導航:首頁 > 裝置知識 > 一階傳動裝置

一階傳動裝置

發布時間:2024-07-16 14:55:18

『壹』 一級減速器軸的設計過程中,各軸段長度尺寸如何確定

根據軸向定位的要求確定軸的各段直徑和長度:

軸段1:L1= (根據大帶輪寬確定的)

軸段2:L2= m+e+螺釘頭部厚度+5~10

軸段3:L3=軸承寬度B+結構確定

軸段4:L4=結構確定

軸段5:L5=小齒輪齒寬

軸段6:L6=結構確定

軸段7:L7=軸承寬度B+結構確定

(1)一階傳動裝置擴展閱讀:

一、減速器軸按承受載荷的情況可分為:

1、轉軸

既支承傳動件又傳遞動力,承受彎矩和扭矩兩種作用。我們實測的減速器中 的軸就屬於這種軸。

2、 心軸

只起支承旋轉機件的作用而不傳遞動力,即只承受彎矩作用。

3、傳動軸

主要傳遞動力,即主要承受扭矩作用。

二、減速器使用方法:

1、在運轉200~300小時後,應進行第一次換油,在以後的使用中應定期檢查油的質量,對於混入雜質或變質的油須及時更換。一般情況下,對於長期連續工作的減速機,按運行5000小時或每年一次更換新油,長期停用的減速機,在重新運轉之前亦應更換新油。

減速機應加入與原來牌號相同的油,不得與不同牌號的油相混用,牌號相同而粘度不同的油允許混合使用;

2、換油時要等待減速機冷卻下來無燃燒危險為止,但仍應保持溫熱,因為完全冷卻後,油的粘度增大,放油困難。注意:要切斷傳動裝置電源,防止無意間通電;

3、工作中,當發現油溫溫升超過80℃或油池溫度超過100℃及產生不正常的雜訊等現象時應停止使用,檢查原因,必須排除故障,更換潤滑油後,方可繼續運轉;

4、用戶應有合理的使用維護規章制度,對減速機的運轉情況和檢驗中發現的問題應作認真記錄,上述規定應嚴格執行。

『貳』 一級蝸輪蝸桿課程設計

機械設計課程設計說明書

前言
課程設計是考察學生全面在掌握基本理論知識的重要環節。根據學院的教學環節,在2006年6月12日-2006年6月30日為期三周的機械設計課程設計。本次是設計一個蝸輪蝸桿減速器,減速器是用於電動機和工作機之間的獨立的閉式傳動裝置。本減速器屬單級蝸桿減速器(電機——聯軸器——減速器——聯軸器——帶式運輸機),本人是在周知進老師指導下獨立完成的。該課程設計內容包括:任務設計書,參數選擇,傳動裝置總體設計,電動機的選擇,運動參數計算,蝸輪蝸桿傳動設計,蝸桿、蝸輪的基本尺寸設計,蝸輪軸的尺寸設計與校核,減速器箱體的結構設計,減速器其他零件的選擇,減速器的潤滑等和A0圖紙一張、A3圖紙三張。設計參數的確定和方案的選擇通過查詢有關資料所得。
該減速器的設計基本上符合生產設計要求,限於作者初學水平,錯誤及不妥之處望老師批評指正。

設計者:殷其中
2006年6月30日

參數選擇:
總傳動比:I=35 Z1=1 Z2=35
捲筒直徑:D=350mm
運輸帶有效拉力:F=6000N
運輸帶速度:V=0.5m/s
工作環境:三相交流電源
有粉塵
常溫連續工作
一、 傳動裝置總體設計:
根據要求設計單級蝸桿減速器,傳動路線為:電機——連軸器——減速器——連軸器——帶式運輸機。(如圖2.1所示) 根據生產設計要求可知,該蝸桿的圓周速度V≤4——5m/s,所以該蝸桿減速器採用蝸桿下置式見(如圖2.2所示),採用此布置結構,由於蝸桿在蝸輪的下邊,嚙合處的冷卻和潤滑均較好。蝸輪及蝸輪軸利用平鍵作軸向固定。蝸桿及蝸輪軸均採用圓錐滾子軸承,承受徑向載荷和軸向載荷的復合作用,為防止軸外伸段箱內潤滑油漏失以及外界灰塵,異物侵入箱內,在軸承蓋中裝有密封元件。 圖2.1
該減速器的結構包括電動機、蝸輪蝸桿傳動裝置、蝸輪軸、箱體、滾動軸承、檢查孔與定位銷等附件、以及其他標准件等。

二、 電動機的選擇:
由於該生產單位採用三相交流電源,可考慮採用Y系列三相非同步電動機。三相非同步電動機的結構簡單,工作可靠,價格低廉,維護方便,啟動性能好等優點。一般電動機的額定電壓為380V
根據生產設計要求,該減速器捲筒直徑D=350mm。運輸帶的有效拉力F=6000N,帶速V=0.5m/s,載荷平穩,常溫下連續工作,工作環境多塵,電源為三相交流電,電壓為380V。
1、 按工作要求及工作條件選用三相非同步電動機,封閉扇冷式結構,電壓為380V,Y系列
2、 傳動滾筒所需功率
3、 傳動裝置效率:(根據參考文獻《機械設計課程設計》 劉俊龍 何在洲 主編 機械工業出版社 第133-134頁表12-8得各級效率如下)其中:
蝸桿傳動效率η1=0.70
攪油效率η2=0.95
滾動軸承效率(一對)η3=0.98
聯軸器效率ηc=0.99
傳動滾筒效率ηcy=0.96
所以:
η=η1•η2•η33•ηc2•ηcy =0.7×0.99×0.983×0.992×0.96 =0.633
電動機所需功率: Pr= Pw/η =3.0/0.633=4.7KW
傳動滾筒工作轉速: nw=60×1000×v / ×350
=27.9r/min
根據容量和轉速,根據參考文獻《機械零件設計課程設計》 毛振揚 陳秀寧 施高義 編 浙江大學出版社 第339-340頁表附表15-1可查得所需的電動機Y系列三相非同步電動機技術數據,查出有四種適用的電動機型號,因此有四種傳動比方案,如表3-1:
表3-1
方案 電動機型號 額定功率
Ped kw 電動機轉速 r/min 額定轉矩
同步轉速 滿載轉速
1 Y132S1-2 5.5 3000 2900 2.0
2 Y132S-4 5.5 1500 1440 2.2
3 Y132M2-6 5.5 1000 960 2.0
4 Y160M-8 5.5 750 720 2.0

綜合考慮電動機和傳動裝置的尺寸、重量、價格和減速器的傳動比,可見第3方案比較適合。因此選定電動機機型號為Y132M2-6其主要性能如下表3-2:
表3-2
中心高H 外形尺寸
L×(AC/2+AD)×HD 底角安裝尺寸
A×B 地腳螺栓孔直徑K 軸身尺寸
D×E 裝鍵部位尺寸
F×G×D
132 515×(270/2+210)×315 216×178 12 38×80 10×33×38
四、運動參數計算:
4.1蝸桿軸的輸入功率、轉速與轉矩
P0 = Pr=4.7kw
n0=960r/min
T0=9.55 P0 / n0=4.7×103=46.7N .m
4.2蝸輪軸的輸入功率、轉速與轉矩
P1 = P0•η01 = 4.7×0.99×0.99×0.7×0.992 =3.19 kw
nⅠ= = = 27.4 r/min
T1= 9550 = 9550× = 1111.84N•m
4.3傳動滾筒軸的輸入功率、轉速與轉矩
P2 = P1•ηc•ηcy=3.19×0.99×0.99=3.13kw
n2= = = 27.4 r/min
T2= 9550 = 9550× = 1089.24N•m
運動和動力參數計算結果整理於下表4-1:
表4-1
類型 功率P(kw) 轉速n(r/min) 轉矩T(N•m) 傳動比i 效率η
蝸桿軸 4.7 960 46.75 1 0.679
蝸輪軸 3.19 27.4 1111.84 35
傳動滾筒軸 3.13 27.4 1089.24

五、蝸輪蝸桿的傳動設計:
蝸桿的材料採用45鋼,表面硬度>45HRC,蝸輪材料採用ZCuA110Fe3,砂型鑄造。
以下設計參數與公式除特殊說明外均以參考由《機械設計 第四版》 邱宣懷主編 高等教育出版社出版 1996年 第13章蝸桿傳動為主要依據。
具體如表3—1:

表5—1蝸輪蝸桿的傳動設計表
項 目 計算內容 計算結果
中心距的計算
蝸桿副的相對滑動速度
參考文獻5第37頁(23式) 4m/s<Vs<7m/s
當量摩擦
系數 4m/s<Vs<7m/s
由表13.6取最大值

選[ ]值
在圖13.11的i=35的線上,查得[ ]=0.45
[ ]=0.45

蝸輪轉矩

使用系數 按要求查表12.9

轉速系數

彈性系數 根據蝸輪副材料查表13.2

壽命系數

接觸系數 按圖13.12I線查出

接觸疲勞極限 查表13.2

接觸疲勞最小安全系數 自定

中心距

傳動基本尺寸
蝸桿頭數
Z1=1
蝸輪齒數模數

m=10
蝸桿分度圓 直徑


蝸輪分度圓
直徑
mm

蝸桿導程角
表13.5

變位系數 x=(225-220)/10=0.5 x=0.5
蝸桿齒頂圓 直徑 表13.5
mm

蝸桿齒根圓 直徑 表13.5
mm

蝸桿齒寬
mm

蝸輪齒根圓直徑
mm

蝸輪齒頂圓直徑(吼圓直徑)
mm

蝸輪外徑
mm

蝸輪咽喉母圓半徑

蝸輪齒寬 B =82.5

B=82mm
mm

蝸桿圓周速度
=4.52 m/s

相對滑動速度
m/s

當量摩擦系數 由表13.6查得

輪齒彎曲疲勞強度驗算
許用接觸應力

最大接觸應力

合格
齒根彎曲疲勞強度 由表13.2查出

彎曲疲勞最小安全系數 自取

許用彎曲疲勞應力

輪齒最大彎曲應力

合格
蝸桿軸擾度驗算
蝸桿軸慣性矩

允許蝸桿擾度

蝸桿軸擾度

合格
溫度計算
傳動嚙合效率

攪油效率 自定

軸承效率 自定

總效率

散熱面積估算

箱體工作溫度
此處取 =15w/(m²c)

合格
潤滑油粘度和潤滑方式
潤滑油粘度 根據 m/s由表13.7選取

潤滑方法 由表13.7採用浸油潤滑

六、蝸桿、蝸輪的基本尺寸設計
6.1蝸桿基本尺寸設計
根據電動機的功率P=5.5kw,滿載轉速為960r/min,電動機軸徑 ,軸伸長E=80mm
軸上鍵槽為10x5。
1、 初步估計蝸桿軸外伸段的直徑
d=(0.8——10) =30.4——38mm
2、 計算轉矩
Tc=KT=K×9550× =1.5×9550×5.5/960=82.1N.M
由Tc、d根據《機械零件設計課程設計》 毛振揚 陳秀寧 施高義 編 浙江大學出版社第334頁表14-13可查得選用HL3號彈性柱銷聯軸器(38×83)。
3、 確定蝸桿軸外伸端直徑為38mm。
4、 根據HL3號彈性柱銷聯軸器的結構尺寸確定蝸桿軸外伸端直徑為38mm的長度為80mm。
5、 由參考文獻《機械零件設計課程設計》 毛振揚 陳秀寧 施高義 編 浙江大學出版社的第305頁表10-1可查得普通平鍵GB1096—90A型鍵10×70,蝸桿軸上的鍵槽寬 mm,槽深為 mm,聯軸器上槽深 ,鍵槽長L=70mm。
6、 初步估計d=64mm。
7、 由參考文獻《機械零件設計課程設計》 毛振揚 陳秀寧 施高義 編 浙江大學出版社第189頁圖7-19,以及蝸桿上軸承、擋油盤,軸承蓋,密封圈等組合設計,蝸桿的尺寸如零件圖1(蝸桿零件圖)
6.2蝸輪基本尺寸表(由參考文獻《機械零件設計課程設計》 毛振揚 陳秀寧 施高義 編 浙江大學出版社第96頁表4-32及第190頁圖7-20及表5—1蝸輪蝸桿的傳動設計表可計算得)
表6—1蝸輪結構及基本尺寸
蝸輪採用裝配式結構,用六角頭螺栓聯接( 100mm),輪芯選用灰鑄鐵 HT200 ,輪緣選用鑄錫青銅ZcuSn10P1+* 單位:mm

a=b C x B
160 128 12 36 20 15 2 82
e n

10 3 35 380 90º 214 390 306

七、蝸輪軸的尺寸設計與校核
蝸輪軸的材料為45鋼並調質,且蝸輪軸上裝有滾動軸承,蝸輪,軸套,密封圈、鍵,軸的大致結構如圖7.1:

圖7.1 蝸輪軸的基本尺寸結構圖

7.1 軸的直徑與長度的確定
1.初步估算軸的最小直徑(外伸段的直徑)
經計算D6>51.7>100mm
又因軸上有鍵槽所以D6增大3%,則D6=67mm
計算轉矩
Tc=KT=K×9550× =1.5×9550×3.19/27.4=1667.76N.M<2000 N.M
所以蝸輪軸與傳動滾筒之間選用HL5彈性柱銷聯軸器65×142,
因此 =65m m
2.由參考文獻《機械零件設計課程設計》 毛振揚 陳秀寧 施高義 編 浙江大學出版社的第305頁表10-1可查得普通平鍵GB1096—90A型鍵20×110,普通平鍵GB1096—90A型鍵20×70,聯軸器上鍵槽深度 ,蝸輪軸鍵槽深度 ,寬度為 由參考文獻《機械設計基礎》(下冊) 張瑩 主編 機械工業出版社 1997年的第316頁—321頁計算得:如下表:
圖中表注 計算內容 計算結果
L1 (由參考文獻《機械設計課程設計》 劉俊龍 何在洲 主編 機械工業出版社第182頁表15-1查得滾動軸承6216的基本結構) L1=25
L2 自定 L2=20
L3 根據蝸輪 L3=128
L4 自定 L4=25
L5 (由參考文獻《機械設計課程設計》 劉俊龍 何在洲 主編 機械工業出版社第182頁表15-1查得滾動軸承6216的基本結構) L5=25
L6 自定 L6=40
L7 選用HL5彈性柱銷聯軸器65×142 L7=80
D1 (由參考文獻《機械設計課程設計》 劉俊龍 何在洲 主編 機械工業出版社第182頁表15-1查得滾動軸承6216的基本結構) D1=80
D2 便於軸承的拆卸 D2=84
D3 根據蝸輪 D3=100
D4 便於軸承的拆卸 D4=84
D5 自定 D5=72
D6 D6>51.7>100mm
又因軸上有鍵槽所以D6增大3%,則D6=67mm D6=67
7.2軸的校核
7.2.1軸的受力分析圖

圖7.1
X-Y平面受力分析

圖7.2
X-Z平面受力圖:

圖7.3

水平面彎矩
1102123.7

521607

97 97 119

圖7.4
垂直面彎矩 714000

圖7.5
436150.8
合成彎矩

1184736.3
714000
681175.5

圖7.6
當量彎矩T與aT
T=1111840Nmm
aT=655985.6Nmm

圖7.7

7.2.2軸的校核計算如表5.1
軸材料為45鋼, , ,
表7.1
計算項目 計算內容 計算結果
轉矩

Nmm

圓周力 =20707.6N

=24707.6N

徑向力
=2745.3N

軸向力 =24707.6×tan 20º
Fr =8992.8N
計算支承反力
=1136.2N

=19345.5N

垂直面反力
=4496.4N
水平面X-Y受力圖 圖7.2
垂直面X-Z受力 圖7.3
畫軸的彎矩圖
水平面X-Y彎矩圖 圖7.4

垂直面X-Z彎矩圖 圖7.5

合成彎矩 圖7.6

軸受轉矩T T= =1111840Nmm
T=1111840Nmm
許用應力值 表16.3,查得

應力校正系數a a=

a=0.59
當量彎矩圖
當量彎矩 蝸輪段軸中間截面
=947628.6Nmm
軸承段軸中間截面處
=969381.2Nmm

947628.6Nmm
=969381.2Nmm

當量彎矩圖 圖7.7
軸徑校核

驗算結果在設計范圍之內,設計合格
軸的結果設計採用階梯狀,階梯之間有圓弧過度,減少應力集中,具體尺寸和要求見零件圖2(蝸輪中間軸)。
7.3裝蝸輪處軸的鍵槽設計及鍵的選擇
當軸上裝有平鍵時,鍵的長度應略小於零件軸的接觸長度,一般平鍵長度比輪轂長度短5—10mm,由參考文獻1表2.4—30圓整,可知該處選擇鍵2.5×110,高h=14mm,軸上鍵槽深度為 ,輪轂上鍵槽深度為 ,軸上鍵槽寬度為 輪轂上鍵槽深度為
八、減速器箱體的結構設計
參照參考文獻〈〈機械設計課程設計》(修訂版) 鄂中凱,王金等主編 東北工學院出版社 1992年第19頁表1.5-1可計算得,箱體的結構尺寸如表8.1:

表8.1箱體的結構尺寸
減速器箱體採用HT200鑄造,必須進行去應力處理。
設計內容 計 算 公 式 計算結果
箱座壁厚度δ =0.04×225+3=12mm
a為蝸輪蝸桿中心距 取δ=12mm
箱蓋壁厚度δ1 =0.85×12=10mm
取δ1=10mm
機座凸緣厚度b b=1.5δ=1.5×12=18mm b=18mm
機蓋凸緣厚度b1 b1=1.5δ1=1.5×10=15mm b1=18mm
機蓋凸緣厚度P P=2.5δ=2.5×12=30mm P=30mm
地腳螺釘直徑dØ dØ==20mm dØ=20mm
地腳螺釘直徑d`Ø d`Ø==20mm d`Ø==20mm
地腳沉頭座直徑D0 D0==48mm D0==48mm
地腳螺釘數目n 取n=4個 取n=4
底腳凸緣尺寸(扳手空間) L1=32mm L1=32mm
L2=30mm L2=30mm
軸承旁連接螺栓直徑d1 d1= 16mm d1=16mm
軸承旁連接螺栓通孔直徑d`1 d`1=17.5 d`1=17.5
軸承旁連接螺栓沉頭座直徑D0 D0=32mm D0=32mm
剖分面凸緣尺寸(扳手空間) C1=24mm C1=24mm
C2=20mm C2=20mm
上下箱連接螺栓直徑d2 d2 =12mm d2=12mm
上下箱連接螺栓通孔直徑d`2 d`2=13.5mm d`2=13.5mm
上下箱連接螺栓沉頭座直徑 D0=26mm D0=26mm
箱緣尺寸(扳手空間) C1=20mm C1=20mm
C2=16mm C2=16mm
軸承蓋螺釘直徑和數目n,d3 n=4, d3=10mm n=4
d3=10mm
檢查孔蓋螺釘直徑d4 d4=0.4d=8mm d4=8mm
圓錐定位銷直徑d5 d5= 0.8 d2=9mm d5=9mm
減速器中心高H H=340mm H=340mm
軸承旁凸台半徑R R=C2=16mm R1=16mm
軸承旁凸台高度h 由低速級軸承座外徑確定,以便於扳手操作為准。 取50mm
軸承端蓋外徑D2 D2=軸承孔直徑+(5~5.5) d3 取D2=180mm
箱體外壁至軸承座端面距離K K= C1+ C2+(8~10)=44mm K=54mm
軸承旁連接螺栓的距離S 以Md1螺栓和Md3螺釘互不幹涉為准盡量靠近一般取S=D2 S=180
蝸輪軸承座長度(箱體內壁至軸承座外端面的距離) L1=K+δ=56mm L1=56mm
蝸輪外圓與箱體內壁之間的距離 =15mm
取 =15mm

蝸輪端面與箱體內壁之間的距離 =12mm
取 =12mm

機蓋、機座肋厚m1,m m1=0.85δ1=8.5mm, m=0.85δ=10mm m1=8.5mm, m=10mm
以下尺寸以參考文獻《機械設計、機械設計基礎課程設計》 王昆等主編 高等教育出版社 1995年表6-1為依據
蝸桿頂圓與箱座內壁的距離 =40mm
軸承端面至箱體內壁的距離 =4mm
箱底的厚度 20mm
軸承蓋凸緣厚度 e=1.2 d3=12mm 箱蓋高度 220mm 箱蓋長度
(不包括凸台) 440mm
蝸桿中心線與箱底的距離 115mm 箱座的長度
(不包括凸台) 444mm 裝蝸桿軸部分的長度 460mm
箱體寬度
(不包括凸台) 180mm 箱底座寬度 304mm 蝸桿軸承座孔外伸長度 8mm
蝸桿軸承座長度 81mm 蝸桿軸承座內端面與箱體內壁距離 61mm

九、減速器其他零件的選擇
經箱體、蝸桿與蝸輪、蝸輪軸以及標准鍵、軸承、密封圈、擋油盤、聯軸器、定位銷的組合設計,經校核確定以下零件:
表9-1鍵 單位:mm
安裝位置 類型 b(h9) h(h11) L9(h14)
蝸桿軸、聯軸器以及電動機聯接處 GB1096-90
鍵10×70 10 8 70
蝸輪與蝸輪軸聯接處 GB1096-90
鍵25×110 25 14 110
蝸輪軸、聯軸器及傳動滾筒聯接處 GB1096-90
鍵20×110 20 12 110
表9-2圓錐滾動軸承 單位:mm
安裝位置 軸承型號 外 形 尺 寸
d D T B C
蝸 桿 GB297-84
7312(30312) 60 130 33.5 31 26
蝸輪軸 GB/T297-94
30216 80 140 28.25 26 22

表9-3密封圈(GB9877.1-88) 單位:mm
安裝位置 類型 軸徑d 基本外徑D 基本寬度
蝸桿 B55×80×8 55 80 8
蝸輪軸 B75×100×10 75 100 10

表9-4彈簧墊圈(GB93-87)
安裝位置 類型 內徑d 寬度(厚度) 材料為65Mn,表面氧化的標准彈簧墊圈
軸承旁連接螺栓 GB93-87-16 16 4
上下箱聯接螺栓 GB93-87-12 12 3

表9-5擋油盤
參考文獻《機械設計課程設計》(修訂版) 鄂中凱,王金等主編 東北工學院出版社 1992年第132頁表2.8-7
安裝位置 外徑 厚度 邊緣厚度 材料
蝸桿 129mm 12mm 9mm Q235

定位銷為GB117-86 銷8×38 材料為45鋼

十、減速器附件的選擇
以下數據均以參考文獻《機械零件設計課程設計》 毛振揚 陳秀寧 施高義 編 浙江大學出版社的P106-P118
表10-1視孔蓋(Q235) 單位mm
A A1 A。 B1 B B0 d4 h
150 190 170 150 100 125 M 8 1.5

表10-2吊耳 單位mm
箱蓋吊耳 d R e b
42 42 42 20
箱座吊耳 B H h
b
36 19.2 9..6 9 24

表10-3起重螺栓 單位mm
d D L S d1

C d2 h
M16 35 62 27 16 32 8 4 2 2 22 6

表10-4通氣器 單位mm
D d1 d2 d3 d 4 D a b s
M18×1.5 M33×1.5 8 3 16 40 12 7 22
C h h1 D1 R k e f
16 40 8 25.4 40 6 2 2

表10-5軸承蓋(HT150) 單位mm
安 裝
位 置 d3 D d 0 D0 D2 e e1 m D4 D5 D6 b1 d1
蝸桿 10 130 11 155 180 12 13 35.5 120 125 127 8 80
蝸輪軸 10 140 11 165 190 12 13 20 130 135 137 10 100
表10-6油標尺 單位mm

d1 d2 d3 h a b c D D1
M16 4 16 6 35 12 8 5 26 22
表10-7油塞(工業用革) 單位mm
d D e L l a s d1 H
M1×1.5 26 19.6 23 12 3 17 17 2

十一、減速器的潤滑
減速器內部的傳動零件和軸承都需要有良好的潤滑,這樣不僅可以減小摩擦損失,提高傳動效率,還可以防止銹蝕、降低雜訊。
本減速器採用蝸桿下置式,所以蝸桿採用浸油潤滑,蝸桿浸油深度h大於等於1個螺牙高,但不高於蝸桿軸軸承最低滾動中心。
蝸輪軸承採用刮板潤滑。
蝸桿軸承採用脂潤滑,為防止箱內的潤滑油進入軸承而使潤滑脂稀釋而流走,常在軸承內側加擋油盤。
1、《機械設計課程設計》(修訂版) 鄂中凱,王金等主編 東北工學院出版社 1992年
2、《機械設計 第四版》 邱宣懷主編 高等教育出版社出版 1996年
3、《機械設計、機械設計基礎課程設計》 王昆等主編 高等教育出版社 1995年
4、《機械設計課程設計圖冊》(第三版) 龔桂義主編 高等教育出版社 1987年
5、《機械設計課程設計指導書》(第二版) 龔桂義主編 高等教育出版社 1989年
6、簡明機械設計手冊(第二版) 唐金松主編 上海科學技術出版社 2000年
《機械設計課程設計》 劉俊龍 何在洲 主編 機械工業出版社 1993年
《機械零件設計課程設計》 毛振揚 陳秀寧 施高義 編 浙江大學出版社1989
《機械設計 第四版》 邱宣懷主編 高等教育出版社出版 1996年

要的就Q我406592117

『叄』 一級減速器箱體、箱蓋上為什麼要設計筋板筋板有什麼作用如何布置

一級減速器箱體、箱蓋上為什麼要設計筋板?答:為保證殼體的強度、剛度,減小殼體的厚度;筋板有什麼作用?答:增大減速機殼體剛度!如何布置?答:一般是在兩軸安裝軸承的上下對稱位置分別布置較好!

『肆』 求一級斜齒圓柱齒輪減速器設計說明書及CAD圖

所有圖(包括彎矩扭矩圖)在我郵箱,有需要再通知我[email protected]

目 錄

1. 任務書
2. 電動機的選擇
3. 傳動裝置總傳動比計算並分配傳動比
4. 傳動裝置的運動參數和動力參數計算
5. 齒輪傳動設計及計算
6. 輸入軸的設計結構計算
7. 輸出軸的設計結構計算
8. 滾動軸承的選擇計算
9. 鍵的選擇
10. 聯軸器的選擇
11. 箱體的結構設計計算
12. 潤滑方式的選擇
13. 潤滑油的選擇
14. 密封選擇
15. 參考資料
16. 學習小結
17. 零件圖

1. 任務書
一、 程設計的性質和目的
機械設計課程設計是把學過的各學科的理論較全面地綜合應用到實際工程中
去,力求從課程內容上、從分析問題和解決問題的方法上,從設計思想上培養工
程設計能力,課程設計有以下幾個方面的要求:
1. 培養綜合運動機械設計課程和其他先修課程的基礎理論和基礎知識,以及結
合生產實踐分析和解決工程實際問題的能力使所學的知識得以融會貫通,調
協應用。
2. 通過課程設計,學習和掌握一般機械設計的程序和方法,樹立正確的工程設
計的思想,培養獨立的、全面的、科學的工程設計能力。
3. 在課程設計的實踐中學會查找、翻閱、使用標准、規范,手冊,圖冊和相關
的技術資料等。熟悉個掌握機械設計的基本技能。

二、 課程設計的內容
1.設計題目:
帶式輸送機傳動裝置中的一級圓柱齒輪減速器
2.運動簡圖

3.工作條件
傳動不逆轉,載荷平穩,起動載荷的名義載荷的1.25倍,使用期限10年,兩班制工作,輸送帶速度容許誤差為±5%,輸送帶效率一般為0.94~0.96。
4.原始數據
已知條件 題號 1
輸送帶拉力F(N) 3.2
滾筒直徑D(mm) 450
輸送帶速度v(m/s) 1.7

三、 完成工作量
(1) 設計說明書1份
(2) 減速器裝配圖1張
(3) 減速器零件圖3張

四、 機械設計的一般過程
設計過程:

設計任務——總體設計——結構設計——零件設計——加工生產——安裝調試

五、 課程設計的步驟
在課程設計時,不可能完全履行機械設計的全過程,只能進行其中一些的重要
設計環節,如下:
1. 設計准備
認真閱讀研究設計任務書,了解設計要求和工作條件。
2. 傳動裝置的總體設計
首先根據設計要求,同時參考比較其他設計方案,最終選擇確定傳動裝置的總
體布置。
3. 傳動零件的設計計算
設計計算各級傳動零件的參數和主要尺寸
4. 結構設計(裝配圖設計)
首先進行裝配草圖設計,設計軸,設計軸承,最後完成裝配圖的其他要求。在
完成裝配草圖的基礎上,最終完成的圖即正式的餓裝配結構設計。
5. 完成兩張典型零件工作圖設計
6. 編寫和整理設計說明書
7. 設計總結和答辯

六、 課程設計中應注意的問題
課程設計是較全面的設計活動,在設計時應注意以下的一些問題:
(一)全新設計與繼承的問題
在設計時,應從具體的設計任務出發,充分運用已有的知識和資料進行科學、
先進的設計。
(二)正確使用有關標准和規范
為提高所設計機械的質量和降低成本,在設計中應盡量採用標准件,外購件,
盡量減少的自製件。
(三)正確處理強度,剛度,結構和工藝間的關系
在設計中任何零件的尺寸都不可能全部由理論計算來確定,而每個零件的尺寸
都應該由強度,剛度,結構。加工工藝,裝配是否方便,成本高低等各方面的要
求來綜合確定的。
(四)計算與圖畫的要求
進行裝配圖設計時,並不僅僅是單純的圖畫,常常是圖畫與設計計算交叉進行
的。先由計算確定零件的基本尺寸,再草圖的設計,決定其具體結構尺寸,再進
行必要的計算。

2. 電動機的選擇
電動機已經系統化,系統化一般由專門工廠按標准系列成批大量生產,設計時只需根據工作載荷,工作機的特性和工作環境,選擇電動機的類型,結構形式和轉速,計算電動機功率,最後全頂電動機型號.
一 類型選擇
電動機類型選擇是根據電源種類(流或交流),工作條件(度,環境,空間,尺寸等)及載荷特點(性質,大小,起動性和過載現象)來選擇的.目前廣泛應用Y系列三相非同步電動機(JB3074-82)是全封閉自扇冷鼠型三相非同步電動機,適用於無特殊要求的各種機械設備.由於Y系列電動機具有交好的起動性能,因此,也適用於某些對起動轉矩有較高要求的機械,如壓縮機等.
二 電動機功率確定
電動機功率是根據工作機容量的需要來確定的.電動機的額定功率應等於或大於電動機所需功率Pw
1 工作機所需功率Pw
根據公式計算:已知工作機阻力Fw和速度Vw則工作機所需功率Pw為:

式中:Fw-工作機阻力,N
Vw-工作機線速度,m/s
將數據 Fw=3.2kN
帶入公式 =5.44kW
2輸出功率Pd
已知Pw=5.44kW
由任務要求知:
查表得:
代入得:
由公式
選擇額定功率7.5kW的電動機
在計算傳送裝置的總功率時,應注意以下幾點:
1)取傳動副效率是否以包括其軸效率,如包括則不應計算軸承效率
2)軸承的效率通常指-對軸承而言
3)同類性的幾對傳動副,軸承,或聯軸器,要分別考慮效率
4)當資料給出的效率為-范圍時,一般可以取中間值,如工作條件差,加工條件差,加工精度低或維護不良時應取低值,反之應取高值.
3確定工作機轉速
額定功率相同的類型電動機,可以有幾種轉速供選擇,如三相非同步電動機就有四種常見 同步轉速,即:3000r/min,1500r/min,1000r/min,750r/min電動機的轉速高,極對數少,尺寸和質量叫,價格便宜,但機械傳動裝置總轉動比加大,結構尺寸偏大,成本也變高,所以選擇電動機轉速時必須作全面分析比較,首先滿足主要要求,盡量兼顧其他要求.
公式:
代入數據:V=1.7m/s,d=450mm(注:式中為輸送帶速度為滾筒轉矩)

為了便於選擇電動機轉速,需要先考慮電動機轉速得可選范圍。由《機械設計課程設計》P6表2-1查得V帶傳動常用得傳動常用得傳動范圍i鏈=2~5,i齒3~5,則電動機轉速可選范圍為:

nd=i鏈*i齒*nw=(2~5)*(3~5)*72.2=(6~25)*72.2=433.2~1805r/min

4型號選擇
綜合考慮電動機和轉動裝置的尺寸,結構和帶裝動,及減速器的轉動比,故查表知電動機型號可選擇:Y132M-4.
(注:表格在課程設計書264頁)
以下附電動機選擇計算表:
電動機類型 Y系列一般用三相非同步電動機
選擇電動機功率
Pw=5.44(kW)

輸出功率:

確定電動機轉速
nd=433.2-1805r/min
型號選擇 Y132M-4

(註:參考選擇表均在《課程設計》書中:P10,P264)

3. 傳動裝置總傳動比計算並分配傳動比
電動機選定後,按照電動機的滿載轉速n及電動機的傳速n,可確定傳動裝置的總傳動比
i=nm/nw
當各級傳動機構串聯時,傳動裝置的總傳動比是各級傳動比的連乘積,即i=i1*i2*i3……in

式中i1、i2、i3……in分別為各級的傳動比。

i總=nm/nw=滿載轉速/工作機轉速
由傳動方案可知,傳動裝置的總傳動比等於各級合理地分配各級傳動比,在傳動裝置總體設計中很重要地,它將直接影響到傳動裝置外廓尺寸.質量.潤滑條件.成本地高低.傳動零件地圓周速度大小及精度等級地高低。要同時滿足各方面地要求是不現實的,也是非常困難的,應根據具體設計要求,進行分析比較,首先滿足主要要求,盡量兼顧其他要求。在合理分配傳動比時應該注意以下幾點。
1 .各級傳動比都應在常用的合理范圍之內,以符合各種傳動形式的工作特點,能在最佳狀態下運轉,並使結構緊湊,工藝合理。
2 .應使傳動裝置結構尺寸較小,質量較輕。
3 .應使各傳動件尺寸協調,結構均勻稱合理,避免相互干擾碰撞。

傳動裝置中的總傳動比 i總=nm/nw i總=19.95
分配各級傳動比 i齒=4 I鏈=19.95/4=4.99
(註:各級傳動比見《課程設計》P12表2—4)

4. 傳動裝置的運動參數和動力參數計算

機械傳動裝置的運動參數和動力參數,主要指的使各軸的功率.轉速和轉距,它為設計計算傳動比和軸提供極為需要的依據。
計算各軸運動和動力參數時,應將傳動裝置中各軸從高速軸到低速軸依此編號,定位0軸(電機軸).1軸.2軸…,相鄰的輸入功率P1.P2.P3…,相鄰兩軸的傳動比效率為n01.n12.n23…,各軸的輸入功率為P1.P2.P3…,各軸的輸入轉距為T1.T2.T3…,各軸的輸入轉速為n1.n2.n3….
電動機軸的輸出功率、轉速、和轉距為
1.轉動比分配
工作機的轉速 n=
i總= n/n=1440/81.21=17.73
i齒=4,i鏈=19.95/4=4.99
將電動機至工作機的軸依次編號0,1,2……

(1) 轉速n
nm=n1=n0=1440r/min
n2=n1/i齒=1440/4=360r/min
n3=n2/i鏈=360/4.99=72.14r/min
(2) 功率P
P0=Pd=6.63kW
P1=P0×η聯×η軸承=6.63×0.99×0.99=6.50kW
P2=P1×η齒×η軸承=6.50×0.97×0.99=5.99kW
P3=P2×η鏈×η軸承=5.99×0.96×0.99=5.70kW
(3)轉距
T0=9550×P0/n0=9550×6.63/1440= 43.97N•m
T1=T0 ×η軸承×η聯= 43.97×0.99×0.99=43.09 N•m
T2=T1 ×η軸承×η齒×i齒=43.09×0.96×0.97×4=160.52 N•m
T3=T2×η鏈×i鏈=160.52×0.96×4.99=768.95 N•m
根據上述計算可得出各軸的功率、轉速和扭距。
0軸 P0=Pd=6.63kW
n滿=n1=n0=1440r/min
T0=9550×Pd/N滿=9550×6.63/1440= 43.97N•m P0=6.63kW
n0=1440r/min
T0=43.97N•m
1軸 P1=P0×η聯×η軸=6.63×0.99×0.99=6.50kW
n1=n0=1440r/min
T1=T0 ×η軸承×η聯軸器=43.97×0.99×0.99=43.09 N•m P1=6.50kW
n1=1440r/min
T1=43.09 N•m

2軸 P2=P1×η齒×η軸承=6.50×0.97×0.99=5.99kW
n2=n1/i齒=1440/4=360r/min
T2=T1 ×η軸承×η齒×i齒=43.09×0.96×0.97×4=160.52 N•m P2=5.99kW
n2=360r/min
T2=160.52 N•m

3軸 P3=P2×η鏈×η軸承=5.99×0.96×0.99=5.70kW
n3=n2/i鏈=360/4.99=72.14r/min
T3=T2×η軸承×η鏈×i鏈=160.52×0.96×4.99=768.95 N•m P3=5.70 kW
n3=72.14r/min
T3=768.95 N•m

具體計算數據如下:
軸名 功率P/kW 轉矩T/N•M 轉速N(r/min) 傳動比
i 效率
η
輸入 輸出 輸入 輸出
電機軸 6.63 43.97 1440 1 0.990
Ⅰ軸 6.05 43.09 1440 4 0.990
Ⅱ軸 5.99 160.52 360 4.99 0.970
Ⅲ軸 5.70 768.95 72.14 0.960
5.齒輪傳動設計計算
設計單級標準直齒圓柱齒輪減速的齒輪傳動。該減速器用電動機驅動,載荷平穩,單向運轉。
齒輪材料與熱處理的選擇是要根據具體的工作要求來決定的,此外還要考慮齒輪毛呸製造方法。當齒輪直徑d≤500mm時,根據製造條件,可採用鍛造毛呸。
當齒輪直徑d≥500mm時,多採用鑄造毛呸。小齒輪根圓直徑與軸徑接近時,齒輪要和軸要製成一體,這時選材要兼顧軸的要求。同一減速器的各級小齒輪(或大齒輪)的材料盡可能一致,以減少材料牌號和工藝要求。
齒輪強度計算中不論是針對大齒輪還是針對小齒輪的(許用應力和齒輪系數,不論用哪個齒輪的數值),其公式中的轉矩,齒輪的直徑或齒數都應是小齒輪的轉矩T1,小齒輪的分度圓d1和小齒輪的齒數z1
小齒輪的齒數選取首先要注意不能產生根切,另外齒數的選取還要考慮在滿足強度要求的情況下,盡能多一些,這樣可以加大重合度系數,提高轉動的平穩性,且能減少加工量。大齒輪和小齒輪的齒數最好互為質數,防止磨損或失效集中在某幾個齒上。
為了保證齒輪安裝以後仍能夠全齒嚙合,那麼小齒輪齒寬應比大齒輪齒寬要寬5~8mm。模數首先要標准化,是一個標准值,並且在工程上要求傳遞動力的齒輪的模數M≥1.5mm。
按下表步驟計算:
計算項目 計算內容 計算結果
1.選擇材料與熱處理方式 因該齒輪傳動比無特殊要求,故可選一般材料,而且為軟齒面。 小齒輪材料為45鋼,調質處理,硬度為(220-250)HBS.計算取平均數235HBS
大齒輪材料為45鋼,正火處理,硬度為(170-210)HBS. 計算取平均數
2.選擇齒輪精度 因為是一般減速器,故選擇8級精度,要求齒面粗糙度
Ka≤(3.2-6.3)μm 初選8級精度

計算齒輪比
小齒輪的轉矩 由原動機為電動機,工作機為帶式輸送機,載荷平穩,齒輪在兩軸之間對稱布置,查零件書P117章節內容(直齒 均勻、輕微沖擊)
μ=Z2/Z1=N1/N2=1440/360=4
T1=9.55× ×P1/N1=9.55× × N•mm
K=1.2
μ=4
T1=4.31×

確定齒數Z1 Z2 對於周期性變化的載荷,為避免最大載荷總是總用在某一對或幾對齒輪上而是磨損過於集中,Z1 Z2應互為質數。 Z1=27 Z2=103
應力循環次數 N1=60njLh=60×1440×1.05×(10×300×8×2)=4.35×109
N2=N1/i齒=1.09×109 N1=4.35×109
N2=1.09×109
許用接觸應力
選擇齒寬系數 由書P126圖7-18得ZNT1=0.9,ZNT2=0.95
由書P120表7-9得SH=1.05
由書P122圖7-16(a)得 =560 Mpa =530 Mpa
[σH]1=ZNT1×GHLIM1/SH=0.9×560/1.05=480MPa
[σH]2=ZNT2×GHLIM2/SH=0.95×530/1.05=479.52MPa [σH]1=480MPa
[σH]2=479.5MPa
齒輪分度圓直徑 由於口齒合求出應力是一樣的故用小齒輪應力計算(書P114 公式7-5)
d≥ = =50mm
d=50mm
確定齒輪模數 m=d/z1=50/27=1.85取標准模數m=2 取m=2
計算齒輪主要尺寸 d1=mz1=2×27=54mm
d2=mz2=2×103=206mm
中心距a=0.5(d1+d2)=0.5×(54+206)=130mm
齒輪寬b2=ψd×d1=59.4mm
經圓整後b2取60mm
為了保證齒輪安裝以後仍能夠全齒嚙合,那麼小齒輪齒寬應比大齒輪齒寬要寬5~8mm。
b1=b2+5mm=65mm d1=54mm
d2=206mm
a=130mm
b2=60mm
b1=65mm

校核齒輪強度 確定兩齒輪的彎曲應力由書P190圖10-25查得齒輪彎曲疲勞極限
σFlim1=210MPa
σFlim2=190MPa
由最小安全系數SF=1.35
由書P190圖10.26查得彎曲疲勞系數
YNT1=0.85
YNT2=0.9
[σF]1=(YNT1×σFlim1)/SF=(0.85×210)/1.35=132.22MPa
[σF]2=(YNT2×σFlim2)/SF=(0.9×190)/1.35=126.67MPa σFlim1=210MPa
σFlim2=190MPa

[σF]1=132.22MPa
[σF]2=126.67MPa
兩齒輪齒根的彎曲應力 計算兩齒輪齒根的彎曲應力由書P195表10.13 10.14
YF1=2.57
YS1=1.60
YF2=2.18
YS2=1.79
比較(YF1×YS1)/[ σF]1=2.57×1.60/132.22=0.032
(YF2×YS2)/[ σF]2=2.18×1.79/126.67=0.030
計算小齒輪齒根彎曲應力 σF1= =54.61 MPa <[σF]1=132.22MPa
彎曲強度足夠
驗算圓周速度V並選取齒輪精度 V=πd1n1/(60×1000)=π×55×1440/(60×1000)=4.52<5m/s
8級精度合適
齒輪幾何尺寸計算 齒頂圓直徑da(ha*=1) da1=d1+2ha1=(Z1+2ha*)m=58mm
da2=d2+2ha1=(Z2+2ha*)m=210mm
齒全高h (C*=0.25)
h=(2ha*+C*)m=4.5mm
齒厚S=πm/2=3.14mm
齒根高hf=(ha*+C*)m=2.5mm
齒頂高ha=ha*m=2mm
齒根圓直徑df1=d1-2hf=49mm df2=d2-2hf=201mm da1=58mm
da2=210mm
h=4.5mm
ha=2mm
h)f=2,5mm
df1=49 mm
df2=201mm
s=3.14 mm
齒輪結構設計 小齒輪採用齒輪軸結構,大齒輪採用鍛造毛坯的腹板結構
大齒輪的相關尺寸計算如下:
軸孔直徑 ds=48 mm
軸轂直徑 D1=1.6ds=76.8 mm
軸轂長度 L=b2=60mm
軸緣厚度 δ0=(3-4)m=6-8mm 取7mm
輪緣內徑 D2=da-2h-2δ0=180mm
腹板厚度 C=0.3b2=0.3×58=18 mm
腹板中心孔直徑 D=0.5(D2+D1)=128.4mm
腹板的孔徑d0=0.25(D2-D1)=26 mm
齒輪倒角n=0.5m=1.25 mm =1mm ds=48 mm
D1=76.8 mm
L= 60mm
δ0=7mm
D2= 180 mm
C=18mm
D=128.4mm
d0=26mm
n=1 mm

6.輸入軸的設計結構計算
減速器傳遞功率屬於小功率,對於材料無特殊要求,選用45號鋼並經調質處理
根據表14.1得A=107-118
mm
若考慮到軸的最小直徑處要安裝聯軸器,會有鍵槽,故將估算直徑加大3%~5%
17.68×1.03=18.21
19.5×1.05=20.475

由設計手冊查取直徑 取d1=20mm
主動軸結構設計
根據設計一級減速器,可將齒輪布置在箱體中央,將軸承對稱安裝在齒輪兩側,軸的外伸端安裝聯軸器
根據軸上零件的定位,裝拆方便的需要,同時,考慮到強度原則,主動軸和從動軸均設計為階梯軸。
a)初步確定安裝聯軸器處直徑d1=20mm因半聯軸器軸孔長度Y型,軸孔長度L=52mm
b)為使軸段2與密封裝置相適合並與軸段1軸肩,故d2=22mm軸承蓋在端面與聯軸器距離L』=20軸承蓋厚=10mm 參考減速器箱體有關資料箱體內壁到軸段4距離為10故取軸段2的長度L2=30mm
c) 由軸段3與軸段2形成軸肩並與軸承相適應,故取d3=25mm L3=40mm
d)由軸承初選6305的安裝尺寸得知:
da=d4=30mm L4=b=1.4h=5.4mm取整得L4=6mm
e) d5 =35 軸段5為齒輪寬b1=60mm由齒輪端到箱體內壁 10mm,為保證齒輪固定可靠,軸段5的長度應短於齒輪輪轂寬度2mm,得L5
f)d6=30mm L6=7.5mm
g)d7=25mm L7=13mm
由此初步確定軸的各段長度和直徑

輸入軸的強度校核
(1)計算作用力
圓周力Ft=2000T1/d1=(2000×43.09)/54=1595,53N
徑向力Fr=Ft×tanα。=574.5N
由於直齒輪軸向力 Fa=0
(2)作主動軸受力簡圖
L=60+40=100
水平彎矩:FHA=FHB=Ft/2=797,97N
MHC=Ft(L/4)=39898.25 N•mm

鉛垂面彎矩:FVA=FVB=Fr/2=469.522/2=287.251N
MVC=Fr(L/4)=287.25×100/4=14362.5N•mm
合成彎距:
扭矩T=4.309× (N•mm)

α=0.6 脈動循環
校核危害截面的強度
由書P176表9-5 [σ-1b]=60MPa [σ0b]=102.5 MPa
σb=Mec/W=31.8MPa<[σ0b]=102.5 MPa

故軸的強度足夠

修改軸的結構
由於所設計軸的強度足夠,此軸不必再做修改

7.輸出軸的設計結構計算
(1)選擇軸的材料確定許用應力,由已知減速器傳遞功率居中小功率,對材料無特殊要求,選45鋼並經調質處理,由書查得強度極限σB=650MPa再由表得 許用彎曲應力[σ0b]=102.5MPa
(2)按扭轉強度估算直徑由書P173表9-3得
A=107-118
mm
由於軸的最小直徑處要安裝鏈輪,會有鍵槽,故將直徑加大3%~5%得27.32×1.03=28.14 mm 30.12×1.05=31,63mm由設計手冊取標準直徑d1=38mm
a)繪制軸系結構草圖
根據軸的軸向定位要求確定軸徑和軸長
b)初步確定軸徑d1=38mm軸段1的長度L1=82mm
c)軸段2要與軸段1形成軸肩並與密封裝置相適應,故取d2=40手冊P260表18-10由軸承蓋右端面與輪轂左端面距離為10 mm,軸承端蓋厚度為10 mm,參考減速箱體有關數據,箱體內壁至軸承端蓋左側距離為62 mm故L2=54.5mm
d)由軸段3與軸承相適合初選一對6009深溝球軸承,d×D×B=45×75×16
故d3=45mm 由(b2/2)+a1=(b2/2)+a2 得齒輪端面至箱體內壁的距離為12.5mm 故軸段3的長度L3=50mm
e)軸段4與齒輪輪轂相適合,使輪轂與套筒緊貼,要略短於輪轂長度L=52mm d4=48mm 所以 L4=52mm d4=48mm
f)軸環取 h=(0.07-0.1)h 取h=6mm d5=54mm L5=b=1.4h=8.4 mm取整10 mm
g)軸段6與軸承相適應 d6=45mm L6=18mm
所以 d6=45mm L6=18mm

由此初步確定軸的各段長度和直徑

從動軸強度校核
(1)計算作用力
圓周力Ft=2000T3/d2=(2000×768.95)/220=7689.5N
徑向力Fr=Ft×tanα=2833.2N
由於直齒輪軸向力 Fa=0
(2)輸出軸受力
支撐點間距離L=50+43=95mm
水平彎矩:FHA=FHB=Ft/2=3934.75N
MHC=Ft(L/4)=192802.75N•mm

鉛垂面彎矩:FVA=FVB=Fr/2=1416.51N
MVC=Fr(L/4)=69408.99 N•mm
合成彎距:

校核危害截面的強度
由書P176表9-5 [σ0b]=102,5MPa
σb=Mec/W =45.6MPa<[σ0b]=102.5MPa
故軸的強度足夠.

修改軸的結構
由於所設計軸的強度足夠,此軸不必再做修改

8.滾動軸承的選擇計算
滾動軸承的選擇:
1)主動軸的軸承
考慮軸受力小且主要是徑向力,故選用深溝球軸承
壽命計劃:壽命10年雙班制 Lh=10×300×8×2=48000h
兩軸承受純徑向載荷 由書P219表11-5 fp=1.5 X=1 Y=0 球軸承ε=3

基本容量定動載荷
由書P236表16-2選取6305深溝球軸承一對GB/T276-1994
L10h= =120113.96h由L10h> Lh 故軸承壽命合格
2)從動軸的軸承
X=1 Y=0 球軸承ε=3

基本額定動載荷
由書選擇6009深溝球軸承一對GB/T276-1993
L10h= =109204.3h
由L10h> Lh 故軸承壽命合格

9.鍵的選擇
(1)輸入軸外伸端D1=20mm,考慮鍵在軸中部安裝
a)選鍵的型號和確定尺寸
車轂長L=52mm故由(課程設計P183表14-21)選鍵的型號和確定尺寸
選A型普通鍵,材料45鋼
鍵寬b=8mm,鍵高h=7mm,鍵長由(設計基礎P279)長度採到取鍵長L=45mm
b)校核鍵聯接強度
由鍵、輪轂、軸、材料為45鋼,由表14.6得
[σJH]b3=100-120MPa(輕微沖擊)
A鍵工作長度L=L-B=45-8=37mm
σjy=4T/dhl=12.18MPa
由σjy小於[σb],則強度足夠鍵8×45 GB1096-79

(2)輸入軸中部D5=30mm考慮鍵在軸中部安裝軸段長L=48mm,故由手冊P183表14-21得
a)選鍵的型號和確定尺寸
選A型普通鍵,材料45鋼
L=36mm 鍵寬b=8mm 鍵高h=7mm
b)校核鍵聯接強度
由鍵車轂,軸材料為45鋼由表14.6
得[σJH]b3=100-120MPa
A鍵工作長度L=L-b=28mm
σjy=4T/dhl=14.4MPa
由σjy小於[σ] 則強度足夠鍵10×45 GB1096-79

(3)輸出軸外伸端D=38mm,考慮鍵在軸中部安裝段長L=62mm 查(課程設計P183表14-21)
a)選鍵的型號和確定尺寸
鍵寬b=8mm,鍵高h=7mm
鍵長由長度系列取鍵長L=45mm
b)校核鍵聯接強度
由鍵車轂,軸材料為45鋼
[σJH]b3=100-120MPa
A鍵工作長度L=L-b=45-8=37mm
σjb=4T/dhl=10.66MPa
由σjy小於[σ]則強度足夠鍵8×45 GB1096-79

(4)輸出軸中部D5=45mm考慮鍵在軸中部安裝軸段長L=48mm,故由手冊P183表14-21得
a)選鍵的型號和確定尺寸
選A型普通鍵,材料45鋼
L=36mm 鍵寬b=10mm 鍵高h=8mm
b)校核鍵聯接強度
由鍵車轂,軸材料為45鋼由表14.6
得[σJH]b3=100-120MPa
A鍵工作長度L=L-b=28mm
σjy=4T/dhl=6.73MPa
由σjy小於[σ] 則強度足夠鍵10×45 GB1096-79

10.聯軸器的選擇
(1)由於減速器載荷平穩,速度不高,無特殊要求,考慮裝拆方便及經濟問題選凸緣聯軸器
由書得K=1.35
TC=KT=1.35×43.09=52.8N•m
由手冊P645選GYH2聯軸器 GB5843-2003
凸緣聯軸器,公稱擔矩Tn=63N•m
TC大於Tn採用Y型軸孔 軸孔直徑D=20mm Y型
軸孔長度L=52mm
YL4型凸緣聯軸器有關參數
(2)輸出軸 轉矩為T=768.95
查手冊P645查手冊選GYH5聯軸器GB5843-2003
軸孔直徑d=35mm 軸孔長度L=82mm Y型

型號 公稱轉矩 許用轉速 軸孔直徑 外徑 鍵型
GYH2 63N.m 10000r/min 20mm 90mm A鍵
GYH6 900 N.m 6800 r/min 38mm 140mm A鍵

11. 箱體主要結構尺寸的計算
機座壁厚δ=0.025a+1≥8取11mm
機蓋壁厚δ1=0.02a+1≥8取10mm
機座凸緣厚度b=1.5δ=16.5取17mm
機蓋凸緣厚度b1=1.5δ1=15mm
機座底緣厚b2=25δ=27.5取28mm
地腳螺釘直徑df=0.036a+12=15.6取M16
地腳螺釘數a≤250 n=4
軸承彎聯接直徑d=0.75df=M12
機蓋與機座連接螺栓直徑d2=(0.5-0.6)df=M10
聯接螺栓D2間距L=(150~200)mm
軸承端蓋螺釘直徑d3=(0.4-0.5)df取M8
窺孔蓋螺釘直徑d4=(0.3-0.4)df取M4
螺釘扳手空間
至外機壁L1LIM=13mm
至凸緣邊距離C2MIN=11mm
外機壁旁凸台半徑R1×C1=11mm
大齒輪頂圓與機壁距離Δ大於1.2δ取13mm
齒輪端面與內壁距離Δ2=10mm
機蓋`機座助厚M1≈0.85S1取10 mm M2≈0.85S2取10mm
從動軸承端蓋外徑D2=D+(5-5.5)d3=95mm
主動軸承端蓋外徑D'2=D』+(5-5.5)d3=105mm
軸承端蓋厚t=(1-1.2)d3取10mm

12. 減速器潤滑方式潤滑油牌號及用量密封方式的選擇
1)計算線速度
V=3.14×d×n/60×1000m/min
V1=3.14×55×1440/60×1000=4.1448 m/min
由V小於12應用浸油潤滑

2)由書P209表10.18得運動粘度ν50℃=85mm2/S
再由書P13表2.1得齒輪潤滑選L-CKC680機械油GB5903-95
最低~最高油麵距(大齒輪)10mm,需用油量1.5L左右
書P15表2.2 軸承選用ZL-3型潤滑脂 GB7324-87
用油量為軸承1/3~1/2為宜

3)a)箱座與箱蓋凸緣合面的密封
選用在接合面塗密封漆或水玻璃的方法
b)觀察孔和油孔等處接合面的密封
在觀察孔或螺塞與機體之間加石棉橡膠低.墊片密封
c)軸承孔的密封
透蓋用作密封與之對應的軸承外部軸的中端與透蓋間隙
由手冊P260表18~10
主動軸氈圈22 FZ/T92010-91
從動軸氈圈22 FZ/T92010-91

13.參考資料
參考文獻:1:《機械設計基礎》,高等教育出版社,陳立德主編,2004年7月第二版;
2:《機械設計課程設計》,北京航空航天大學出版社,任家卉主編;
3:《機械零件》-北京:主編:鄭志祥,高等教育出版社,2000 (2010重印);
4:《新編機械設計手冊》/張黎驊,鄭嚴編,-北京:人民郵電出版社,2008.5
5:《機械原理》,高等教育出版社,陳立德主編;

『伍』 一級圓柱齒輪減速器設計說明書

計算過程及計算說明
一、傳動方案擬定
第三組:設計單級圓柱齒輪減速器和一級帶傳動
(1) 工作條件:使用年限8年,工作為二班工作制,載荷平穩,環境清潔。
(2) 原始數據:滾筒圓周力F=1000N;帶速V=2.0m/s;
滾筒直徑D=500mm;滾筒長度L=500mm。

二、電動機選擇
1、電動機類型的選擇: Y系列三相非同步電動機
2、電動機功率選擇:
(1)傳動裝置的總功率:
η總=η帶×η2軸承×η齒輪×η聯軸器×η滾筒
=0.96×0.982×0.97×0.99×0.96
=0.85
(2)電機所需的工作功率:
P工作=FV/1000η總
=1000×2/1000×0.8412
=2.4KW

3、確定電動機轉速:
計算滾筒工作轉速:
n筒=60×1000V/πD
=60×1000×2.0/π×50
=76.43r/min
按手冊P7表1推薦的傳動比合理范圍,取圓柱齒輪傳動一級減速器傳動比范圍I』a=3~6。取V帶傳動比I』1=2~4,則總傳動比理時范圍為I』a=6~24。故電動機轉速的可選范圍為n』d=I』a×
n筒=(6~24)×76.43=459~1834r/min
符合這一范圍的同步轉速有750、1000、和1500r/min。

根據容量和轉速,由有關手冊查出有三種適用的電動機型號:因此有三種傳支比方案:如指導書P15頁第一表。綜合考慮電動機和傳動裝置尺寸、重量、價格和帶傳動、減速器的傳動比,可見第2方案比較適合,則選n=1000r/min 。

4、確定電動機型號
根據以上選用的電動機類型,所需的額定功率及同步轉速,選定電動機型號為Y132S-6。
其主要性能:額定功率:3KW,滿載轉速960r/min,額定轉矩2.0。質量63kg。

三、計算總傳動比及分配各級的偉動比
1、總傳動比:i總=n電動/n筒=960/76.4=12.57
2、分配各級偉動比
(1) 據指導書P7表1,取齒輪i齒輪=6(單級減速器i=3~6合理)
(2) ∵i總=i齒輪×I帶
∴i帶=i總/i齒輪=12.57/6=2.095

四、運動參數及動力參數計算
1、計算各軸轉速(r/min)
nI=n電機=960r/min
nII=nI/i帶=960/2.095=458.2(r/min)
nIII=nII/i齒輪=458.2/6=76.4(r/min)
2、 計算各軸的功率(KW)
PI=P工作=2.4KW
PII=PI×η帶=2.4×0.96=2.304KW
PIII=PII×η軸承×η齒輪=2.304×0.98×0.96
=2.168KW

3、 計算各軸扭矩(N

『陸』 一級圓柱齒輪減速器設計

數據有些不一樣 但可以給你一個參考。今年大幾啊?好好學習吧!
一種單級圓柱齒輪減速器,主要由主、從動變位齒輪、軸承、擋圈、端蓋、主、副殼體、花鍵軸、內花鍵套法蘭、壓蓋、軸承座組成。
其特點是主動變位齒輪是台階式的,一端部齒輪與從動變位齒輪聯接,另一端部與軸承、擋圈固定聯接,軸承的外套與軸承座聯接,軸承座與副殼體表面聯接固定。
此減速器由於主、從齒輪採用變位齒輪,主動變位齒輪的另一端部增加軸承、軸承座,改變過去的懸臂狀態,加強齒輪的工作強度,提高了減速器的壽命。

下面是設計說明書:
修改參數:輸送帶工作拉力:2300N
輸送帶工作速度:1.5m/s
滾筒直徑:400mm
每日工作時數:24h
傳動工作年限:3年

機械設計課程--帶式運輸機傳動裝置中的同軸式1級圓柱齒輪減速器 目 錄
設計任務書……………………………………………………1
傳動方案的擬定及說明………………………………………4
電動機的選擇…………………………………………………4
計算傳動裝置的運動和動力參數……………………………5
傳動件的設計計算……………………………………………5
軸的設計計算…………………………………………………8
滾動軸承的選擇及計算………………………………………14
鍵聯接的選擇及校核計算……………………………………16
連軸器的選擇…………………………………………………16
減速器附件的選擇……………………………………………17
潤滑與密封……………………………………………………18
設計小結………………………………………………………18
參考資料目錄…………………………………………………18
機械設計課程設計任務書
題目:設計一用於帶式運輸機傳動裝置中的同軸式二級圓柱齒輪減速器
一. 總體布置簡圖
1—電動機;2—聯軸器;3—齒輪減速器;4—帶式運輸機;5—鼓輪;6—聯軸器
二. 工作情況:
載荷平穩、單向旋轉
三. 原始數據
鼓輪的扭矩T(N•m):2200n
鼓輪的直徑D(mm):450mm
運輸帶速度V(m/s):1.6m/s
帶速允許偏差(%):5
使用年限(年):10
工作制度(班/日):2
四. 設計內容
1. 電動機的選擇與運動參數計算;
2. 斜齒輪傳動設計計算
3. 軸的設計
4. 滾動軸承的選擇
5. 鍵和連軸器的選擇與校核;
6. 裝配圖、零件圖的繪制
7. 設計計算說明書的編寫
五. 設計任務
1. 減速器總裝配圖一張
2. 齒輪、軸零件圖各一張
3. 設計說明書一份
六. 設計進度
1、 第一階段:總體計算和傳動件參數計算
2、 第二階段:軸與軸系零件的設計
3、 第三階段:軸、軸承、聯軸器、鍵的校核及草圖繪制
4、 第四階段:裝配圖、零件圖的繪制及計算說明書的編寫
傳動方案的擬定及說明
由題目所知傳動機構類型為:同軸式二級圓柱齒輪減速器。故只要對本傳動機構進行分析論證。
本傳動機構的特點是:減速器橫向尺寸較小,兩大吃論浸油深度可以大致相同。結構較復雜,軸向尺寸大,中間軸較長、剛度差,中間軸承潤滑較困難。
電動機的選擇
1.電動機類型和結構的選擇
因為本傳動的工作狀況是:載荷平穩、單向旋轉。所以選用常用的封閉式Y(IP44)系列的電動機。
2.電動機容量的選擇
1) 工作機所需功率Pw
Pw=3.4kW
2) 電動機的輸出功率
Pd=Pw/η
η= =0.904
Pd=3.76kW
3.電動機轉速的選擇
nd=(i1』•i2』…in』)nw
初選為同步轉速為1000r/min的電動機
4.電動機型號的確定
由表20-1查出電動機型號為Y132M1-6,其額定功率為4kW,滿載轉速960r/min。基本符合題目所需的要求
計算傳動裝置的運動和動力參數
傳動裝置的總傳動比及其分配
1.計算總傳動比
由電動機的滿載轉速nm和工作機主動軸轉速nw可確定傳動裝置應有的總傳動比為:
i=nm/nw
nw=38.4
i=25.14
2.合理分配各級傳動比
由於減速箱是同軸式布置,所以i1=i2。
因為i=25.14,取i=25,i1=i2=5
速度偏差為0.5%<5%,所以可行。
各軸轉速、輸入功率、輸入轉矩
項 目 電動機軸 高速軸I 中間軸II 低速軸III 鼓 輪
轉速(r/min) 960 960 192 38.4 38.4
功率(kW) 4 3.96 3.84 3.72 3.57
轉矩(N•m) 39.8 39.4 191 925.2 888.4
傳動比 1 1 5 5 1
效率 1 0.99 0.97 0.97 0.97

傳動件設計計算
1. 選精度等級、材料及齒數
1) 材料及熱處理;
選擇小齒輪材料為40Cr(調質),硬度為280HBS,大齒輪材料為45鋼(調質),硬度為240HBS,二者材料硬度差為40HBS。
2) 精度等級選用7級精度;
3) 試選小齒輪齒數z1=20,大齒輪齒數z2=100的;
4) 選取螺旋角。初選螺旋角β=14°
2.按齒面接觸強度設計
因為低速級的載荷大於高速級的載荷,所以通過低速級的數據進行計算
按式(10—21)試算,即
dt≥
1) 確定公式內的各計算數值
(1) 試選Kt=1.6
(2) 由圖10-30選取區域系數ZH=2.433
(3) 由表10-7選取尺寬系數φd=1
(4) 由圖10-26查得εα1=0.75,εα2=0.87,則εα=εα1+εα2=1.62
(5) 由表10-6查得材料的彈性影響系數ZE=189.8Mpa
(6) 由圖10-21d按齒面硬度查得小齒輪的接觸疲勞強度極限σHlim1=600MPa;大齒輪的解除疲勞強度極限σHlim2=550MPa;
(7) 由式10-13計算應力循環次數
N1=60n1jLh=60×192×1×(2×8×300×5)=3.32×10e8
N2=N1/5=6.64×107
(8) 由圖10-19查得接觸疲勞壽命系數KHN1=0.95;KHN2=0.98
(9) 計算接觸疲勞許用應力
取失效概率為1%,安全系數S=1,由式(10-12)得
[σH]1==0.95×600MPa=570MPa
[σH]2==0.98×550MPa=539MPa
[σH]=[σH]1+[σH]2/2=554.5MPa
2) 計算
(1) 試算小齒輪分度圓直徑d1t
d1t≥ = =67.85
(2) 計算圓周速度
v= = =0.68m/s
(3) 計算齒寬b及模數mnt
b=φdd1t=1×67.85mm=67.85mm
mnt= = =3.39
h=2.25mnt=2.25×3.39mm=7.63mm
b/h=67.85/7.63=8.89
(4) 計算縱向重合度εβ
εβ= =0.318×1×tan14 =1.59
(5) 計算載荷系數K
已知載荷平穩,所以取KA=1
根據v=0.68m/s,7級精度,由圖10—8查得動載系數KV=1.11;由表10—4查的KHβ的計算公式和直齒輪的相同,
故 KHβ=1.12+0.18(1+0.6×1 )1×1 +0.23×10 67.85=1.42
由表10—13查得KFβ=1.36
由表10—3查得KHα=KHα=1.4。故載荷系數
K=KAKVKHαKHβ=1×1.03×1.4×1.42=2.05
(6) 按實際的載荷系數校正所得的分度圓直徑,由式(10—10a)得
d1= = mm=73.6mm
(7) 計算模數mn
mn = mm=3.74
3.按齒根彎曲強度設計
由式(10—17 mn≥
1) 確定計算參數
(1) 計算載荷系數
K=KAKVKFαKFβ=1×1.03×1.4×1.36=1.96
(2) 根據縱向重合度εβ=0.318φdz1tanβ=1.59,從圖10-28查得螺旋角影響系數 Yβ=0。88

(3) 計算當量齒數
z1=z1/cos β=20/cos 14 =21.89
z2=z2/cos β=100/cos 14 =109.47
(4) 查取齒型系數
由表10-5查得YFa1=2.724;Yfa2=2.172
(5) 查取應力校正系數
由表10-5查得Ysa1=1.569;Ysa2=1.798
(6) 計算[σF]
σF1=500Mpa
σF2=380MPa
KFN1=0.95
KFN2=0.98
[σF1]=339.29Mpa
[σF2]=266MPa
(7) 計算大、小齒輪的 並加以比較
= =0.0126
= =0.01468
大齒輪的數值大。
2) 設計計算
mn≥ =2.4
mn=2.5
4.幾何尺寸計算
1) 計算中心距
z1 =32.9,取z1=33
z2=165
a =255.07mm
a圓整後取255mm
2) 按圓整後的中心距修正螺旋角
β=arcos =13 55』50」
3) 計算大、小齒輪的分度圓直徑
d1 =85.00mm
d2 =425mm
4) 計算齒輪寬度
b=φdd1
b=85mm
B1=90mm,B2=85mm
5) 結構設計
以大齒輪為例。因齒輪齒頂圓直徑大於160mm,而又小於500mm,故以選用腹板式為宜。其他有關尺寸參看大齒輪零件圖。
軸的設計計算
擬定輸入軸齒輪為右旋
II軸:
1.初步確定軸的最小直徑
d≥ = =34.2mm
2.求作用在齒輪上的受力
Ft1= =899N
Fr1=Ft =337N
Fa1=Fttanβ=223N;
Ft2=4494N
Fr2=1685N
Fa2=1115N
3.軸的結構設計
1) 擬定軸上零件的裝配方案
i. I-II段軸用於安裝軸承30307,故取直徑為35mm。
ii. II-III段軸肩用於固定軸承,查手冊得到直徑為44mm。
iii. III-IV段為小齒輪,外徑90mm。
iv. IV-V段分隔兩齒輪,直徑為55mm。
v. V-VI段安裝大齒輪,直徑為40mm。
vi. VI-VIII段安裝套筒和軸承,直徑為35mm。
2) 根據軸向定位的要求確定軸的各段直徑和長度
1. I-II段軸承寬度為22.75mm,所以長度為22.75mm。
2. II-III段軸肩考慮到齒輪和箱體的間隙12mm,軸承和箱體的間隙4mm,所以長度為16mm。
3. III-IV段為小齒輪,長度就等於小齒輪寬度90mm。
4. IV-V段用於隔開兩個齒輪,長度為120mm。
5. V-VI段用於安裝大齒輪,長度略小於齒輪的寬度,為83mm。
6. VI-VIII長度為44mm。
4. 求軸上的載荷
66 207.5 63.5
Fr1=1418.5N
Fr2=603.5N
查得軸承30307的Y值為1.6
Fd1=443N
Fd2=189N
因為兩個齒輪旋向都是左旋。
故:Fa1=638N
Fa2=189N
5.精確校核軸的疲勞強度
1) 判斷危險截面
由於截面IV處受的載荷較大,直徑較小,所以判斷為危險截面
2) 截面IV右側的

截面上的轉切應力為
由於軸選用40cr,調質處理,所以
([2]P355表15-1)
a) 綜合系數的計算
由 , 經直線插入,知道因軸肩而形成的理論應力集中為 , ,
([2]P38附表3-2經直線插入)
軸的材料敏感系數為 , ,
([2]P37附圖3-1)
故有效應力集中系數為
查得尺寸系數為 ,扭轉尺寸系數為 ,
([2]P37附圖3-2)([2]P39附圖3-3)
軸採用磨削加工,表面質量系數為 ,
([2]P40附圖3-4)
軸表面未經強化處理,即 ,則綜合系數值為
b) 碳鋼系數的確定
碳鋼的特性系數取為 ,
c) 安全系數的計算
軸的疲勞安全系數為
故軸的選用安全。
I軸:
1.作用在齒輪上的力
FH1=FH2=337/2=168.5
Fv1=Fv2=889/2=444.5
2.初步確定軸的最小直徑

3.軸的結構設計
1) 確定軸上零件的裝配方案
2)根據軸向定位的要求確定軸的各段直徑和長度
d) 由於聯軸器一端連接電動機,另一端連接輸入軸,所以該段直徑尺寸受到電動機外伸軸直徑尺寸的限制,選為25mm。
e) 考慮到聯軸器的軸向定位可靠,定位軸肩高度應達2.5mm,所以該段直徑選為30。
f) 該段軸要安裝軸承,考慮到軸肩要有2mm的圓角,則軸承選用30207型,即該段直徑定為35mm。
g) 該段軸要安裝齒輪,考慮到軸肩要有2mm的圓角,經標准化,定為40mm。
h) 為了齒輪軸向定位可靠,定位軸肩高度應達5mm,所以該段直徑選為46mm。
i) 軸肩固定軸承,直徑為42mm。
j) 該段軸要安裝軸承,直徑定為35mm。
2) 各段長度的確定
各段長度的確定從左到右分述如下:
a) 該段軸安裝軸承和擋油盤,軸承寬18.25mm,該段長度定為18.25mm。
b) 該段為軸環,寬度不小於7mm,定為11mm。
c) 該段安裝齒輪,要求長度要比輪轂短2mm,齒輪寬為90mm,定為88mm。
d) 該段綜合考慮齒輪與箱體內壁的距離取13.5mm、軸承與箱體內壁距離取4mm(採用油潤滑),軸承寬18.25mm,定為41.25mm。
e) 該段綜合考慮箱體突緣厚度、調整墊片厚度、端蓋厚度及聯軸器安裝尺寸,定為57mm。
f) 該段由聯軸器孔長決定為42mm
4.按彎扭合成應力校核軸的強度
W=62748N.mm
T=39400N.mm
45鋼的強度極限為 ,又由於軸受的載荷為脈動的,所以 。

III軸
1.作用在齒輪上的力
FH1=FH2=4494/2=2247N
Fv1=Fv2=1685/2=842.5N
2.初步確定軸的最小直徑
3.軸的結構設計
1) 軸上零件的裝配方案
2) 據軸向定位的要求確定軸的各段直徑和長度
I-II II-IV IV-V V-VI VI-VII VII-VIII
直徑 60 70 75 87 79 70
長度 105 113.75 83 9 9.5 33.25

5.求軸上的載荷
Mm=316767N.mm
T=925200N.mm
6. 彎扭校合
滾動軸承的選擇及計算
I軸:
1.求兩軸承受到的徑向載荷
5、 軸承30206的校核
1) 徑向力
2) 派生力
3) 軸向力
由於 ,
所以軸向力為 ,
4) 當量載荷
由於 , ,
所以 , , , 。
由於為一般載荷,所以載荷系數為 ,故當量載荷為
5) 軸承壽命的校核
II軸:
6、 軸承30307的校核
1) 徑向力
2) 派生力

3) 軸向力
由於 ,
所以軸向力為 ,
4) 當量載荷
由於 , ,
所以 , , , 。
由於為一般載荷,所以載荷系數為 ,故當量載荷為
5) 軸承壽命的校核
III軸:
7、 軸承32214的校核
1) 徑向力
2) 派生力
3) 軸向力
由於 ,
所以軸向力為 ,
4) 當量載荷
由於 , ,
所以 , , , 。
由於為一般載荷,所以載荷系數為 ,故當量載荷為
5) 軸承壽命的校核
鍵連接的選擇及校核計算

代號 直徑
(mm) 工作長度
(mm) 工作高度
(mm) 轉矩
(N•m) 極限應力
(MPa)
高速軸 8×7×60(單頭) 25 35 3.5 39.8 26.0
12×8×80(單頭) 40 68 4 39.8 7.32
中間軸 12×8×70(單頭) 40 58 4 191 41.2
低速軸 20×12×80(單頭) 75 60 6 925.2 68.5
18×11×110(單頭) 60 107 5.5 925.2 52.4
由於鍵採用靜聯接,沖擊輕微,所以許用擠壓應力為 ,所以上述鍵皆安全。
連軸器的選擇
由於彈性聯軸器的諸多優點,所以考慮選用它。
二、高速軸用聯軸器的設計計算
由於裝置用於運輸機,原動機為電動機,所以工作情況系數為 ,
計算轉矩為
所以考慮選用彈性柱銷聯軸器TL4(GB4323-84),但由於聯軸器一端與電動機相連,其孔徑受電動機外伸軸徑限制,所以選用TL5(GB4323-84)
其主要參數如下:
材料HT200
公稱轉矩
軸孔直徑 ,
軸孔長 ,
裝配尺寸
半聯軸器厚
([1]P163表17-3)(GB4323-84
三、第二個聯軸器的設計計算
由於裝置用於運輸機,原動機為電動機,所以工作情況系數為 ,
計算轉矩為
所以選用彈性柱銷聯軸器TL10(GB4323-84)
其主要參數如下:
材料HT200
公稱轉矩
軸孔直徑
軸孔長 ,
裝配尺寸
半聯軸器厚
([1]P163表17-3)(GB4323-84
減速器附件的選擇
通氣器
由於在室內使用,選通氣器(一次過濾),採用M18×1.5
油麵指示器
選用游標尺M16
起吊裝置
採用箱蓋吊耳、箱座吊耳
放油螺塞
選用外六角油塞及墊片M16×1.5
潤滑與密封
一、齒輪的潤滑
採用浸油潤滑,由於低速級周向速度為,所以浸油高度約為六分之一大齒輪半徑,取為35mm。
二、滾動軸承的潤滑
由於軸承周向速度為,所以宜開設油溝、飛濺潤滑。
三、潤滑油的選擇
齒輪與軸承用同種潤滑油較為便利,考慮到該裝置用於小型設備,選用L-AN15潤滑油。
四、密封方法的選取
選用凸緣式端蓋易於調整,採用悶蓋安裝骨架式旋轉軸唇型密封圈實現密封。
密封圈型號按所裝配軸的直徑確定為(F)B25-42-7-ACM,(F)B70-90-10-ACM。
軸承蓋結構尺寸按用其定位的軸承的外徑決定。
設計小結
由於時間緊迫,所以這次的設計存在許多缺點,比如說箱體結構龐大,重量也很大。齒輪的計算不夠精確等等缺陷,我相信,通過這次的實踐,能使我在以後的設計中避免很多不必要的工作,有能力設計出結構更緊湊,傳動更穩定精確的。

閱讀全文

與一階傳動裝置相關的資料

熱點內容
賭硬幣專用儀器有哪些 瀏覽:78
vb程序中工具箱中控制項名稱 瀏覽:785
黑客wifi工具箱 瀏覽:719
閥門z45x是什麼意思 瀏覽:940
移動式設備如何做期間核查 瀏覽:792
電機轉子靜平衡用什麼設備 瀏覽:31
路虎極光儀表盤如何調時間 瀏覽:826
頂管需什麼設備 瀏覽:323
七寸電圓鋸轉子軸承什麼型號 瀏覽:451
熱熔閥門壞了怎麼辦 瀏覽:243
納米板生產線設備需要多少錢 瀏覽:529
煤氣閥門開關示意圖顏色代表什麼 瀏覽:827
變頻空調開機不製冷是怎麼回事 瀏覽:647
五金機電市場活動策劃 瀏覽:301
怎麼清理網吧機械鍵盤污垢 瀏覽:155
熱水器上有個閥門是什麼作用 瀏覽:406
玉環付進有哪些閥門廠招裝配工 瀏覽:892
佛山哪裡買電動工具好 瀏覽:50
地暖分水器閥門滲水怎麼修理 瀏覽:683
瑞虎5用的是什麼製冷劑 瀏覽:918