.4Mpa,使乙烯與苯反應生成乙苯:

副反應是乙苯進一步用乙烯烷基化生成多乙苯。工業上將苯的轉化率限制在52%~55%左右,並採用高的苯與乙烯配料比(摩爾比一般為2左右),以防止生成更多的二乙苯與多乙苯。乙苯的平均收率為94%~96%。應嚴格控制原料苯和乙烯中的硫化物、乙炔等雜質,以減少三氯化鋁的消耗。一般烴化液的組成(質量%):苯40,乙苯47,多乙苯(主要是二乙苯)13。反應前應將苯乾燥至水含量30mg/kg以下,乙烯純度為99.9%。反應產物(粗乙苯)用精餾分離得到乙苯,分離得到的苯再循環使用。
氣相法 氣相法的設備是固定床式,催化劑為磷酸負載在硅藻土構成的催化劑。反應溫度為200~250℃,反應壓力為1.4Mpa.
關於乙烯的綜合純度指標高低不是關鍵,關鍵是應在預處理中除掉硫及硫化物,氮化物和乙炔。純化後的乙烯與氣-液混合物苯混合後通過負載催化劑的固定床反應器,並產生放熱反應,將反應生成物進行冷凝和冷卻。未參加反應的惰性氣體循環並與進料反應物混合重新被使用。被冷凝下來的液相反應產物用精餾分離,被分離出的苯再循環使用,乙苯進入罐壓。這種工藝的問題是需採用高苯/乙烯比例,以防止多烷基苯的產生(因對多烷基苯後處理有難度)。這種工藝的優勢是反應器成本低(用低碳鋼),催化劑成本低,對催化劑再生處理工序少。

2.乙苯精製 乙苯精緻採用精餾分離,通常為三步進行。第一步是將苯分離出來,第二步是將乙苯分離出來,第三步是將多乙苯分離出來

乙苯脫氫生產苯乙烯
乙苯在催化劑作用下,達到550~600℃時脫氫生成苯乙烯:

乙苯脫氫是一個可逆吸熱增分子反應,加熱減壓有利於反應向生成苯乙烯方向進行。工業上採用的方法是在進料中摻入大量高溫水蒸氣,以降低烴分壓,並提供反應所需的部分熱量,水蒸氣與烴的摩爾比(簡稱水比)視反應器類型的不同而異,范圍約在6~14之間。
反應器 乙苯脫氫反應器有等溫和絕熱兩種。等溫反應器為列管式,已很少採用。使用絕熱反應器時,反應所需的熱量由提高進料溫度(610~660℃)和加大水比(≈14)而帶入。但溫度過高將引起乙苯的熱裂解,通常採用徑向反應器,以減小氣體通過催化劑層的溫度降、壓力降,並分段引入過熱蒸汽,使軸向溫度分布均勻。

催化劑 早期採用的有美國加利福尼亞標准油公司的鎂系催化劑和德國法本公司的鋅系催化劑。第二次世界大戰後,廣泛採用美國殼牌石油公司開發的以氧化鐵為主要成分的催化劑(Fe2O3:K2O:Cr2O3=87:10:3),乙苯轉化率約60%,選擇性約87%。1978年,又出現了一種加有多種助催化劑的鐵系催化劑,苯乙烯選擇性可達95%,加入的助催化劑多為鹼金屬或鹼土金屬,如鉀、釩、鉬、鎢、鈰、鉻等。80年代工業上仍在繼續努力開發適用於低水比的催化劑,以節約能耗。
2.工藝流程簡介
包括乙苯脫氫和苯乙烯精餾分離兩部分。乙苯在反應器內轉化率約在35%~40%,脫氫液約含乙苯55%~60%,苯乙烯35%~40%以及少量苯、甲苯及焦油等。用精餾方法可分出苯乙烯成品。由於乙苯和苯乙烯的沸點比較接近,分離時所需塔板數較多,而苯乙烯在較高溫度下又極易聚合。為了減少聚合反應的發生,除加對苯二酚或硫等阻聚劑外,尚需採用減壓操作,並使用塔板效率高、阻力小的新型塔器或新型高效填充塔,使塔釜溫度不超過90℃。苯乙烯精餾塔塔頂產品為苯乙烯,濃度可達99.6%。

㈣ 苯乙烯精餾工段畢業設計

苯乙烯精餾工段畢業設計

摘要 1
Abstract 2
前言 3
1設計方案簡介…………………………………………………4
1.1 產品性質、質量指標和用途………………………………………4
1.2 設計方案簡介………………………………………………………5
2工藝流程草圖及說明…………………………………………………5
3工藝計算及主體設備設計……………………………………………6
3.1 精餾塔的物料衡算…………………………………………………6
3.2 塔板數的確定………………………………………………………6
3.3 精餾塔的工藝條件及有關物性數據的計算………………………9
3.4 精餾塔的塔體工藝尺寸計算………………………………………13
3.5 塔板主要工藝尺寸的計算…………………………………………15
3.6 塔板的流體力學驗算………………………………………………18
3.7 塔板負荷性能圖……………………………………………………21
3.8 精餾塔接管尺寸計算………………………………………………30
4輔助設備計算及選型…………………………………………………32
4.1原料儲罐(V-101a-b)……………………………………………32
4.2苯乙烯貯槽(V-107a-b)……………………………………………33
4.3 苯乙烯貯槽(V-112a-b)………………………………………………33
4.4 原料輸送泵(P-102a-b)…………………………………………33
4.5苯乙烯輸送泵(P-108)………………………………………………33
4.6苯乙烯輸送泵(P-113)…………………………………………………33
4.7換熱器(E-103) ………………………………………………………33
4.8再沸器105立式虹吸式兩只) ………………………………………34
4.9分器(A-110)………………………………………………………34
4.10篩板塔 (T-104) ……………………………………………………34
4.11 苯乙烯冷卻器(E-106)………………………………………………34
4.12 全冷凝器(E-109)…………………………………………………35
4.13苯乙烯冷卻器(E-111)…………………………………………………35
5能源消耗估算……………………………………………………………36
6對設計過程的評述和有關問題討論……………………………………36
7附圖………………………………………………………………………36
8總結……………………………………………………………37
9參考文獻…………………………………………………………………37
致謝

可以給你瀏覽下具體內容........

㈤ 苯乙烯裝置復雜嗎

很復雜。
工藝流程說明——脫氫工序
a)過熱蒸汽系統
0.6 MPa的蒸汽經蒸汽緩沖罐(V-301)脫水後進入蒸汽過熱爐(F-301)過熱,去第三反應器(R-303)頂部熱交換器,將第二反應器(R-302)出來的反應混合物預熱到615 ℃,蒸汽去過熱爐(F-302)過熱,然後進入第二反應器(R-302)頂熱交換器,將第一反應器(R-301)出口反應混合物加熱至615 ℃。蒸汽去過熱爐(F-303)過熱後,去第一反應器(R-301),與乙苯、一次配汽混合後,依次進入R-301催化劑床層、R-302催化劑床層、R-303催化劑床層進行乙苯脫氫反應。
F-301、F-302、F-303三台爐燃料氣氣來自石油一廠管網。燃料氣自管網進入動力車間燃料氣罐,脫液後,進入苯乙烯裝置燃料氣罐(V-313)。經V-313緩沖後,分別去F-301、F-302、F-303為爐子提供熱量。
b)乙苯脫氫反應系統
乙苯由FIC-313控制流量進入乙苯預熱器(E-304A、E-304B),被來自F-303的水加熱後,進入乙苯蒸發器(E-303),與來自管網的0.6 MPa蒸汽(一次配汽)混合,同時由殼程0.6 MPa蒸汽加熱汽化約105℃。
汽化後的乙苯、蒸汽混合物進入乙苯過熱器(E-301)被來自第三反應器(R-303)的反應混合氣體加熱到約500 ℃左右,進入第一反應器(R-301),與來自第三蒸汽過熱爐(F-303)的過熱蒸汽混合均勻,混合後的溫度達到600 ℃左右(催化劑從初期到末期溫度逐漸上升,其出口溫度也上升),在催化劑床層進行乙苯絕熱脫氫反應,乙苯轉化率約40 %,反應後的氣體溫度降至540 ℃左右。此混合氣繼續到第二反應器(R-302)頂部中間再熱器,被來自第二蒸汽過熱爐(F-302)的過熱蒸汽加熱至605 ℃左右,進入催化劑床層繼續進行乙苯脫氫反應,總轉化率達到約60 %。反應後,混合氣溫度降至578 ℃左右。此部分混合氣再次進入第三反應器(R-303)頂部再熱器,被來自第一蒸汽過熱爐(F-301)的過熱蒸汽加熱,溫度上升至610 ℃左右,進入第三反應器(R-303)催化劑床層,繼續進行乙苯脫氫反應,第三反應器(R-303)出口總轉化率約70 %。
自第三反應器(R-303)出來的反應氣體,進入乙苯過熱器(E-301)加熱乙苯與蒸汽的混合氣後,自身溫度下降至300~320 ℃,再進入蒸汽發生器(E-302)管程進行換熱。在E-302下段,產生0.32 MPa(表)蒸汽;在E-302上段,產生0.04 MPa(表)蒸汽。
0.32 MPa蒸汽去管網,作精餾系統熱源;0.04 MPa蒸汽去汽提塔(T-301)作熱源。
c)冷凝分離
反應混合氣體產生0.32 MPa、0.04 MPa蒸汽後,溫度下降,被來自工藝凝水泵(P-301)來的急冷水增濕急冷,溫度下降至70 ℃左右,分別進入四組空氣冷卻器(EC-301),溫度降至55 ℃以下,進入氣液分離罐(V-306)進行氣、液分離。
V-306中的冷凝液進入油水分離罐(V-307)進行油水分離。V-307為隔板式分離器,油、水混合物在此靠密度差分層。當油位高過隔板高度時,進入油相區,自流至爐油罐(V-309),與阻聚劑混合後,由爐油泵(P-302)送至中倉球罐(或V-509罐)。由於V-306為負壓,而V-307為正壓,`故V-306至V-307管線中,存有一定高度的液體(其高度與兩罐的壓差有關);V-307中的水由泵(P-301)送至汽提系統進一步汽提水中的芳烴。
V-306中的氣相依次進入循環水冷凝器(E-305)、鹽水冷凝器(E-306)冷凝,冷凝液相也進入V-307進行油水分離;不凝氣進入尾氣分離罐(V-312),在V-312出口有三個閥門,分別控制尾氣至蒸汽噴射泵抽真空系統、液環泵抽真空系統、尾氣放空罐(V-311)放空系統。
當脫氫反應系統為正壓操作時,V-311水放掉,尾氣由V-311放空;當脫氫反應系統為負壓操作時,V-311中充水,V-311有一工業水補充管線,防止罐內缺水,空氣進入尾氣系統,影響系統壓力和安全生產。由於系統負壓,自V-312出口至V-311管線(大氣腿)中充滿水,保持壓力平衡,阻止空氣進入系統。
d)真空
真空系統作用是為反應系統抽取負壓,以有利於脫氫反應的進行。
真空系統有二套,一套為液環式真空/壓縮機組,用乙苯液體作動力;另一套為蒸汽噴射泵,作備用。該泵用0.6 MPa蒸汽作動力,一般在開車初期生產負荷低於6000kg/h時使用,或在液環式真空泵故障時臨時使用。
液環式真空/壓縮機組流程:
真空/壓縮機組用乙苯作動力,包括三台氧在線分析儀在內的聯鎖13套聯鎖。設備有二台泵(真空泵J-301、壓縮機J-302)、二台隔離液泵、二個分離罐、二台鹽冷器。真空泵鹽水流量為42.3 m3 /h,壓縮機換熱器鹽水流量為13.6 m3/h。
當用液環式真空/壓縮機對脫氫反應系統抽負壓時,吸入罐(V-312)出口氣體,進入真空泵(真空泵入口有一止回閥),與乙苯混合,氣、液混合物進入分離罐中,液相(主要是乙苯)經鹽冷器冷凝至40 ℃以下,繼續作真空泵動力,多餘部分排至地槽(V-413);未凝氣體進入壓縮系統。
真空泵入口壓力一般在15~30kPa左右,真空過高,設備振動、雜訊大,易損壞設備。
未凝氣體進入壓縮機後,與乙苯混合,氣液混合物進入壓縮機分離罐中,不凝氣體壓力升高後去變壓吸附裝置(PSA)進一步分離氫氣外供;液相(主要是乙苯)經鹽冷器冷凝至50℃以下,繼續作壓縮機動力。
二台隔離液泵,分別形成自身循環系統,為真空泵、壓縮機提供潤滑冷卻用油。
二個分離罐中多餘液體排入地槽,地槽中的液體由氣動隔膜泵送至油水分離罐(V-307)。
真空/壓縮設備是從英國Hick Hargrea Ves公司進口的,具有使反應系統形成真空和尾氣增壓二種作用,設備自身帶有氧含量在線分析儀,監視系統氧含量(應低於體積分數0.1 %),以保證設備安全運行。
蒸汽噴射泵流程:
E-306不凝氣體首先進入吸入罐V-312,在此少量夾帶凝液分離後去V-307中;V-312頂部氣相去蒸汽噴射泵,與蒸汽混合後進入循環水冷凝器(E-309),冷凝下來的液相進入V-307,氣相進入循環水冷凝器(E-310),冷凝液進入V-307,不凝氣可到PSA裝置(或放空)。
e)污水汽提
自水泵(P-301)來的工藝污水進入F-1、預過濾器、聚結器,在此油水進一步分離。油相自流入油水分離罐(V-307),水相進入汽提塔預熱器(E-307),與汽提塔(T-301)頂來的氣相物料換熱,再經汽水混合器器加熱後進入T-301頂部。在塔內與塔底上升蒸汽接觸,進行傳質傳熱,油與蒸汽的混合物從塔頂餾出。經汽提塔預熱器(E-307)、冷凝器(E-308)進-步冷凝、冷卻後,凝液進入油水分離罐(V-307),不凝氣進入尾氣鹽冷器(E-306),使得汽提塔形成負壓。
T-301熱源:0.04 MPa蒸汽,當熱量不足時,由0.6 MPa蒸汽補充。
T-301底部汽提水進入污水罐(V-310),由汽提污水泵(P-303)將水分別送入乙苯預熱器(E-304A),加熱乙苯後去第三蒸汽過熱爐(F-303)的對流段取熱後,再去E-304B加熱乙苯物料,最後送至採暖水罐(V-318),然後去動力污水處理回用裝置;F-301對流段水去V-303罐,作E-302發生0.04 MPa、0.32 MPa蒸汽水源。
T-301塔為負壓塔,壓力由PIC-329控制,塔內為二段250Y填料。
此系統於2008年4月檢修時,為不影響生產,增加了停汽提塔時的流程。具體流程如下(流程圖附後):
V-307罐凝水由P-301泵經LICA-304調節閥後向動力車間污水池供水(F-301對流段供水維持原流程不變)。
P-303泵向F-303對流段供水,經E-304B換熱後進入E-304A(或經E-427、E-313換熱後進入V-316)後,進入V-310罐由P-303泵向F-303供水。水不夠時可由工業水或動力回用污水補水。
P-307泵承擔向急冷供水和夏季空冷噴淋用水。汽提塔及聚結器系統保留原流程。
f)阻聚劑配製
DNBP配製系統:
自爐油泵(P-302)來爐油進入配製罐(V-304),DNBP(液相)從配製釜上部加入200 kg(一桶),配製成約質量分數10 %濃度的溶液,經攪拌釜攪拌30分鍾後,自流入計量罐(V-304A)中,由隔膜計量泵計量後(根據生產負荷,調整相應加入量),送至脫氫爐油中間罐(V-309)中,加入濃度為300~1000mg/kg。
TBC配製:自苯乙烯產品冷卻器(E-423)來的苯乙烯進入TBC配製罐(V-314),TBC粉末從配製釜上部加入5kg,配製成質量分數約0.4 %濃度溶液,經攪拌釜攪拌15分鍾後,自流入計量罐(V-314A)中,由隔膜計量泵(根據生產負荷,調整相應加入量)送至E-406氣相線,隨冷凝液同時進入苯乙烯成品中,控制苯乙烯產品中濃度在10~15mg/kg。
緩蝕劑配製:
將JCCR 1178緩蝕劑用脫鹽水配製成10 %WT的溶液。用計量泵將配製溶液適量注入至脫氫急冷水或精餾T-401塔、V-406迴流罐系統中。
g)氮氣循環系統
動力管網來的N2由第一蒸汽過熱爐(F-301)入口蒸汽管線進入脫氫系統,即三台爐(F-301、F-302、F-303)、三台反應器(R-301、R-302、R-303)、後冷系統(E-301、EC-301、E-305、E-306),最後至蒸汽噴射泵入口處N2循環閥門進入羅瓷風機。N2壓力提高至150~170kPa左右,至F-301入口DN150N2循環管線重新進入F-301,形成N2循環。
N2循環系統用於脫氫裝置開、停車時,反應器床層溫度低於300 ℃時的升溫、降溫。
1.1.3.2精餾系統

a)T-401塔
脫氫產出的爐油由FIC-401控制流量,經爐油泵(P-505)進入T-401塔進料預熱器(E-401)中,由殼程再沸器(E-405)0.3 MPa凝水預熱後,於塔的第三段填料層頂部進入粗苯乙烯塔(T-401)。輕組份苯、甲苯、乙苯混合物,自塔頂餾出,經循環水冷凝器(E-403A/B)冷凝。大部分組份被冷凝下來,進入迴流罐(V-401),未冷凝的氣相芳烴組份,繼續進入循環水冷凝器(E-422)、鹽冷器(E-404)進一步冷凝,冷凝液進入迴流罐(V-401)中;不凝氣至精餾機械真空泵系統。
V-401中的液相組份,由迴流泵(P-401)一部分打入塔頂作迴流,另一部分去循環乙苯塔(T-403)提純乙苯。T-401塔釜液組成為苯乙烯和焦油,由釜液泵(P-402)送至精苯乙烯塔(T-402),繼續分離。
T-401塔為負壓塔,加熱熱源為0.3 MPa蒸汽。
b)T-402塔
T-401的塔釜采出液從精苯乙烯塔(T-402)第二填料層頂部進入。塔頂組份為苯乙烯,純度可達質量分數99.8 %以上。氣相苯乙烯依次經循環水冷凝器(E-406)、鹽水冷凝器(E-407)冷凝,冷凝液進入迴流罐(V-403);E-407中的不凝氣去精餾真空泵,與T-401塔共用一台真空泵。
來自TBC計量泵的TBC溶液,打入E-406入口氣相線,進入塔內,(也可直接進入苯乙烯成品罐中)。V-403中的苯乙烯,由迴流泵(P-403)一部分打入塔頂作迴流,另一部分采出經水冷器(E-423)和鹽冷器(E-424)冷卻,入苯乙烯中間罐(V-405A/B)。塔加熱熱源為0.3 MPa蒸汽。
塔釜焦油自流入苯乙烯蒸出釜(VF-401)中。蒸出釜由0.6 MPa蒸汽加熱,蒸出的部分苯乙烯經循環水冷凝器(E-409)、鹽冷器(E-410)冷凝後,凝液進入脫氫粗苯乙烯罐(V-309);焦油裝車外售。VF-401A/B為真空操作,由精餾真空泵形成。
c)T-403塔
T-401塔頂產出的苯、甲苯、乙苯組份,在循環乙苯塔(T-403)的預熱器(E-411)中與T-403塔釜乙苯進行換熱,進入T-403塔底部第一段填料的上部,進行精餾。
塔頂蒸出的苯、甲苯,經循環水冷凝器(E-412)冷凝,凝液進入迴流罐(V-406)。一部分由P-405打至塔頂作迴流,另一部分產出入混合甲苯罐(V-410)。V-410中的混合甲苯用甲苯泵(P-408)送至動力罐區。
塔釜乙苯先進入E-411加熱進料,自身溫度下降,又經水冷器(E-425)冷卻後,去中倉乙苯貯罐(V-505A/B或V-507A/B)。此部分乙苯稱為循環乙苯。
T-403塔為常壓塔,加熱熱源為0.6 MPa蒸汽。
d)T-401、T-402、T-403再沸器凝水系統流程
1、來自E-405再沸器的凝水進入凝水罐(V-402)後,通過液位控制閥LIC-401向E-401爐油預熱器提供高溫凝水,換熱後的凝水通過TIC-402溫度控制閥匯集至V-416汽水分離器內。
來自E-408再沸器凝水進入凝水罐(V-404)後,通過LICA-405液位控制閥進入V-416汽水分離器內。
進入V-416汽水分離器內的高溫凝水閃蒸出0.1 Mpa蒸汽,可並入車間0.1 Mpa蒸汽管網或進入採暖水罐。
2、來自E-413凝水進入凝水罐(V-407)後,通過液位控制閥LICA-412使凝水到達V-417汽水分離器內。
來自E-303乙苯發生器0.6 Mpa管程加熱蒸汽產生的高溫凝結水進入位於裝置二樓的V-417汽水分離器內。
進入V-417汽水分離器內的高溫凝水閃蒸出0.1 Mpa蒸汽,可並入車間0.1 Mpa蒸汽管網或進入採暖水罐。
3、V-416、V-417汽水分離器內的凝水通過各自的調節閥組(LIC-416、LIC-417)控制進入位於裝置一樓的V-415閉式凝水回收罐內。
⑴通過V-415回收罐下部的兩台水泵將凝水直接提供給F-301對流段用水。
⑵凝結水進入E-427冷卻後一部分直接向急冷水供水,另一部分再次通過E-313鹽冷器冷卻後,經P-307泵可向急冷、噴淋供水。
⑶在滿足上述情況用水後,其餘部分通過調節閥LIC-415進入採暖水罐。
⑷當V-415回收罐內液位不足時,可通過打開工業水補水閥門方式補水,以滿足用水需求。
e)精餾真空泵流程
真空泵工作液為乙苯,系統帶有一台氣液分離罐和鹽水冷卻器。乙苯經鹽冷器冷卻至20 ℃以下進入真空泵,與來自鹽冷器E-404、E-407的不凝氣混合,氣液混合物一同進入氣液分離罐(V-420)中,液相流入脫氫油水分離罐(V-307)中,氣相從放空管線排出。
1.1.3.3中間罐區

中間罐區共有80m3罐10台、400m3球罐1台;乙苯泵2台,爐油泵2台,苯乙烯送出泵2台。其中,乙苯罐4台,位號:V-505A/B、V-507A/B;苯乙烯罐4台,位號:V-503A/B、V-511A/B;爐油罐3台,位號:V-509A/B、400m3球罐(1台)。乙苯泵位號:P-504A/B、爐油泵位號:P-505A/B、苯乙烯送出泵:位號P-506A/B。
苯乙烯貯罐於2003年7月~8月檢修時,改造為內浮頂罐。
乙苯罐自南罐區間斷接收乙苯物料,由中倉乙苯泵(P-504)送至脫氫工序;苯乙烯罐經分析合格後,送至南罐區;爐油罐收脫氫爐油泵(P-302)送來的爐油,經脫水後,由爐油泵(P-505)送至精餾工序。
乙苯泵(P-504)、爐油泵(P-505)、苯乙烯泵(P-506)放置在中倉泵房內。
1.1.3.4PSA系統

苯乙烯脫氫尾氣進入PSA系統有兩路流程:一路來自兩級液環泵出口,壓力為0.027 MPa,此氣體可直接去C-102(氫氣壓縮機);另一路來自蒸氣噴射泵,出口壓力為常壓,經程式控制閥KV-107A、鼓風機(C101A、B,一開一備),加壓到0.027 MPa,再經冷卻器(E-101)冷卻至常溫後,兩路原料氣匯合後進入氣液分離器(V-107)分離掉氣體中所帶的機械水,再進入壓縮機(C-102A、B,一開一備)加壓到1.5 MPa。經壓縮後的原料氣先進入氣液分離器(V-101)分離掉氣體中所帶的機械水,再進入冷干機(D-101A、B,一開一備)降溫,粗脫除苯、甲苯、乙苯、苯乙烯和水等,脫除物經氣液分離器(V-102)進入貯液槽(V-106),經過冷干機分離後的原料氣經流量計(FICQ-101)計量後,進入由6吸附器(T101A~F)、一台均壓罐(V-103)及一系列程式控制閥等組成的變壓吸附制氫系統。PSA制氫系統採用6塔操作,2塔同時進料,3次均壓,抽空降壓解吸的工藝流程。原料氣出入口端自下而上通過2台正處於吸附狀態的吸附器,吸附器內裝填的吸附劑吸附原料氣中的強吸附組分CO2、CO、H2O等,弱吸附的氫氣等組份未被吸附,在吸附壓力下從吸附器頂部流出,得到產品氫氣,經流量計(FIQ-102)計量後送往界外。大部分CO2、CO、H2O及雜質被吸附在吸附劑上,通過減壓,使被吸附的CO2、CO、H2O及雜質從吸附劑上脫附,得到解吸氣,同時使吸附劑得到再生。
從吸附器入口端排出的解吸氣來自逆放和抽真空兩個步驟。逆放步驟中壓力較高的那部份逆放氣通過管道FG101,程式控制閥KV-109進入解吸氣緩沖罐(V-104),再通過管道FG103經調節閥(PV-104)穩壓後進入解吸氣混合罐(V-105);抽真空步驟為逆向放壓結束後利用真空泵(P101A~C)將解吸氣抽空並壓縮後送入解吸氣混合罐(V-105),然後送出界外到工廠火炬管網。

㈥ 應用化學開題報告

應用化學開題報告

論文題目:苯-氯苯分離過程連續精餾塔的工藝設計

一 文獻綜述與調研報告 :(闡述課題研究的現狀及發展趨勢,本課題研究的意義和價值、參考文獻)

1. 課題的背景

設計是工程建設的靈魂,對工程建設起著主導和決定性的作用,決定著工業現代化的水平。工程設計是科研成果轉化為現實生產力的橋梁和紐帶,工業科研成果只有通過設計,才能轉化為現實的工業化生產力。化工設計是一項政策性很強的工作,它涉及政治、經濟、技術、環保、法規等諸多方面,而且還會涉及多專業及多學科的交叉、綜合和相互協調,是集體性的勞動。先進的設計思想、科學的設計方法和優秀的設計作品是工程設計人員應堅持的設計方向和追求的目標。在化工設計中,化工單元設備的設計是整個化工過程和裝置設計的核心和基礎,並貫穿於設計過程的始終,因此作為化工類的本科生,熟練掌握化工單元設備的設計方法是十分重要的。

精餾是分離液體混合物(含可液化的氣體混合物)最常用的一種單元操作,在化工、煉油、石油化工等工業中得到廣泛應用。精餾過程在能量劑的驅動下(有時加質量劑),使氣、液兩相多次直接接觸和分離,利用液相混合物中各組分揮發度的不同,使易揮發組分由液相向氣相轉移,難揮發組分由氣相向液相轉移,實現原料混合液中各組分的分離。該過程是同時進行傳質、傳熱的過程。

本次設計任務為設計一定處理量的精餾塔,實現苯-氯苯的分離。鑒於設計任務的處理量不大,苯-氯苯體系比較易於分離,待處理料液清潔的特點,設計決定選用篩板塔。本課程設計的主要內容是過程的物料衡算、熱量衡算,工藝計算,結構設計和校核。限於作者的水平,設計中難免有不足和謬誤之處,懇請老師和讀者批評指正。

篩板塔是生產中最常用的板式塔之一。板式塔具有結構簡單,製造和維修方便,生產能力大,塔板壓降小,板效率較高等優點。其早在1832年問世,長期以來,一直被誤以為操作范圍狹窄,篩孔容易堵塞而收到冷遇。但是篩孔板結構結構簡單,造價低廉,在經濟上有很大的吸引力。因此,從20世紀50年代以來,許多研究者對篩孔板塔重新進行了研究。研究結果表明,造成篩板塔操作范圍狹窄的原因是設計不良(主要是設計點偏低、容易漏液),而設計良好的篩板塔是具有足夠寬的操作范圍的。至於篩孔容易堵塞的問題,可採用大孔徑篩板一得到圓滿的解決。

20世紀60年代初,美國精餾研究公司(FRI)又以工業的規模,使用不同物系,在不同操作壓強下,廣泛地改變了篩孔直徑、開孔率、堰高等結構參數,對篩板塔進行了系統研究。這些研究成果,使篩板塔的設計更加完美善,其中關於大孔徑篩板的設計方法屬於專利。國內對大孔徑篩板也做過某些研究。

FRI研究工作表明,設計良好的篩板是一種效率高、生產能力大的塔板,對篩板的推廣應用起了很大的促進作用,目前,篩板已發展成為應用最廣的通用塔板。在我國,篩板的應用也日益普通。

可以說,篩板精餾塔是一種傳統的精餾塔。早期由於設計方面的原因,曾一度被工業生產所忽視。但由於計算技術的發展,設計水平的提高,篩板塔越來越受到廠家的關注和使用,其優點是設備簡單,操作簡便,維修方便,製造成本低。

2. 課題研究的現狀及發展趨勢

氣-液傳質設備主要分為板式塔和填料塔兩大類。精餾操作既可採用板式塔,也可採用填料塔,板式塔為逐級接觸型氣-液傳質設備,其種類繁多,根據塔板上氣-液接觸元件的不同,可分為泡罩塔、浮閥塔、篩板塔、穿流多孔板塔、舌形塔、浮動舌形塔和浮動噴射塔等多種。板式塔在工業上最早使用的是泡罩塔(1813年)、篩板塔(1832年),其後,特別是在本世紀五十年代以後,隨著石油、化學工業生產的迅速發展,相繼出現了大批新型塔板,如S型板、浮閥塔板、多降液管篩板、舌形塔板、穿流式波紋塔板、浮動噴射塔板及角鋼塔板等。目前從國內外實際使用情況看,主要的塔板類型為篩板塔、浮閥塔及泡罩塔,而前者使用尤為廣泛。

篩板塔是板式塔的一種,其設計意圖是一方面使汽液兩相在塔板上充分接觸,以減小傳質阻力,另一方面是在總體上使兩相保持逆流流動,而在塔板上使兩相呈均勻的錯流接觸,以獲得更大的傳質推動力。其內裝若干層水平塔板,板上有許多小孔,形狀如篩;並裝有溢流管或沒有溢流管。操作時,液體由塔頂進入,經溢流管(一部分經篩孔)逐板下降,並在板上積存液層。氣體(或蒸氣)由塔底進入,經篩孔上升穿過液層,鼓泡而出,因而兩相可以充分接觸,並相互作用。泡沫式接觸氣液傳質過程的一種形式,性能優於泡罩塔。為克服篩板安裝水平要求過高的困難,發展了環流篩板;克服篩板在低負荷下出現漏液現象,設計了板下帶盤的篩板;減輕篩板上霧沫夾帶縮短板間距,製造出板上帶擋的的篩板和突孔式篩板和用斜的增泡台代替進口堰,塔板上開設氣體導向縫的林德篩板。篩板塔普遍用作H2S-H2O雙溫交換過程的冷、熱塔,應用於蒸餾、吸收和除塵等。

篩板塔是傳質過程常用的塔設備,它的主要優點有:

(1) 結構比浮閥塔更簡單,易於加工,造價約為泡罩塔的60%,為浮閥塔的80%左右。

(2)處理能力大,比同塔徑的泡罩塔可增加10~15%。

(3)塔板效率高,比泡罩塔高15%左右。

(4) 壓降較低,每板壓力比泡罩塔約低30%左右。

篩板塔的缺點是:

(1)塔板安裝的水平度要求較高,否則氣液接觸不勻。

(2) 操作彈性較小(約2~3)。

(3)小孔篩板容易堵塞。

目前應用比較廣泛的是林德篩板,它由美國聯合碳化物公司的林德子公司開發 ,最早應用於要求低壓降的空分裝置的精餾塔 ,1963 年後開始應用於乙苯-苯乙烯等精餾裝置中。20 世紀70 年代有多家公司的120餘台減壓蒸餾塔採用了林德篩板,其中超過5.0 m 塔徑的就有45 台,最大的塔徑為11.5 m。林德篩板在普通篩板上有2 點重要改進:一是在降液管液體出口處將塔板向上凸起,二是在塔板上增設了百葉窗導向孔(國內稱之為導向篩板)。這種改進增大了有效鼓泡麵積,使塔板操作由鼓泡型變為噴射型,在降低液面梯度的同時使氣體分布均勻,從而使干板壓降減小、霧沫夾帶減少、傳質效率提高。目前,國內已有10餘套裝置使用了中運行林德篩板。

精餾是應用最廣的傳質分離操作,其廣泛應用促使其技術已相當成熟,但是技術的成熟並不意味著今後不再需要發展而停滯不前。成熟技術的發展往往要花費更大的精力,但由於其應用的廣泛,每一個進步,哪怕是微小的,也會帶來巨大的經濟效益。正因為如此,蒸餾的研究仍受到廣泛的重視,不斷取得進展。

提高精餾過程的熱力學效率、節省能耗是一貫受到重視的研究領域,分離序列的合成,在用熱集成概念和夾點分析方法開發節能的分離過程和優化換熱網路,在具體分離過程中合理地應用熱泵、多效精餾、中間再沸器和中間冷凝器等實現節能,一直是得到廣泛重視的活躍的研究領域。

對於普通精餾難以(或不能)分離的物料,開發萃取精餾和恆沸精餾的分離工藝,將精餾與反應結合開發反應精餾也是個值得重視的研究領域,這對於拓寬精餾的應用范圍,提高經濟效益有較大意義。

隨著精細化工的發展,間歇精餾應用也更加廣泛,其研究也得到了應有的重視。開發各種新的操作模式,對於節省能耗和縮短操作時間有明顯的效果。塔中持液量的間歇精餾膜模擬計算研究有一定進展,對於設計和指導操作有較大意義。

為開發更可靠的效率和壓降等的模型,當前應強調實測數據,尤其是工業規模的測試數據,這是建立和驗證模型的基礎。六七十年代,美國精餾研究公司等進行了一系列工業規模試驗,取得了十分有價值的實測數據,為各種模型的建立和現象認識的深化奠定了重要基礎。

精餾的研究工作一直十分活躍,而且不斷取得成果。在各種新分離方法得到不斷開發和取得工業應用之際,在石油、天然氣、石油化工、醫葯和農產品化學等工業中所起的重要作用不會改變,作為主要分離方法的地位不會動搖。正如費爾在1987年國際精餾會議上指出的:「如果混合物可以應用精餾分離,那麼經濟上可能有吸引力的方法是精餾。」隨著科學技術和工業生產水平的提高,精餾的應用天地十分廣闊,重要的通過不斷努力,使其技術水平得到進一步提高,使其日趨完善。

3 課題研究的意義和價值

本設計採用連續精餾分離苯-氯苯二元混合物的方法。連續精餾塔在常壓下操作,被分離的苯-氯苯二元混合物由連續精餾塔中部進入塔內,以一定得迴流比由連續精餾塔的塔頂采出含量合格的苯,由塔底采出氯苯,其中氯苯純度不低於99.5%。

高徑比很大的設備稱為塔器。塔設備是化工、煉油生產中最重要的設備之一。它可使氣(或汽)液或液液兩相之間進行緊密接觸,達到相際傳質及傳熱的目的。常見的可在塔設備中完成的單元操作有:精餾、吸收、解吸和萃取等。此外,工業氣體的冷卻與回收,氣體的濕法凈制和乾燥,以及兼有氣液兩相傳質和傳熱的增濕、減濕等。

在化工或煉油廠中,塔設備的性能對於整個裝置的產品產量、質量、生產能力和消耗定額,以及三廢處理和環境保護等各個方面都有重大的影響。據有關資料報道,塔設備的投資費用占整個工藝設備投資費用的較大比例。因此,塔設備的設計和研究,受到化工煉油等行業的`極大重視。

作為主要用於傳質過程的塔設備,首先必須使氣(汽)液兩相充分接觸,以獲得較高的傳質效率。此外,為了滿足工業生產的需要,塔設備還得考慮下列各項傳質效率。此外,為了滿足工業生產的需要,塔設備還得考慮下列各項要求:

(1)生產能力大。在較大的氣(汽)液流速下,仍不致發生大量的霧沫夾帶、攔液或液泛等破壞正常操作的現象。

(2)操作穩定、彈性大。當塔設備的氣(汽)液負荷量有較大的波動時,仍能在較高的傳質效率下進行穩定的操作。並且塔設備應保證能長期連續操作。

(3)流體流動的阻力小。即流體通過塔設備的壓力降小。這將大大節省生產中的動力消耗,以及降低經常操作費用。對於減壓蒸餾操作,較大的壓力降還使系統無法維持必要的真空度。

(4)結構簡單、材料耗用量小、製造和安裝容易。這可以減少基建過程中的投資費用。

(5)耐腐蝕和不易堵塞,方便操作、調節和檢修。

事實上,對於現有的任何一種塔型,都不可能完全滿足上述所有要求,僅是在某些方面具有獨到之處。

根據設計任務書,此設計的塔型為篩板塔。篩板塔是很早出現的一種板式塔。五十年代起對篩板塔進行了大量工業規模的研究,逐步掌握了篩板塔的性能,並形成了較完善的設計方法。與泡罩塔相比,篩板塔具有下列優點:生產能力大20-40%,塔板效率高10-15%,壓力降低30-50%,而且結構簡單,塔盤造價減少40%左右,安裝、維修都較容易。從而一反長期的冷落狀況,獲得了廣泛應用。近年來對篩板塔盤的研究還在發展,出現了大孔徑篩板(孔徑可達20-25mm),導向篩板等多種形式。

篩板塔盤上分為篩孔區、無孔區、溢流堰及降液管等幾部分。工業塔常用的篩孔孔徑為3-8mm,按正三角形排列,空間距與孔徑的比為2.5-5。近年來有大孔徑(10-25mm)篩板的,它具有製造容易,不易堵塞等優點,只是漏夜點低,操作彈性小。

該課題使理論教學與實際應用相結合,有助於提高處理實際問題的能力。通過對該課題的研究,可以加深對精餾過程基本原理的理解,熟練篩板精餾塔的工藝設計方法,培養設計能力。

該過程構造簡單,造價低廉,具有足夠操作彈性,且具有較強的工程使用價值。該過程的推廣和普及,將加速我國工業生產過程節能技術的進步,帶動一大批的相關技術和產業的發展。

參考文獻:

[1] 蔣維鈞,雷良恆,劉茂林.化工原理(下冊) [M].北京:清華大學出版社,1993,264-340

[2] 陳敏恆,從德滋,方圖南,齊鳴齋.化工原理(下冊)[M].北京:化學工業出版社,2006,49-104

[3] 柴誠敬等。化工原理課程設計[M].天津:天津科學技術出版社,1994,75-109

[4] 吳俊生,邵惠鶴.精餾設計、操作和控制[M].北京:中國石化出版社,1997,3-4

[5] 史賢林,田恆水,張平.化工原理實驗[M].上海:華東理工大學出版社,2005,121-122

[6] 劉興高.精餾過程的建模、優化與控制[M].北京:科學出版社,2007,1-2

[7] 林愛嬌,王良恩,邱挺,黃詩煌,李南芳,鄧友娥. 甲醛吸收塔填料層高度的計算[M]. 福州:福州大學學報(自然科學版)1996年2月,第24卷第1期

[8]董誼仁,張劍慈.填料塔液體再分布器的設計[M].化工生產與技術,1998年第3期

[9] 張前程, 簡麗.填料吸收塔中適宜液氣比的確定[M]. 內蒙古工業大學學報,第20卷,第1期

[10] 李忠玉,徐松. 吸收塔填料層高度的解析計算[M].化工設計,1998 年第 5 期

[11] 董誼仁,侯章德.現代填料塔技術(三)填料塔氣體再分布器和其他塔內件[M].化工生產與技術,1996年第四期

[12] Torbjgrn Pettersen,http://www.51lunwen.com/benkekaiti/ Andrew Argo,Richard D. Noble, Carl A. Koval,Design of combined membrane and distillation processes[M]. Separations Technology 6 (1996) 175-187

;
閱讀全文

與年產20萬噸苯乙烯的精餾裝置工藝設計相關的資料

熱點內容
路虎極光儀表盤如何調時間 瀏覽:826
頂管需什麼設備 瀏覽:323
七寸電圓鋸轉子軸承什麼型號 瀏覽:451
熱熔閥門壞了怎麼辦 瀏覽:243
納米板生產線設備需要多少錢 瀏覽:529
煤氣閥門開關示意圖顏色代表什麼 瀏覽:827
變頻空調開機不製冷是怎麼回事 瀏覽:647
五金機電市場活動策劃 瀏覽:301
怎麼清理網吧機械鍵盤污垢 瀏覽:155
熱水器上有個閥門是什麼作用 瀏覽:406
玉環付進有哪些閥門廠招裝配工 瀏覽:892
佛山哪裡買電動工具好 瀏覽:50
地暖分水器閥門滲水怎麼修理 瀏覽:683
瑞虎5用的是什麼製冷劑 瀏覽:918
機床卡盤用什麼擰緊最輕松 瀏覽:494
當月車間未生產設備折舊怎麼算 瀏覽:395
設備Cdo是什麼 瀏覽:620
一加三T用萬能工具箱root 瀏覽:861
什麼機械表薄 瀏覽:291
起重機械卷取裝置 瀏覽:522