導航:首頁 > 裝置知識 > 薄層析實驗裝置

薄層析實驗裝置

發布時間:2024-08-28 03:58:59

A. 離子交換色譜法的原理,裝置及應用

原理:
離子交換色譜(ion exchange chromatography,IEC)以離子交換樹脂作為固定相,樹脂上具有固定離子基團及可交換的離子基團。當流動相帶著組分電離生成的離子通過固定相時,組分離子與樹脂上可交換的離子基團進行可逆變換。根據組分離子對樹脂親合力不同而得到分離。

裝置:
(1)分離柱 裝有離子交換樹脂,如陽離子交換樹脂、陰離子交換樹脂或螯合離子交換樹脂。為了減小擴散阻力,提高色譜分離效率,要使用均勻粒度的小球形樹脂。最常用的陽離子交換樹脂是在有機聚合物分子(如苯乙烯-二乙烯基苯共聚物)上連接磺酸基官能團(─SO3─)。最常用的陰離子交換劑是在有機聚合物分子上連接季銨官能團(─NH4)。這些都是常規高交換容量的離子交換樹脂,由於它們的傳質速度低,使柱效和分離速度都低。C.霍瓦特描述了一種薄膜陰離子交換樹脂,它是在苯乙烯-二乙烯基苯共聚物核心上沉澱一薄層陰離子交換樹脂,就象雞蛋有一薄層外皮那樣,離子交換反應只在外皮上進行,因此縮短了擴散的路徑,所以離子交換速度高,傳質快,提高了柱效。同樣,在小顆粒多孔硅膠上塗一薄層離子交換材料也可得到相同類型的樹脂。螯合離子交換樹脂具有絡合某些金屬離子而同時排斥另一些金屬離子的能力,因此這種樹脂具有很高的選擇性。除了離子交換柱外,其他高效液相色譜柱也可用於分離離子。
(2)抑制柱和柱後衍生作用 常用的檢測器不僅能檢測樣品離子,而且也對移動相中的離子有響應,所以必須消除移動相離子的干擾。在離子色譜中,消除(抑制)移動相離子干擾的常用方法有兩種。
①抑制反應,用抑制反應來改變移動相,使移動相離子不被檢測器測出。離子色譜通常使用電導檢測器。在抑制反應中??綞匝衾胱佣?裕?把高電導率移動相的氫氧化物轉變成水,而樣品離子則轉變成它們相應的酸:
NaOH+H+─→Na++H2O
NaX+H+─→HX+Na+
在裝有強酸性陽離子交換樹脂的柱中進行抑制反應,使用一段時間後,這種樹脂就需要再生,很不方便。改用連接有磺酸基(─SO3H)的離子交換膜(陽離子交換膜)或用連接有銨基(─NH4)的離子交換膜(陰離子交換膜),就可以連續進行抑制反應。例如,陽離子交換膜可使陽離子通過它擴散過去,而陰離子則不能擴散過去。
1981年,T.S.史蒂文斯和斯莫爾等報道了中空纖維抑製法。這種纖維是由陽離子交換膜材料拉制而成。用這種方法不僅不需要再生抑制柱而且減小了峰的加寬,提高了柱效。一種比較新的膜技術是加一電場以加速離子的傳遞,該法與中空纖維法比較,其優點是反應時間短、交換能力高,並且可以用於陽離子和陰離子兩者。
②柱後衍生作用,將從柱子流出的洗出液與對被測物有特效作用的試劑相混合,在一反應器中生成帶色的絡合物(見配位化合物)。對衍生試劑最重要的要求是它們與被測物能生成絡合物,但不與移動相生成絡合物。柱後衍生法能用於測定重金屬離子,所用的衍生試劑有茜素紅S等。
(3)檢測器 分為通用型和專用型。通用型檢測器對存在於檢測池中的所有離子都有響應。離子色譜中最常用的電導檢測器就是通用型的一種。紫外-可見分光光度計是專用型的檢測器,對離子具有選擇性響應。可變波長紫外檢測器與電導檢測器聯用,能幫助鑒定未知峰,分辨重疊峰和提供電導檢測器不能測定的陰離子,如硫化物及亞砷酸中的陰離子的檢測。
在離子色譜中,電導檢測法總是和抑制反應配合使用。這種檢測器對分子不響應,如水、乙醇或者不離解的弱酸分子等。對於電導檢測器,一個重要的條件是溫度要穩定,所以檢測池要放在恆溫箱中,1982年H.薩托設計一種雙示差電導檢測器,消除了溫度變化對檢測的影響,可測定10-9摩爾的陰離子。

應用:
離子色譜主要用於測定各種離子的含量,特別適於測定水溶液中低濃度的陰離子,例如飲用水水質分析,高純水的離子分析,礦泉水、雨水、各種廢水和電廠水的分析,紙漿和漂白液的分析,食品分析,生物體液(尿和血等)中的離子測定,以及鋼鐵工業、環境保護等方面的應用。離子色譜能測定下列類型的離子:有機陰離子、鹼金屬、鹼土金屬、重金屬、稀土離子和有機酸,以及胺和銨鹽等。

B. 吸附薄層層析與分配,離子交換薄層層分析的區別

離子交換層析(Ion Exchange Chromatography簡稱為IEC)是以離子交換劑為固定相,依據流動相中的組分離子與交換劑上的平衡離子進行可逆交換時的結合力大小的差別而進行分離的一種層析方法。1848年,Thompson等人在研究土壤鹼性物質交換過程中發現離子交換現象。本世紀40年代,出現了具有穩定交換特性的聚苯乙烯離子交換樹脂。50年代,離子交換層析進入生物化學領域,應用於氨基酸的分析。目前離子交換層析仍是生物化學領域中常用的一種層析方法,廣泛的應用於各種生化物質如氨基酸、蛋白、糖類、核苷酸等的分離純化。常用的離子交換劑有:離子交換纖維素、離子交換葡聚糖和離子交換樹脂 。
離子交換層析中,基質是由帶有電荷的樹脂或纖維素組成。帶有正電荷的稱之陰離子交換樹脂;而帶有負電荷的稱之陽離子樹脂。離子交換層析同樣可以用於蛋白質的分離純化。由於蛋白質也有等電點,當蛋白質處於不同的pH條件下,其帶電狀況也不同。陰離子交換基質結合帶有負電荷的蛋白質,所以這類蛋白質被留在柱子上,然後通過提高洗脫液中的鹽濃度等措施,將
吸附在柱子上的蛋白質洗脫下來。結合較弱的蛋白質首先被洗脫下來。反之陽離子交換基質結合帶有正電荷的蛋白質,結合的蛋白可以通過逐步增加洗脫液中的鹽濃度或是提高洗脫液的pH值洗脫下來。
⒈離子交換劑預處理和裝柱對於離子交換纖維素要用流水洗去少量碎的不易沉澱的顆粒,以保證有較好的均勻度,對於已溶脹好的產品則不必經這一步驟。溶脹的交換劑使用前要用稀酸或稀鹼處理,使之成為帶H+或OH-的交換劑型。陰離子交換劑常用「鹼-酸-鹼」處理,使最終轉為-OH-型或鹽型交換劑;對於陽離子交換劑則用「酸-鹼-酸」處理,使最終轉為-H-型交換劑。洗滌好的纖維素使用前必須平衡至所需的pH和離子強度。已平衡的交換劑在裝柱前還要減壓除氣泡。為了避免顆粒大小不等的交換劑在自然沉降時分層,要適當加壓裝柱,同時使柱床壓緊,減少死體積,有利於解析度的提高。柱子裝好後再用起始緩沖液淋洗,直至達到充分平衡方可使用。
⒉加樣與洗脫加樣:層析所用的樣品應與起始緩沖液有相同的pH和離子強度,所選定的pH值應落在交換劑與被結合物有相反電荷的范圍,同時要注意離子強度應低,可用透析、凝膠過濾或稀釋法達此目的。樣品中的不溶物應在透析後或凝膠過濾前,以離心法除去。為了達到滿意的分離效果,上樣量要適當,不要超過柱的負荷能力。柱的負荷能力可用交換容量來推算,通常上樣量為交換劑交換總量的1%-5%。
洗脫:已結合樣品的離子交換前,可通過改變溶液的pH或改變離子強度的方法將結合物洗脫,也可同時改變pH與離子強度。為了使復雜的組份分離完全,往往需要逐步改變pH或離子強度,其中最簡單的方法是階段洗脫法,即分次將不同pH與離子強度的溶液加入,使不同成分逐步洗脫。由於這種洗脫pH與離子強度的變化大,使許多洗脫體積相近的成分同時洗脫,純度較差,不適宜精細的分離。最好的洗脫方法是連續梯度洗脫,洗脫裝置見圖16-6.兩個容器放於同一水平上,第一個容器盛有一定pH的緩沖液,第二個容器含有高鹽濃度或不同pH的緩沖液,兩容器連通,第一個容器與柱相連,當溶液由第一容器流入柱時,第二容器中的溶液就會自動來補充,經攪拌與第一容器的溶液相混合,這樣流入柱中的緩沖液的洗脫能力即成梯度變化。第一容器中任何時間的濃度都可用下式進行計算:
C=C2-(C2-C1)(1-V)A2/A1
式中A1、A2分別代表兩容器的截面積:C1、C2分別表示容器中溶液的濃度;V為流出體積對總體積之比。當A1=A2時為線性梯度,當A1>A2時為凹形梯度,A1>A2時為凸形梯度。
洗脫時應滿足以下要求:①洗脫液體積應足夠大,一般要幾十倍於床體積,從而使分離的各峰不致於太擁擠。②梯度的上限要足夠高,使緊密吸附的物質能被洗脫下來。③梯度不要上升太快,要恰好使移動的區帶在快到柱末端時達到解吸狀態。目的物的過早解吸,會引起區帶擴散;而目的物的過晚解吸會使峰形過寬。
⒊洗脫餾份的分析按一定體積(5-10ml/管)收集的洗脫液可逐管進行測定,得到層析圖譜。依實驗目的的不同,可採用適宜的檢測方法(生物活性測定、免疫學測定等)確定圖譜中目的物的位置,並回收目的物。
⒋離子交換劑的再生與保存離子交換劑可在柱上再生。如離子交換纖維素可用2mol/:NaCl淋洗柱,若有強吸附物則可用0.1mol/LNaOH洗柱;若有脂溶性物質則可用非離子型去污劑洗柱後再生,也可用乙醇洗滌,其順序為:0.5mol/LNaOH-水-乙醇-水-20%NaOH-水。保存離子交換劑時要加防腐劑。對陰離子交換劑宜用0.002%氯已定(洗必泰),陽離子交換劑可用乙基硫柳汞(0.005%)。有些產品建立用0.02%疊氮鈉。
⒌離子交換層析的應用離子交換層析技術已廣泛用於各學科領域。在生物化學及臨床生化檢驗中主要用於分離氨基酸、多肽及蛋白質,也可用於分離核酸、核苷酸及其它帶電荷的生物分子。

概念
層析是「色層分析」的簡稱。利用各組分物理性質的不同,將多組分混合物進行分離及測定的方法。有吸附層析、分配層析兩種。一般用於有機化合物、金屬離子、氨基酸等的分析。
層析(chromatography)利用物質在固定相與流動相之間不同的分配比例,達到分離目的的技術。層析對生物大分子如蛋白質和核酸等復雜的有機物的混合物的分離分析有極高的分辨力。
[編輯本段]語源學
chrome意為「色彩」,graphy源自希臘文,意為「寫」。色譜為層析的同義語,都是從英語chromatography譯來的。
層析(色譜) chromatograpby
在把微細分散的固體或是附著於固體表面的液體作為固定相,把液體(與上述液體不相混合的)或氣體作為移動相的系統中,使試料混合物中的各成分邊保持向兩相分布的平衡狀態邊移動,利用各成分對固定相親和力不同所引起的移動速度差,將它們彼此分離開的定性與定量分析方法,稱為層析,亦稱色譜法。根據移動相種類的不同,分為液體層析、氣體層析二種。用作固定相的有矽膠、活性炭、氧化鋁、離子交換樹脂、離子交換纖維等,或是在硅藻土和纖維素那樣的無活性的載體上附著適當的液體,也可使用其他物質。將作為固定相的微細粉末狀物質裝入細長形圓筒中進行的層析稱為柱層析(column chromatogra-phy),在玻璃板上塗上一層薄而均的物質作為固定相的稱為薄層層析(thin-layer chromatography),後者可與用濾紙作為固定相的紙上層析進行同樣的分析,即在固定相的一端,點上微量試料,在密閉容器中,使移動相(液體)從此端滲入,移動接近另一端。通過這種展開操作,各成分呈斑點狀移動到各自的位置上,再根據Rf值的測定進行鑒定。當斑點不易為肉眼觀察時,可利用適當的顯色劑,或通過紫外燈下產生熒光的方法進行觀察。也可採用在第一種移動相展開後再用另一移動相進行展開(這時的展開方向應與原方向垂直),使各成分分離完全的雙相層析(two-dimensional chromatography)。分離後,將斑點位置的固定相切取下來,把其中含有來自試料的物質提取進行定量分析。但為制備與定量,柱層析則更為適宜。在柱層析中,移動相從加入試料的一端展開到達另一端後,繼續展開使各成分和移動相一起向柱外分別溶出,這就是廣泛使用的所謂洗提層析(elution chromatography)。層析根據固定相與溶質(試料)間親和力的差異分為吸附型、分配型、離子交換型(離子交換層析)等三種類型。但這並不是很嚴格的,有時常見到其中間類型。此外,近來也應用親和層析,即將與基質類似的化合物(通常為共價鍵)結合到固定相上,再利用其特異的親和性沉澱與其對應的特定的酶或蛋白質。
[編輯本段]類別
◆按層析的機理劃分:
吸附層析、分配層析、離子交換層析、凝膠過濾層析、親和層析等。
吸附層析:利用吸附劑表面對不同組分吸附性能的差異,達到分離鑒定的目的。
分配層析:利用不同組分在流動相和固定相之間的分配系數不同,使之分離。
離子交換層析:利用不同組分對離子交換劑親和力的不同。
凝膠層析:利用某些凝膠對於不同分子大小的組分阻滯作用的不同。
◆按流動相與固定相的不同劃分:
氣相層析、液相層析。這兩大類層析是以流動相不同來劃分的。如同時區分流動相和固定相,劃分為:氣固層析、氣液層析、液固層析和液液層析等。
◆按操作形式劃分:
柱層析、紙層析、薄層層析、高效液相層析等。
柱層析:將固定相裝於柱內,使樣品沿一個方向移動而達到分離。
紙層析:用濾紙做液體的載體,點樣後,用流動相展開,以達到分離鑒定的目的。
薄層層析:將適當粒度的吸附劑鋪成薄層,以紙層析類似的方法進行物質的分離和鑒定。
以上劃分無嚴格界限,有些名稱相互交叉,如親和層析應屬於一種特殊的吸附層析,紙層析是一種分配層析,柱層析可做各種層析。
[編輯本段]基本原理
層析須在兩相系統間進行。一相是固定相,需支持物,是固體或液體。另一相為流動相,是液體或氣體。當流動相流經固定相時,被分離物質在兩相間的分配,由平衡狀態到失去平衡到又恢復平衡,即不斷經歷吸附和解吸的過程。隨著流動相不斷向前流動,被分離物質間出現向前移動的速率差異,由開始的單一區帶逐漸分離出許多區帶,這個過程叫展層。
系數K是物質在兩相中的濃度比。K值大,則在固定相中吸附牢,K值小吸附差。各物質間的K值差別大,則易被分離。不同類型層析的K值含義不同,可視為吸附平衡常數,分配常數或離子交換常數等。
研究層析現象而發展的塔板理論,與有機化學實驗中的分餾法原理有些相似。被分餾的有機溶劑在分餾柱內的填充物上形成許多熱交換層,從而把低沸點溶劑先分餾出來,達到純化的目的。在層析時用理論塔板數n來衡量層析效能。
tR為物質在層析柱上的保留時間,W為洗脫下來的物質峰形的寬度。n值愈大表示層析柱的效能愈高。如用理論塔板高度H表示,則包含了層析柱長度的因子。
式中L為層析柱的柱長。H值越大,則柱效越低。
此外影響層析分離效果的還有渦流擴散、縱向擴散和傳質阻抗等因素。因此選擇層析固定相支持物的粒度、均勻度等物理性能,流動相的層析系統和溫度等都是做好層析的關鍵。
[編輯本段]幾種常用的層析
◆吸附層析
吸附劑的吸附力強弱,是由能否有效地接受或供給電子,或提供和接受活潑氫來決定。被吸附物的化學結構如與吸附劑有相似的電子特性,吸附就更牢固。常用吸附劑的吸附力的強弱順序為:活性炭、氧化鋁、硅膠、氧化鎂、碳酸鈣、磷酸鈣、石膏、纖維素、澱粉和糖等。以活性炭的吸附力最強。吸附劑在使用前須先用加熱脫水等方法活化。大多數吸附劑遇水即鈍化,因此吸附層析大多用於能溶於有機溶劑的有機化合物的分離,較少用於無機化合物。洗脫溶劑的解析能力的強弱順序是:醋酸、水、甲醇、乙醇、丙酮、乙酸乙酯、醚、氯仿、苯、四氯化碳和己烷等。為了能得到較好的分離效果,常用兩種或數種不同強度的溶劑按一定比例混合,得到合適洗脫能力的溶劑系統,以獲得最佳分離效果。
◆分配層析
在支持物上形成部分互溶的兩相系統。一般是水相和有機溶劑相。常用支持物是硅膠、纖維素和澱粉等,這些親水物質能儲留相當量的水。被分離物質在兩相中都能溶解,但分配比率不同,展層時就會形成以不同速度向前移動的區帶。
◆離子交換層析
支持物是人工交聯的帶有能解離基團的有機高分子,如離子交換樹脂、離子交換纖維素、離子交換凝膠等。帶陽離子基團的,如磺酸基(—SO3H)、羧甲基(—CH2COOH)和磷酸基等為陽離子交換劑。帶陰離子基團的,如DEAE—(二乙基胺乙基)和QAE—(四級胺乙基)等為陰離子交換劑。離子交換層析只適用於能在水中解離的化合物,包括有機物和無機物。對於蛋白質、核酸、氨基酸及核苷酸的分離分析有極好的分辨力。離子交換基團在水溶液中解離後,能吸引水中被分離物的離子,各種物質在離子交換劑上的離子濃度與周圍溶液的離子濃度保持平衡狀態,各種離子有不同的交換常數,K值愈高,被吸附愈牢。洗脫時,增加溶液的離子強度,如改變pH,增加鹽濃度,離子被取代而解吸下來。洗脫過程中,按K值不同,分成不同的區帶。
◆凝膠過濾層析
支持物是人工合成的交聯高聚物,在水中膨脹後成為凝膠。凝膠內為內水層,凝膠周圍的水為外水層。控制交聯度以形成不同孔徑的網狀結構。交聯度小的孔徑大,交聯度大的孔徑小。凝膠只允許被分離物質中小於孔徑的分子進入,大於孔徑的分子被排斥在外水層,最先被洗脫下來。而進入孔徑的分子也按分子量大小大致分離成不同的區帶。選擇不同規格的凝膠,可把一個混合物按分子量的差異分成不同的組分。這種方法曾被稱為分子篩。目前常用的凝膠商品有:葡聚糖凝膠(sephadex)、聚丙烯醯胺凝膠(bio-gel)、瓊脂糖凝膠(sepharose)和聚苯乙烯凝膠(styragel)等。
◆親和層析
在一對有專一的相互作用的物質中,把其中之一聯結在支持物上,用於純化相對的另一物質。常見的親和對如:酶和抑制劑,抗原和抗體,激素和受體等。支持物為瓊脂糖或纖維素等。
◆氣相層析
屬於分配層析或吸附層析,僅適用於分析分離揮發性和低揮發性物質。固定相是在惰性支持物(如磨細的耐火磚)上覆蓋一層高沸點液體,如硅油、高沸點石蠟和油脂、環氧類聚合物。外塗層約為支持物重量的20%。分析時操作溫度范圍,一般從室溫到200℃。特殊的層析柱能達到500℃。流動相常用氦、氬或氮為展層氣體。氣相層析分離的區帶十分清晰,是由於揮發性物質在兩相間能很快達到平衡,所需分析時間大為縮短,一般為數分鍾至10餘分鍾。檢測記錄系統繪出的各峰是測定流出氣體電阻變化的結果,因而測定樣品量可到微克和毫微克水平。具有快速、靈敏和微量的優點。氣相層析也能用於分離制備樣品,但需增加將流出氣體通過冷凍將分離物回收的裝置。
◆紙層析
以濾紙為支持物的分配層析。組成濾紙的纖維素是親水物質,能形成水相和展層溶劑的兩相系統,被分離物質在兩相中的分配保持平衡關系。紙層析用於分析簡單的混合物時可做單向層析。對於復雜的混合物,可做雙向層析。1944年A.J.P.馬丁第一次用紙層析分析氨基酸,得到很好的分離效果,開創了近代層析的發展和應用的新局面。70年代以後,紙層析已逐漸為其他分辨力更高、速度更快和更微量化的新方法,如離子交換層析、薄層層析、高效液相層析等所代替。
◆薄層層析
在玻璃片、金屬箔或塑料片上鋪上一層約1~2毫米的支持物,如纖維素、硅膠、離子交換劑、氧化鋁或聚醯胺等,根據需要做不同類型的層析。聚醯胺薄膜是一種特異的薄層,將尼龍溶解於濃甲酸中,塗在滌綸片基上,當甲酸揮發後,在滌綸片基上形成一層多孔的薄膜,其分辨力超過了用尼龍粉鋪成的薄層。薄層層析較紙層析優越在於分辨高,展層時間短。例如用紙層析做氨基酸分析,往往需要兩天時間,而且對層析條件要求嚴格,不易得到滿意的分離效果。如用薄層層析做,一般約需半小時,分離效果更好。薄層層析一般用於定性分析。也能用於定量分析和制備樣品。
◆高效液相層析(又名高壓液相色譜)
70年代新發展的層析法。其特點是:用高壓輸液泵,壓強最高可達5000psi(相當於34個標准大氣壓)。用直徑約3~10微米的超細支持物裝填均勻的不銹鋼柱。常用的支持物是在玻璃小珠上塗一層1~2微米的二氧化硅,經硫醯氯反應生成Si—Cl,進一步連接疏水的烷基,如Si—C18H37,或陽離子交換基團—Si(CH2)n—C6H4SO3H,或陰離子交換基團—Si(CH2)nNH2。這種支持物能承受很高的壓力,化學性能穩定。用不同類型支持物的HPLC,可做吸附層析、離子交換層析和凝膠過濾層析。其分析微量化可達10-10克水平。但用於制備,可以純化上克的樣品。展層時間短,一般需幾分鍾到10餘分鍾。其分析速度、精確度可與氣相層析媲美。HPLC適於分析分離不揮發和極性物質。而氣相層析只適用於揮發性物質,兩者互為補充,都是目前最為理想的層析法。HPLC配有程序控制洗脫溶劑的梯度混合儀,數據處理的積分儀和記錄儀等電子系統,成為一種先進的分析儀器,在生物化學、化學、醫葯學和環境科學的研究中發揮了重要作用。
◆反相層析
在吸附層析中,高極性物質在層析柱上吸附較牢,洗脫時發生拖尾現象和保留時間長的問題。如果在支持物上塗上一層高碳原子的疏水性強的烷烴類,洗脫液用極性強的溶劑,如甲醇和水的混合物。則被分離樣品中的極性強的物質不被吸附,最先洗下來,得到較好的分離效果。這種層析法與普通的吸附層析法相反,故稱為反相層析。目前用HPLC做反相層析常用的ODS柱,即在支持物的表面上連接了C18H37Si—基團。
◆同系層析
在核酸分析中,將樣品經核酸酶部分裂解成不同長度的核苷酸片段,用同位素標記後,在DEAE纖維素薄層上分離,用含有未標記的相同的核苷酸片段作展層溶劑,這樣,未標記的核苷酸把標記過的核苷酸推進,使按分子量大小不同把標記核苷酸片段,按由小到大的次序排列,達到分離的目的。於是把這種層析法稱為同系層析。同系層析和電泳相結合曾用於寡核苷酸的順序分析。
紙層析是層析法的一種,要了解紙層法還得從層析法開始.層析法又稱色層分析法或色譜法(Chromatography),是一種基於被分離物質的物理、化學及生物學特性的不同,使它們在某種基質中移動速度不同而進行分離和分析的方法。例如:我們利用物質在溶解度、吸附能力、立體化學特性及分子的大小、帶電情況及離子交換、親和力的大小及特異的生物學反應等方面的差異,使其在流動相與固定相之間的分配系數(或稱分配常數)不同,達到彼此分離的目的。
層析法的最大特點是分離效率高,它能分離各種性質極相類似的物質。而且它既可以用於少量物質的分析鑒定,又可用於大量物質的分離純化制備。因此,作為一種重要的分析分離手段與方法,它廣泛地應用於科學研究與工業生產上。現在,它在石油、化工、醫葯衛生、生物科學、環境科學、農業科學等領域都發揮著十分重要的作用。
層析根據固定相基質的形式分類,層析可以分為紙層析、薄層層析和柱層析。其中紙層析是指以濾紙作為基質的層析。

C. 辣椒色素的提取精製工藝如何

(1)有機溶劑萃取法
根據辣椒色素的理化性質,工業上多採取以下方法進行提取。將茄科植物辣椒的成熟乾燥果實之果皮粉碎後,用乙醇、丙酮、異丙醇或正己烷等抽提。考慮到天然紅辣椒中含有辣椒紅、辣椒素、辣椒油脂等成分,其中辣椒素即辣椒鹼有辣味,高溫下產生刺激性蒸氣,因此在辣椒色素的精製過程中必須將其去除。從結構上看辣椒素含有醯胺鍵,分子中含有一個羥基,是一個極性化合物,其晶體呈現為單斜稜柱體或矩形,熔點61℃,溶於稀乙醇、己醚、丙酮、乙酸乙酯等溶劑及鹼性水溶液中。考慮到辣椒紅混合物和辣椒素在不同溶劑中溶解度不同,可以利用兩者的溶解度差異進行脫辣處理。
賀文智等基於此原理採用正己烷萃取法,利用辣椒紅色素易於溶於正己烷而辣椒素較難溶於正己烷的性質將兩者進行分離,操作步驟如下稱取經去蒂、去籽、粉碎處理後的紅辣椒粉末,以丙酮為萃取劑進行常壓萃取操作,提取液在溫度為90℃、真空度為0.09兆帕(MPa)的條件下進行減壓蒸餾濃縮,同時回收丙酮。用丙酮提取辣椒紅的過程實質上是液固之間通過相際接觸表面進行的傳質過程,傳質速率的快慢決定著傳質設備的尺寸及操作時間。該方法為了提高傳質速率,採用索氏提取器對粉末狀的干紅辣椒進行提取。稱取一定量的經濃縮的辣椒紅粗產品用一定量的正己烷進行萃取脫辣。色價定義為單位質量原料的提取物的吸光度。
該方法操作簡單,色素回收率較大,產品得率高,但產品色價較小。由於色價值與辣度呈負相關性,說明該方法脫辣不夠徹底,對於以辣椒紅為主要產品且對辣椒素含量要求不是十分苛刻的情況,可以採用此方法。張宗恩等以丙酮為溶劑提取制備辣椒油樹脂,油樹脂得率高、色價大、辣素含量低,便於分離。採用pH大於10.37的丙酮(50%)溶液進行5次以上脫辣萃取可得到口嘗無辣味的紅色素。該方法工藝簡單、操作方便,所得色素的各項質量指標均符合FAO/WHO標准。
(2)柱層析法
據報道,辣椒中的辣椒素即使稀釋1∶100000仍能感覺到辣味,這在很大程度上限制了辣椒色素的應用。因此,去掉辣味成分就成為提取分離辣椒紅色素工藝的關鍵步驟。用硅膠柱層析分離辣椒色素屬分配層析法,是根據色素和辣素的結構差異,在束縛於硅膠上的固定相和洗脫液中的溶解度不同,因此在固定相和洗脫液之間的分配系數不同而達到分離效果。袁慶雲研究了用硅膠柱層析分離辣椒紅色素,總結出以下工藝流程:
辣椒→挑選→粉碎→加酶→過濾→濃縮→乙醇石油醚提取→過濾→濃縮→上硅膠柱→洗脫→濃縮→深紅色黏稠液體
操作要領:①加酶:加酶水解使細胞中與蛋白質、脂肪、糖類等結合的色素游離出來,便於用溶劑提取。②提取:以90%乙醇和石油醚(1∶1)的提取液在室溫下攪拌過夜提取,經過濾後減壓濃縮。③通過薄層層析尋找洗脫條件,當石油醚和食用級90%乙醇體積比=2∶1時展層效果最好。④將提取的濃縮液上硅膠柱,柱直徑10厘米,高100厘米,用洗脫液洗脫,收集紅色洗脫部分。⑤將收集的洗脫部分減壓濃縮。
實驗所得紅色黏稠液經檢驗水分含量0.37%,脂肪含量90.68%,色素∶色階E1%1cm(475nm)=143,不含辣椒素。賀文智、索全伶等也探討了辣椒紅色素的柱層析提取精製方法:用丙酮作萃取劑從紅辣椒乾粉中提取出辣椒紅粗品,粗品經減壓蒸餾濃縮處理後進行柱層析脫辣精製操作。該試驗鑒於柱層析法的優點,採用尺寸規格較大的玻璃柱進行柱層析分離,選用粒徑74~152微米(μm)硅膠作填料,石油醚與丙酮的復配混合液(10∶1)為展開劑進行柱層析。辣椒紅粗品上柱淋洗分離,首先流出的是橙黃色液體(量少),其次是辣椒紅色素,最後是較難洗脫的淡黃色且具有較濃辣味的液體。收集紅色素產品進行減壓蒸餾濃縮,用751分光光度計測定其色價E 1%1cm(460nm)=56.5,色素回收率可達平均67.2%。
針對現有文獻中大多介紹以紅辣椒為原料提取無辣味混合色素的方法但未對混合色素作進一步分離分析的問題,提出了採用柱層析對辣椒色素中的黃色素進行分離。該方法以硅膠為固定相,丙酮、95%乙醇分別作為辣紅素和辣黃素的洗脫劑,每次分離的色素量為硅膠質量的4%~2%,分離後的液體經減壓蒸餾得濃縮產物。通過此過程,不但可得到辣椒色素中的主要副產品——黃色素,而且相應地提高了主要成分的純度,得到純度較高的紅色素。
採用柱層析分離技術,選用吸附劑X和混合洗脫液用於中試,將辣椒色素中紅、橙、黃進一步分離,可以使低質量辣椒紅色素的色價和色調得到較大的提高。吳明光等採用柱層析分離技術,從辣椒果皮中分離出了游離型結晶辣椒紅色素單體,其含量大於95%,這是我國辣椒紅色素在劑型上的突破。
(3)超臨界CO2流體萃取技術
由於辣椒紅素的油狀特性使得採用有機溶劑萃取分離得到的辣椒色素產品中有較高的溶劑殘留,採取一般的洗脫劑方法產品很難達到聯合國糧農組織和世界衛生組織(FAO/WHO,1984)規定的最新標准,極大地影響了辣椒色素的實用和出口創匯。超臨界流體萃取是一種新型的化工分離技術。該技術的關鍵是了解超臨界流體的溶解能力及隨諸多因素影響的變化規律。超臨界CO2流體萃取(SCFE-CO2)就是使用高於臨界溫度、臨界壓力的CO2流體作為溶媒的萃取過程。處於臨界點附近的流體不僅對物質具有極高的溶解能力,而且物質的溶解度會隨體系的壓力或溫度的變化而變化,從而通過調節體系的壓力或溫度就可以方便地進行選擇性地萃取分離不同物質。超臨界分離技術工藝簡單,能耗低,萃取溶劑無毒、易回收,所得產品具有極高的純度,殘留溶劑符合FAO/WHO要求。趙亞平等採用自行設計的超臨界CO2流體萃取設備進行辣椒色素提取。該設備主要由供氣系統、超臨界CO2流體發生系統、萃取分離系統、計量系統4部分組成,所有部件都國產化。實驗表明,最佳萃取條件為粒度〈1.2毫米,萃取壓力15兆帕(MPa),萃取溫度50℃,流量6立方米/小時。在萃取過程中,根據UV3000紫外可見分光光度計測定200~600納米(nm)的吸光度曲線判斷辣椒色素與辣椒素的分離效果。用色素的丙酮溶液在449納米(nm)處測定吸光度,所得值即為色素的色價。用該方法萃取的辣椒色素各項質量指標均超過國家標准。
採用瑞士NOVA公司製造的超臨界萃取裝置對辣椒色素進行分離、提純。使產品符合FAO/WHO殘留溶劑標准要求(己烷含量≤25毫克/千克)的最佳工藝參數是:萃取壓力18兆帕(MPa),萃取溫度25℃,萃取劑流量2.0升/分(L/min),萃取時間3小時(h)。在最佳工藝條件下產品色價可達到342。韓玉謙等採用超臨界CO2流體萃取技術對色價100~180,溶劑殘留30×10-6~150×10-6的辣椒紅色素進行精製,實驗結果表明:當萃取壓力控制在20兆帕(MPa)以下時,辣椒紅色素的色價和色調幾乎不受損失,有機溶劑的殘留可以降低到2.7×10-6左右,但辣椒色素中的紅色系色素和黃色系色素未達到完全分離。研究發現,在超臨界CO2流體萃取辣椒色素的過程中使用助溶劑如1%的乙醇或丙酮或升高提取壓力能提高辣椒色素得率。在較低壓力下分離得到的辣椒色素幾乎都是β-胡蘿卜素,而在較高壓力下得到較大比例的紅色類胡蘿卜素如辣椒紅色素、辣椒玉紅素、玉米黃質、β-隱黃質等和少量的β-胡蘿卜素。在兩步分段提取過程中,第一階段採用分離紅辣椒油和β-胡蘿卜素的技術保證了第二階段辣椒色素提取的富集,並使辣椒紅、黃色素比率達到1.8。在自行開發的多功能超臨界CO2流體萃取分餾裝置上對辣椒色素脫辣精製技術進行了研究,結果表明:在小於10.0MPa壓力下可萃取出黃色和辣味成分,保留紅色素;當壓力大於12.0兆帕(MPa)時可將紅色組分萃取完全。盡管超臨界流體萃取天然色素具有很多的優點,但由於超臨界設備一次性投資較大,目前我國在這一領域還未得到廣泛的應用。
(4)其他
採用兩步法萃取分離紅辣椒,即先用有機溶劑浸取法從干尖辣椒中萃取出含有紅色素、辣椒素和焦油味臭味的辣椒浸膏,然後再用超臨界CO2萃取的方法去除焦油味臭味並把紅色素和辣椒素分開,從而得到不含有機溶劑的紅色素和辣椒素,產量較單純用超臨界萃取方法提高5~7倍,且質量遠超過FAO/WHO(1984)標准。

D. 如何進行蛋白超濾設備選型

如何進行蛋白超濾設備選型?在分離分析特別是蛋白質分離分析中,層析是相當重要、且相當常見的一種技術,其原理較為復雜,對人員的要求相對較高,這里只能做一個相對簡單的介紹。
一、 吸附層析
1、 吸附柱層析
吸附柱層析是以固體吸附劑為固定相,以有機溶劑或緩沖液為流動相構成柱的一種層析方法。
2、 薄層層析
薄層層析是以塗布於玻板或滌綸片等載體上的基質為固定相,以液體為流動相的一種層析方法。這種層析方法是把吸附劑等物質塗布於載體上形成薄層,然後按紙層析操作進行展層。
3、 聚醯胺薄膜層析
聚醯胺對極性物質的吸附作用是由於它能和被分離物之間形成氫鍵。這種氫鍵的強弱就決定了被分離物與聚醯胺薄膜之間吸附能力的大小。層析時,展層劑與被分離物在聚醯胺膜表面競爭形成氫鍵。因此選擇適當的展層劑使分離在聚醯胺膜表面發生吸附、解吸附、再吸附、再解吸附的連續過程,就能導致分離物質達到分離目的。
二、 離子交換層析
離子交換層析是在以離子交換劑為固定相,液體為流動相的系統中進行的。離子交換劑是由基質、電荷基團和反離子構成的。離子交換劑與水溶液中離子或離子化合物的反應主要以離子交換方式進行,或藉助離子交換劑上電荷基團對溶液中離子或離子化合物的吸附作用進行。`
三、 凝膠過濾
凝膠過濾又叫分子篩層析,其原因是凝膠具有網狀結構,小分子物質能進入其內部,而大分子物質卻被排除在外部。當一混合溶液通過凝膠過濾層析柱時,溶液中的物質就按不同分子量篩分開了。
四、 親和層析
親和層析的原理與眾所周知的抗原一抗體、激素一受體和酶一底物等特異性反應的機理相類似,每對反應物之間都有一定的親和力。正如在酶與底物的反應中,特異的廢物(S')才能和一定的酶(E)結合,產生復合物(E-S')一樣。在親和層析中是特異的配體才能和一定的生命大分子之間具有親和力,並產生復合物。而親和層析與酶一底物反應不同的是,前者進行反應時,配體(類似底物)是固相存在;後者進行反應時,底物呈液相存在。實質上親和層析是把具有識別能力的配體L(對酶的配體可以是類似底物、抑制劑或輔基等)以共價鍵的方式固化到含有活化基團的基質M(如活化瓊脂糖等)上,製成親和吸附劑M-L,或者叫做固相載體。而固化後的配體仍保持束縛特異物質的能力。因此,當把圍相載體裝人小層析柱(幾毫升到幾十毫升床體積)後,讓欲分離的樣品液通過該柱。這時樣品中對配體有親和力的物質S就可藉助靜電引力、范德瓦爾力,以及結構互補效應等作用吸附到固相載體上,而無親和力或非特異吸附的物質則被起始緩沖液洗滌出來,並形成了第一個層析峰。然後,恰當地改變起始緩沖 液的PH值、或增加離子強度、或加人抑③劑等因子,即可把物質S從固相載體上解離下來,並形成了第M個層析峰(見圖6-2)。顯然,通過這一操作程序就可把有效成分與雜質滿意地分離開。如果樣品液中存在兩個以上的物質與固相載體具有親和力(其大小有差異)時,採用選擇性緩沖液進行洗脫,也可以將它們分離開。用過的固相載體經再生處理後,可以重復使用。
上面介紹的親和層析法亦稱特異性配體親和層析法。除此之外,還有一種親和層析法叫通用性配體親和層析法。這兩種親和層析法相比,前者的配體一般為復雜的生命大分子物質(如抗體、受體和酶的類似底物等),它具有較強的吸附選擇性和較大的結合力。而後者的配體則一般為簡單的小分子物質(如金屬、染料,以及氨基酸等),它成本低廉、具有較高的吸附容量,通過改善吸附和脫附條件可提高層析的解析度。
五、 聚焦層析
聚焦層析也是一種柱層析。因此,它和另外的層析一樣,照例具有流動相,其流動相為 多緩沖劑,固定相為多緩沖交換劑。
聚焦層析原理可以從PH梯度溶液的形成、蛋白質的行為和聚焦效應三方面來闡述。
1、PH梯度溶液的形成
在離子交換層析中,PH梯度溶液的形成是靠梯度混合儀實現的。例如,當使用陰離子 劑進行層析時,制備PH由高到低呈線性變化的梯度溶液的方法是,在梯度儀的混合室(這層析柱者)中裝高PH溶液,而在另一室裝低PH極限溶液,然後打開層析柱的下端出口,讓洗脫液連續不斷地流過柱體。這時從柱的上部到下部溶液的PH值是由高到低變化的。而在聚焦層析中,當洗脫液流進多緩沖交換劑時,由於交換劑帶具有緩沖能力的電荷基團,故PH梯度溶液可以自動形成。例如,當柱中裝陰離子交換劑PBE94(作固定相)時,先用起始緩沖液(配方見表了一2)平衡到PHg,再用含PH6的多緩沖劑物質(作流動相)的淋洗液通過柱體,這時多緩沖劑中酸性最強的組分與鹼性陰離子交換對結合發生中和作用。隨著淋洗液的不斷加人,住內每點的PH值從高到低逐漸下降。照此處理J段時間,從層析柱頂部到底部就形成了PH6~9的梯度。聚焦層析柱中的PH梯度溶液是在淋洗過程中自動形成的,但是隨著淋洗的進行,PH梯度會逐漸向下遷移,從底部流出液的PH卻由9逐漸降至6,並最後恆定於此值,這時層析柱的PH梯度也就消失了。
2.蛋白質的行為
蛋白質所帶電荷取決於它的等電點(PI)和層析柱中的PH值。當柱中的PH低於蛋白質的PI時,蛋白質帶正電荷,且不與陰離於交換劑結合。而隨著洗脫劑向前移動,固定相中的PH值是隨著淋洗時間延長而變化的。當蛋白質移動至環境PH高於其PI時,蛋白質由帶正電行變為帶負電荷,並與陰離子交換劑結合。由於洗脫劑的通過,蛋白質周圍的環境PH 再次低於PI時,它又帶正電荷,並從交換劑解吸下來。隨著洗脫液向柱底的遷移,上述過程將反復進行,於是各種蛋白質就在各自的等電點被洗下來,從而達到了分離的目的。
不同蛋白質具有不同的等電點,它們在被離子交換劑結合以前,移動之距離是不同的,洗脫出來的先後次序是按等電點排列的。

供靜脈注射的25%人胎盤血白蛋白(即胎白)通常是用硫酸銨鹽析法、透析脫鹽、真空濃縮等工藝制備的,該工藝流程硫酸銨耗量大,能源消耗多,操作時間長,透析過程易產生污染。改用超濾工藝後,平均回收率可達97.18%;吸附損失為1.69%;透過損失為1.23%;截留率為98.77%。大幅度提高了白蛋白的產量和質量,每年可節省硫酸銨6.2噸,自來水16000噸。目前國外生產超濾膜和超濾裝置最有名的廠家是美國的Milipore公司和德國的Sartorius公司。
隨著現代生物技術的發展, 通過基因工程生產蛋白質葯物在治療人類面臨的重大疾病如癌症等方面展示出巨大的潛力. 為滿足生物技術產品工業化生產的需要, 開發高通量、低成本、高效的分離純化方法已引起人們的高度關注. 超濾技術由於具有通量高, 操作條件溫和, 易於放大等特點, 特別適合生物活性大分子的分離. 在生物技術領域, 超濾技術目前已廣泛應用於細胞收集分離、除菌消毒、緩沖液置換、分級( fract ionatio n) 、脫鹽及濃縮[ 1] . 近年來越來越多的研究表明, 通過選擇適當的膜或膜表面改性,以及對分離過程進行優化, 充分利用和調控膜—蛋白質以及蛋白質—蛋白質之間的靜電相互作用, 可以實現分子量相近的兩種蛋白質的高選擇性超濾分離[2- 7] .

為克服常規蛋白質超濾分離過程優化中存在的實驗蛋白質消耗多、工作量大、費時以及費用高等缺點, 我們相繼開發了脈沖進樣技術( Pulsed sampleinject ion technique ) [8]和參數連續變化超濾技術( Parameter scanning ultraf ilt ration) [9]. 並以此為基礎, 結合載體相超濾技術( Carrier phase ult rafil—t rat ion) [10]進一步提出了一種蛋白質超濾分離快速優化新方法[11], 實現了人血漿白蛋白—免疫球蛋白[12]、人源化單克隆抗體( A lemtuzumab) 單體— 二聚體[13]的超濾分離過程快速優化和高選擇性分離,並在膜的篩選及其適用性快速評估方面展現出巨大的潛力. 該方法的主要特徵是與AKTA Prime 系統聯用, 採用脈動進樣技術顯著減少了蛋白質的用量;而利用雙緩沖體系( 類似梯度洗脫) 的參數連續變化超濾技術, 在pH 或離子強度連續變化的情況下考查pH 或離子強度對蛋白質透過率或截留率的影響, 進一步縮短了實驗時間, 降低了蛋白質的用量,極大地減少了實驗量, 加快了過程優化進程; 另外,載體相超濾技術的應用則可保證超濾分離自始至終在設定的條件下進行, 從而最大限度地保證超濾過程的穩定性.
2012-02-25
6
相關搜索
蛋白質層析純化蛋白質層析實驗蛋白質疏水層析蛋白質層析原理蛋白質的分子篩層析實驗蛋白質鹽析肽鍵斷裂嗎蛋白質層析的實驗操作蛋白質層析都要調電導嗎
研究蛋白質的技術手段
贊0答1
隨著新的技術手段不斷運用於生物膜的研究,科學家發現膜蛋白...,有的蛋白質是...在磷脂雙分子層中的。
贊4答2
正在載入...

E. 跪求實驗方案急。關於植物小分子多肽的提取分離和分析 最好用到高效液相提取的

多肽類化合物廣泛存在於自然界中,其中對具有一定生物活性的多肽的研究,一直是葯物開發的一個主要方向。生物體內已知的活性多肽主要是從內分泌腺組織器官、分泌細胞和體液中產生或獲得的,生命活動中的細胞分化、神經激素遞質調節、腫瘤病變、免疫調節等均與活性多肽密切相關。隨著現代科技的飛速發展,從天然產物中獲得肽類物質的手段也不斷得到提高。一些新方法、新思路的應用。不斷有新的肽類物質被發現應用於防病治病之中。本文介紹了近幾年肽類物質分離、分析的主要方法研究進展。
1 分離方法
採取何種分離純化方法要由所提取的組織材料、所要提取物質的性質決定。對蛋白質、多肽提取分離常用的方法包括:鹽析法、超濾法、凝膠過濾法、等電點沉澱法、離子交換層析、親和層析、吸附層析、逆流分溶、酶解法等。這些方法常常組合到一起對特定的物質進行分離純化,同時上述這些方法也是蛋白、多肽類物質分析中常用的手段,如層析、叫泳等。
1.1 高效液相色譜(HPLC)
HPLC的出現為肽類物質的分離提供了有利的方法手段,因為蛋白質、多肽的HPLC應用與其它化合物相比,在適宜的色譜條件下不僅可以在短時間內完成分離目的,更重要的是HPLC能在制備規模上生產具有生物活性的多肽。因此在尋找多肽類物質分離制備的最佳條件上,不少學者做了大量的工作。如何保持多肽活性、如何選擇固定相材料、洗脫液種類、如何分析測定都是目前研究的內容。
1.1.1 反相高效液相色譜(RP-HPLC)
結果與保留值之間的關系:利用RP-HPLC分離多肽首先得確定不同結構的多肽在柱上的保留情況。為了獲得一系列的保留系數,Wilce等利用多線性回歸方法對2106種肽的保留性質與結構進行分析,得出了不同氨基酸組成對保留系數影響的關系,其中極性氨基酸殘基在2~20氨基酸組成的肽中,可減少在柱上的保留時間;在10~60氨基酸組成的肽中,非極性氨基酸較多也可減少在柱上的保留時間,而含5~25個氨基酸的小肽中,非極性氨基酸增加可延長在柱上的保留時間。同時有不少文獻報道了肽鏈長度、氨基酸組成、溫度等條件對保留情況的影響,並利用計算機處理分析得到每種多肽的分離提取的最佳條件。
肽圖分析(Peptide Mapping):肽圖分析是根據蛋白質、多肽的分子量大小以及氨基酸組成特點,使用專一性較強的蛋白水解酶[一般未肽鏈內切酶(endopeptidase)]作用於特殊的肽鏈位點將多肽裂解成小片斷,通過一定的分離檢測手段形成特徵性指紋圖譜,肽圖分析對多肽結構研究合特性鑒別具有重要意義。利用胰蛋白酶能特意性作用於Arg和Lys羧基端的肽鏈的性質,通過RP-HPLC法採用C18柱檢測了重組人生長激素特徵性胰肽圖譜。同時胰島素的肽圖經V8酶專一裂解也製得,並可鑒別僅相差一個氨基酸殘疾的不同種屬來源的胰島素。人類腫瘤壞死因子的單克隆抗體結構也應用酶解法及在線分析技術確定了肽圖,便於鑒定分析。此項技術已經在新葯開發中得到廣泛應用。
1.1.2 疏水作用色譜(Hydrophobic interaction chromatogrphy,HIC)
HIC是利用多肽中含有疏水基因,可與固定相之間產生疏水作用而達到分離分析的目的,其比RP-GPLC具有較少使多肽變性的特點。利用GIC分離生產激素(GH)產品的結構與活性比EP-GPLC分離的要穩定,活性較穩定。Geng等利用HIC柱的低變性特點,將大腸桿菌表達出的經鹽酸胍乙啶變性得到人重組干擾素-γ。通過HIC柱純化、折疊出高生物活性的產品。不同人尿表皮生長因子(EGF)也利用HIC純化到了,均具有良好的生物活性。HIC可將未經離子交換柱的樣品純化。而RP-HPLC則不能達到這一要求。
1.1.3 分子排阻色譜(Sizs-Exclusion chromatogrphy,SEC)
SEC是利用多肽分子大小、形狀差異來分離純化多肽物質,特別對一些較大的聚集態的分子更為方便,如人重組生長激素(hgH)的分離,不同結構、構型的GH在SEC柱上分離行為完全不同,從而可分離不同構型或在氨基酸序列上有微小差異的變異體,利用SEC研究修飾化的PEG的分離方法,此PEC具有半衰期長、作用強的特點。一些分子量較大的肽或蛋白均可利用此法分離分析。
1.1.4離子交換色譜(Iron-Exchange chromatography,IEXC)
IEXC可在中性條件下,利用多肽的帶電性不同分離純化具有生物活性的多肽。其可分為陽離子柱與陰離子柱兩大類,還有一些新型樹脂,如大孔型樹脂、均孔型樹脂、離子交換纖維素、葡聚糖凝膠、瓊脂糖凝膠樹脂等。在多肽類物質的分離分析研究中,對多肽的性質、洗脫劑、洗脫條件的研究較多,不同的多肽分離條件有所不同,特別是洗脫劑的離子強度、鹽濃度等對純化影響較大。Wu等報道利用離子交換柱層析法,探討分離牛碳酸酐異構體和牛血清白蛋白、雞血清白蛋白酶的提取條件,獲得了有價值的數據供今後此類物質分離研究。
1.1.5膜蛋白色譜(Chromatography of Membrane Protein,CMP)
CMP+分離強蔬水性蛋白、多肽混合物的層析系統,一般有去垢劑(如SDS)溶解膜蛋白後形成SDS-融膜蛋白,並由羥基磷灰石為固定相的柱子分離純化。羥基磷灰石柱具有陰離子磷酸基團(P-端),又具有陽離子鈣(C-端),與固定相結合主要決定於膜蛋白的大小、SDS結合量有關。利用原子散射法研究cAMP的分離機制發現,樣品與SDS結合後在離子交換柱上存在SDS分子、帶電荷氨基酸與固定相中帶電離子間的交換,從而達到分級分離的目的。
1.1.6高效置換色譜(High-Performance Displacement Chromatography,HPDC)
HPDC是利用小分子高效置換劑來交換色譜柱上的樣品,從而達到分離的目的。它具有分離組分含量較少成分的特性。利用HPDC鑒定分離了低於總量1%組分的活性人重組生長激素(rHG )。在研究非毒性交換劑時Jayarama發現硫酸化葡萄糖(Detran Sulfate,DS)是對β乳球蛋白A和B的良好置換劑,一般DS的相對分子質量為1×104和4×104最宜。研究表明置換劑的相對分子質量越低,越易於與固定相結合,因此在分離相對分子質量小的多肽時,需要更小的置換劑才能將其置換純化出來。
1.1.7 灌注層析(Perfusion Chromatography,PC)
PC是一種基於分子篩原理與高速流動的流動相的層析分離方法,固定相孔徑大小及流動相速度直接影響分離效果。試驗證明其在生產、制備過程中具有低投入、高產出的特性。目前市場上可供應的PC固定相種類較多,適合於不同分子量的多肽分離使用。
1.2 親和層析(Affinity Chromatography,AC)
AC是利用連接在固定相基質上的配基與可以和其特異性產生作用的配體之間的特異親和性而分離物質的層析方法。自1968年Cuatrecasas提出親和層析概念以來,在尋找特異親和作用物質上發現了許多組合,如抗原-抗體、酶-催化底物、凝集素-多糖、寡核苷酸與其互補鏈等等。對多肽類物質分離目前主要應用其單抗或生物模擬配基與其親和,這些配基由天然的,也有根據其結構人工合成的。Patel等人利用一系列親和柱分離純化到了組織血漿纖維蛋白酶原激活劑蛋白多肽。
固定金屬親和層析(Immobilized Metal Affinity Chromatography.LMAC)是近年來發展起來的一種親和方法。其固定相基質上鰲合了一些金屬離子,如Cu2+、Ni2+、Fe3+等,此柱可通過配為鍵鰲合側鏈含有Lys、Met、Asp、Arg、Tyr、Glu和His的多肽,特別是肽序列中含有His-X-X-X-His的結構最易結合到金屬離子親和柱上,純化效果較好。其中胰島素樣生長因子(Insylin Like Growth Factor,IGF)、二氫葉還原酶融合蛋白等均用此方法分離到純度較高的產品。
Chaiken等人報道了另一種親和層析方法,利用反義DNA表達產生,其與正鏈DNA表達產生的肽或蛋白具有一定的親和性,如Arg加壓素受體復合物,已用此法分離得到。DNA與蛋白、多肽復合物之間的作用也是生物親和中常用的方法。將人工合成的寡核苷酸結合在固定相基質上,將樣品蛋白或多肽從柱中流過,與之結合可達到分離特定結構多肽的目的。
1.3 毛細管電泳(Capillary electrophoresis,CE)--分離分析方法
CE是在傳統的電泳技術基礎上於本世紀60年代末由Hjerten發明的,其利用小的毛細管代替傳統的大電泳槽,使電泳效率提高了幾十倍。此技術從80年代以來發展迅速,是生物化學分析工作者與生化學家分離、定性多肽與蛋白類物質的有利工具。CE根據應用原理不同可分為以下幾種;毛細管區帶電泳Capillary Zone electrophoresis,CZE)、毛細管等電聚焦電泳(Capillary Isoeletric Focusing,CIEF)毛細管凝膠電泳(CapillaryGelElectrophoresis,CGE)和膠束電動毛細管層析(Micellar Electokinetic Electrophoresis Chromatorgraphy,MECC)等。
1.3.1 毛細管區帶電泳(Capillary Zone Electrophoresis,CZE)
CZE分離多肽類物質主要是依據不同組分中的化合物所帶電性決定,比傳統凝膠電泳更准確。目前存在於CZE分離分析多肽物質的主要問題是天然蛋白或肽易與毛細管硅膠柱上的硅醇發生反應,影響峰形與電泳時間,針對這些問題不少學者做了大量實驗進行改進,如調節電池泳液的PH值,使與硅醇反應的極性基團減少;改進毛細管柱材料的組成,針對多肽性質的不同採取不同的CZE方法研究分離5個含9個氨基酸殘基的小肽,確定了小肽分析的基本條件,即在低PH條件下,緩沖液中含有一定濃度的金屬離子如Zn2+等,此時分離速度快而且准確。
1.3.2細管等電聚電泳(Capillary Isleletric Focusing,CIEF)
由於不同的蛋白、多肽的等電點(PI)不同,因此在具有不同pH梯度的電泳槽中,其可在等電點pH條件下聚集沉澱下來,而與其他肽類分離開來。CIEF在分離、分析混合多肽物質中應用不多,主要應用與不同來源的多肽異構體之間的分離,如對rHG不同異構體分離。由於在CIEF柱表面覆蓋物的不穩定性限制了此法的廣泛應用。
1.3. 3毛細管凝膠電泳 (Capillary Gel Electrophoresis,CGE)
CGE是基於分子篩原理,經十二烷基磺酸鈉(SDS)處理的蛋白或多肽在電泳過程中主要靠分子形狀、分子量不同而分離。目前,又有一種非交聯歡、線性、疏水多聚凝膠柱被用於多肽物質的分離分析,此電泳法適於含疏水側鏈較多的肽分離,這種凝膠易於灌注,使用壽命長,性質較為穩定。
1.3.4膠束電動毛細管層析(Micellar Electrokinetic Electorphoresis Chromatography, MECC)
MECC的原理是在電泳液中加入表面活性劑,如SDS,使一些中性分子帶相同電荷分子得以分離。特別對一些小分子肽,陰離子、陽離子表面活性劑的應用都可使之形成帶有一定電荷的膠束,從而得到很好的分離效果。有文獻報道在電解液中加入環糊精等物質,可使用權含疏水結構組分的多肽選擇性與環糊精的環孔作用,從而利用疏水作用使多肽得到分離。
1.4多肽蛋白質分離工程的系統應用
以上提到的分離多肽的技術在實際應用過程中多相互結合,根據分離多肽性質的不同,採用不同的分離手段。特別是後基因組時代,對於蛋白質組深入的研究,人們對於分離多肽及蛋白質的手段不斷改進,綜合利用了蛋白質和多肽的各種性質,採用包括前面提到的常規蛋白多肽提取方法,同時利用了高效液相色譜,毛細管電泳,2-D電泳等手段分離得到細胞或組織中盡可能多的蛋白多肽。在蛋白質組學研究中系統應用蛋白和多肽分離鑒定的技術在此研究中即是分離手段也是分析方法之一。特別是以下提到的質譜技術的發展,大大的提高了蛋白多肽類物質的分析鑒定的效率。
2 分析方法
2.1 質譜分析(Mass Spectrometry, MS)
MS在蛋白、多肽分析中已經得到了廣泛應用,特別是在分離純化後的在線分析中,MS的高敏性、快速性特別適合多肽物質分析鑒定。其中連續流快原子轟擊質譜(Continuous-Flow Fast Atom Bombardment, cf-FAB)和電霧離子化質譜(Electrospray Ionization, EIS)是近幾年發展起來的新方法。
2.1.1連續流快原子轟擊質譜(Continuous-Flow Fast Atom Bombardment, cf-FAB)
cf-FAB是一種弱離子化技術,可將肽類或小分子量蛋白離子化成MH+或(M-H)形式。主要應用於肽類的分離檢測,其具有中等解析度,精確度大於+0.2amu,流速一般在0.5-1.5μl·Ml-1。在測定使流動相需加0.5%-10%基質如甘油和高有機溶劑成分,使樣品在檢測探針處達到敏感化。cf-FAB常與HPLC、CEZ等方法結合使用達分離分析的目的,許多多肽的cf-FAB分析方法已經建立,並得到很好的應用。如Hideaki等利用此法研究L-Pro、L-Ala的四肽化合物系列。證明L-Pro在保持小肽構相穩定性。連接分子方面具有重要意義。
2.1.2 電霧離子化質譜(Electrospray Ionozation,EIS)
EIS可產生多價離子化的蛋白或多肽,允許相對分子質量達1×105蛋白進行分析,解析度在1500-2000amu。精確度在0.01%左右。EIS更適合相對分子質量大的蛋白質的在線分析,且需要氣化或有機溶劑使樣品敏感化。利用EIS與HPLC聯合分離分析GH和血紅蛋白均獲成功,其也可與CEZ聯合應用。
2.1.3 基質輔助激光解析/離子化-飛行時間質譜(Matrix-associated laser disso-ciation/ionization time of flight mass spectrmtry,MALDI-TOF MS)
MALDI-TOF是目前蛋白質鑒定中精確測定測定分子質量的手段,特別適合對混合蛋白多肽類物質的相對分子質量的測定,靈敏度和解析度均較高。它是目前蛋白質組學研究的必備工具。同時結合液相色譜的聯用技術可以高效率的鑒定多肽物質。特別是當各種原理的質譜技術串聯應用時,不但可以得到多肽的相對分子質量信息,還可以測定它的序列結構,此項技術將在未來蛋白質組學研究中起到決定性作用。
2.2 核磁共振(Nuclear Magnetic resonance,NMR)
NMR因圖譜信號的純數字化、過度的重疊范圍過寬(由於相對分子質量太大)核信號弱等原因,在蛋白、多肽物質的分析中應用一直不多。隨著二維、三維以及四維NMR的應用,分子生物學、計算機處理技術的發展,使NMR逐漸成為此類物質分析的主要方法之一。NMR可用於確定氨基酸序列、定量混合物中的各組分組成含量等分析中。但要應用於蛋白質分析中仍有許多問題需要解決,例如,如何使分子量大的蛋白質有特定的形狀而便於定量與定性分析,如何減少數據處理的時間問題等。這些問題多有不少學者在進行研究。雖然在蛋白質分析中應用較少,NMR在分析分子中含少於30個氨基酸的小肽時是非常有用的,可以克服上述蛋白質分析中的缺點而達到快速准確分析的目的。
2.3 其他
除上述方法之外,氨基酸組成分析、氨基酸序列分析、場解析質譜、IR、UV光譜、CD、圓而色譜、生物鑒定法、放射性同位素標記法及免疫學方法等都已應用於多肽類物質的結果鑒定、分析檢測之中。
以上簡要的介紹了近幾年多肽物質分離、分析的常用方法及最新研究方向。隨著科學技術水平的不斷發展,會有許多更新的分離分析手段不斷涌現,因此這一領域的研究具有廣闊的前景。

應用SDS-PAGE顯示小分子多肽
SDS-PAGE在分離、鑒定和純化蛋白質方面有著廣泛應用,其有效分離范圍取決於聚丙烯醯胺的濃度和交聯度,其孔徑隨著雙丙烯醯胺與丙烯醯胺比率的增加而減小,比率接近於1:20時,孔徑達到最小值。分子量低於10kD的小分子肽類,即使用較高濃度的聚丙烯醯胺凝膠的SDS-PAGE也不能完全分離,或是顯不出色,或是顯帶較弱,帶型彌散。且分子量越小,效果也越差。
為了能在SDS-PAGE上顯示測定小分子量的多肽,通常採取兩種方法:一是增加凝膠的濃度和交聯度,在制膠時加入一些可以降低聚丙烯醯胺凝膠網限孔徑的溶質分子,使用尿素、甘油或蔗糖等物質;二是選擇緩沖液中的拖尾離子的種類和濃度以達到改善多肽的分離效果。
操作步驟
1.電泳緩沖液的配製如下表所示
緩沖液Tris
(mol/L)Tricine
(mol/L)pHSDS
(%)
陽極緩沖液
陰極緩沖液
膠緩沖液0.2
0.1
3.0—
0.1
—8.9*
8.25**
8.4*—
0.1
0.3
* 用HCl調pH
** pH約為8.25
2.丙烯醯胺貯存液的配製
單丙-雙丙混合物單丙的百分數雙丙的百分數
49.5% T, 3%C
49.5% T, 6%C48
46.51.5
3.0
T:丙烯醯胺的總濃度
C:交聯度
3.膠的制備,與一般SDS-PAGE相似,按下表配製分離膠和濃縮膠
組 份分離膠
16% T,6%C濃縮膠
6% T,3%C
49.5% T, 3%C丙烯醯胺溶液(ml)
49.5% T, 6%C 丙烯醯胺溶液(ml)
膠緩沖液(ml)
脲(g)[甘油(ml)]
水(ml)
10%過硫酸銨(μl)
TEMED(μl)
總體積(ml)—
3.3
3.3
3.6[2.4]
1
40
4.0
10.040.48

1.00

1.50
25
2.5
3.03
4.樣品緩沖液
4% SDS
12%甘油
50mmol/L Tris
2%巰基乙醇
0.01% Serva blue
多肽樣品與樣品緩沖液混合沸煮2min(或40℃溫浴30min)。
5.將灌膠的玻璃板固定在電泳裝置上,用1%瓊脂糖封邊,倒入陰極緩沖液,依次加樣。
6.將電泳裝置放入電泳槽內,倒入陽極緩沖液,將正負極與電泳儀相接,恆電壓50~60V,待指示劑進入分離膠後,電壓可升至70~90V,恆壓約3h待指示劑走出凝膠下緣停止電泳。
7.染色、脫色及膠的保存同SDS-PAGE

F. 菠菜色素的提取與分離及光譜測定實驗需要多長時間

一、實驗目的 1、通過綠色植物色素的提取,學習天然物質的提取方法; 2.了解菠菜中主要色素的基本性質,通過菠菜色素的提取和分離,了解天然物質 分離提純方法及原理 3、通過薄層色譜分析,掌握有機物色譜分析的原理和方法。 二.實驗原理 綠色植物如菠菜葉中含有葉綠素(綠) 、胡蘿卜素(橙)和葉黃素(黃)等 多種天然色素。 葉綠素存在兩種結構相似的形式即葉綠素 a(C55H72O5N4Mg)和葉綠素 b(C55H70O6N4Mg), 其差別僅是葉綠素 a 中一個甲基被甲醯基所取代從而形成 了葉綠素 b。它們都是吡咯衍生物與金屬鎂的絡合物,是植物進行光合作用所必 需的催化劑。植物中葉綠素 a 的含量通常是 b 的 3 倍。盡管葉綠素分子中含有 一些極性基團,但大的烴基結構使它易溶於醚、石油醚等一些非極性的溶劑。 胡蘿卜素(C40H56)是具有長鏈結構的共軛多烯。它有三種異構體,即 ?-胡蘿卜素、β-胡蘿卜素和γ-胡蘿卜素,其中β-胡蘿卜素含量最多,也最重要。 在生物體內,β-胡蘿卜素受酶催化氧化形成維生素 A。目前β-胡蘿卜素已可進行 工業生產,可作為維生素 A 使用,也可作為食品工業中的色素。 葉黃素(C40H56O2)是胡蘿卜素的羥基衍生物,它在綠葉中的含量通常是 胡蘿卜素的兩倍。 與胡蘿卜素相比, 葉黃素較易溶於醇而在石油醚中溶解度較小。 色譜法是一種物理的分離方法, 其原理是利用混合物中各成分的物理化學性 質的差異, 當選擇某一條件使混合物中各成分流過支持劑或吸附劑時,各成分可 因其物理性質不同而分離。分離效果的好壞關鍵在於條件的選擇。 薄層色譜是在玻片上塗布固體吸附劑,利用樣品對固體吸附劑的吸附能力 不同,選擇對樣品溶解(解附)能力不同的溶劑,將混合物各成分按照極性大小 不同隨溶劑前進速度不同而分開的方法。 應用:薄層色譜可以用來分離、鑒別化合物,也可以用於跟蹤反應進程。 Rf 值與分子結構的關系 Rf 值越大,樣品與固體吸附劑吸附越緊,即樣品與固體吸附劑分子間作用 力越大,說明樣品極性越強或分子量越大。 本實驗利用有機溶劑將菠菜中的色素浸提出來, 利用柱層析和薄層層析法將 色素分離開來,根據各色素的顏色、分子極性與 Rf 值的關系、吸收光譜、熒光 對分離出的色素進行鑒定歸屬,討論結構對 Rf 值、吸收光譜的影響。 三、主要試劑及主、副產物的物理常數 名稱 分子 量 性狀 相對密 度 熔點 沸點 水 溶解度 醇 溶 醚 溶 無色透明液 石油醚 體,有煤油氣 味 乙醇 46.07 無色透明液 體,易揮發, 有刺激性 58.08 丙酮 無色液體,易 揮發,辛辣甜 味 58.44 飽和氯 化鈉 無水 NaSO 4 142.0 4 無色透明立方 晶體,白色粉 末,味咸 白色粉末,無 臭,味咸 0.64-0. 66 -37 40-80 不溶 0.79 -114. 3 78.4 溶 溶 溶 0.8 -94.7 56.5 溶 溶 溶 2.130 801 1413 溶 884 1700 溶 不溶 四、主要試劑規格及用量 名稱 規格 用量 5g 摩爾數 菠菜葉 五、實驗裝置 六、實驗步驟 稱取 5 克洗凈晾乾水分的新鮮的菠菜葉,用剪刀剪碎,放在錐形瓶中,加 入 30 mL 2:1(v/v)的石油醚和乙醇混合溶劑,浸沒菠菜葉片,用玻棒攪動數分 鍾,以利於菠菜葉的細胞破裂,色素浸出。布氏漏斗抽濾,將菠菜汁轉入分液漏 斗,分去水層,分別用等體積的飽和食鹽水和蒸餾水洗滌兩次,以除去萃取液中 的乙醇(洗滌時要輕輕旋盪,以防止產生乳化) 。棄去水-乙醇層,石油醚層用無 水硫酸鈉乾燥後濾入錐型瓶,置於暗處備用。 用吸管吸取菠菜萃取液,小心慢慢滴在制鋪好的薄層板上,滴入在硅膠板 上的萃取液要成一條直線,直線離板下沿約 1.5~2 厘米,晾乾。放入裝有 2:1.5: 2 的石油醚-丙酮-苯(v/v)混合展開劑的層析缸內,於暗處室溫展開,得五條色 帶。取出,待溶液揮發後,測量各色帶及溶劑前沿到原點的距離,計算 Rf 值。 七、實驗數據記錄 溶劑前沿至原點中心的距離/cm: 菠菜葉片色素色譜分析數據 編號 顏色 溶質的最高濃度中心至 原點中心的距離 Rf 值 1 2 3 4 5 八、思考與討論 1. 薄層的展開為什麼要在密閉容器中? 答:展層劑易揮發,所以在密閉容器中防止展層劑揮發。 2. 點樣時如樣品斑點過大有什麼壞處?若將樣品斑點浸入展開劑中會有什麼後 果? 答: 因溶液太稀或樣點太小,可重復點樣.但應在每次點樣的溶劑揮發後,方可重點, 以防樣點被溶解掉.點樣過大易造成拖尾,擴散等現象,影響分離效果; 若將樣品斑 點浸入展開劑中,會無法確定展開劑上升高度,即無法求得 Rf 值和准確判斷各組 分在薄層板上的相對位置. 3. 比較葉綠素、胡蘿卜素、葉黃素三種色素的極性,說明為什麼胡蘿卜素在氧 化鋁中移動最快? 答:葉綠素、葉黃素、胡蘿卜素極性依次減少,因為它們分子結構中的極性含氧 基團依次減少, 因為化合物的吸附能力與他們的極性成正比, 胡蘿卜素極性最小, 與氧化鋁的作用力最小,從而隨著溶劑下移的速度最快。

G. 二苯基乙二酮常用作醫葯中間體及紫外線固化劑,可由二苯基羥乙酮氧化製得,反應的化學方程式及裝置圖(部

(1)三頸燒瓶;球形冷凝管(或冷凝管)
(2)AD;用玻璃棒摩擦容器內壁加入晶體
(3)小於;D
(4)趁熱過濾
(5)C

閱讀全文

與薄層析實驗裝置相關的資料

熱點內容
什麼側漏水儀器比較好用 瀏覽:581
機械積木的零件叫什麼 瀏覽:207
打拳買什麼器材 瀏覽:300
福克斯儀表盤時鍾怎麼調整 瀏覽:615
潛水泵機械密封圈位置磨損怎麼處理 瀏覽:955
管道煤氣有兩個閥門 瀏覽:158
冬天暖氣閥門可以全關住嗎 瀏覽:553
地暖開關閥門上螺釘什麼用途 瀏覽:737
有氧健身用什麼儀器 瀏覽:985
中央空調製冷量多少千瓦 瀏覽:18
哪些器材練哪些部位 瀏覽:743
fag調心球軸承質量怎麼看 瀏覽:236
肌肉肌腱超聲波治療怎麼做的 瀏覽:599
東莞創匯塑膠五金製品有限公司圖片 瀏覽:727
製冷機熱壓差是什麼原因 瀏覽:292
氣體檢測報警裝置廠家 瀏覽:821
什麼是大型體育設備 瀏覽:815
地暖閥門管道不熱 瀏覽:916
沿頂梁給水管道適合閥門 瀏覽:658
加油站機械傷害有哪些 瀏覽:559