Ⅰ 智能化變電站的系統結構
在變電站自動化領域中,智能化電氣的發展,特別是智能開關、光電式互感器機電一體化設備的出現,變電站自動化技術進入了數字化的新階段。在高壓和超高壓變電站中,保護裝置、測控裝置、故障錄波及其他自動裝置的I/O單元,如A/D變換、光隔離器件、控制迴路等將割列出來作為智能化一次設備的一部分。反言之,智能化一次設備的數字化感測器、數字化控制迴路代替了常規繼電保護裝置、測控等裝置的I/O部分;而在中低壓變電站則將保護、監控裝置小型化、緊湊化,完整地安裝在開關櫃上,實現了變電站機電一體化設計。
智能化變電站自動化系統的結構在物理上可分為兩類,即智能化的一次設備和網路化的二次設備;在邏輯結構上可分為三個層次,根據IEC61850通信協議定義,這三個層次分別稱為過程層、間隔層、站控層。所謂「過程層」就是由數字化變電站技術引進的合並單元和智能終端組成。
Ⅱ 智能變電站自動化系統
由上海聚仁電力提供解決方案,該系統是由智能化一次設備(電子式互感器、智能化開關等)和網路化二次設備分層(過程層、間隔層、站控層)構建,建立在IEC61850標准和通信規范基礎上,能夠實現變電站內智能電氣設備間信息共享和互操作的現代化變電站。在此基礎上實現變電站運行操作自動化、變電站信息共享化、變電站分區統一管理、利用計算機模擬技術實現智能化電網調度和控制的基礎單元。
智能變電站自動化系統優勢
採用先進、可靠、集成、低碳、環保的智能設備,以全站信息數字化、通信平台網路化、信息共享標准化為基本要求,自動完成信息採集、測量、控制、保護、計量和監測等基本功能,並可根據需要支持電網實時自動控制、智能調節、在線分析決策、協同互動等高級功能的變電站。
智能變電站自動化系統主要功能特點
系統包含多專業的綜合性技術,它以微機為基礎來實現對變電站傳統的繼電保護、控制方式、測量手段、通信和管理模式的全面技術改造,實現對電網運行管理的變革。變電站從一次設備、二次設備、繼電保護、自動裝置、載波通訊等與現代的計算機硬、軟體系統和微波通信以及GIS組合電器等相結合,使變電站走向綜合自動化和小型化。變電站綜合自動化系統的基本功能主要體現在以下六個方面:
■監控子系統功能:數據採集、事件順序記錄、故障測距和錄波、控制功能、安全監視和人機聯系功能。
■微機保護子系統功能:通訊與測控方面的故障應不影響保護正常工作。微機保護還要求保護的CPU及電源均保持獨立。
■自動控制子系統功能:備用電源自動投入裝置、故障錄波裝置等與微機保護子系統應具備各自的獨立性。
■遠動和通信功能:變電站與各間隔之間的通信功能;綜合自動化系統與上級調度之間的通信功能,即監控系統與調度之間通信,故障錄波與測距的遠方傳輸功能。
■變電站系統綜合功能:通過信息共享實現變電站VQC(電壓無功控制)功能、小電流接地選線功能、自動減載功能、主變壓器經濟運行控制功能。
■在線自診斷功能:具有自診斷到各設備的插件級和通信網路的功能。
系統結構
在變電站自動化領域中,智能化電氣的發展,特別是智能開關、光電式互感器機電一體化設備的出現,變電站自動化技術進入了數字化的新階段。在高壓和超高壓變電站中,保護裝置、測控裝置、故障錄波及其他自動裝置的I/O單元,如A/D變換、光隔離器件、控制迴路等將割列出來作為智能化一次設備的一部分。反言之,智能化一次設備的數字化感測器、數字化控制迴路代替了常規繼電保護裝置、測控等裝置的I/O部分;而在中低壓變電站則將保護、監控裝置小型化、緊湊化,完整地安裝在開關櫃上,實現了變電站機電一體化設計。
智能化變電站自動化系統的結構在物理上可分為兩類,即智能化的一次設備和網路化的二次設備;在邏輯結構上可分為三個層次,根據IEC61850通信協議定義,這三個層次分別稱為"過程層"、"間隔層"、"站控層"。所謂「過程層」就是由數字化變電站技術引進的合並單元和智能終端組成。
Ⅲ 什麼是保護及故障信息子站
電網故障信息管理系統是收集變電站繼電保護、記錄儀、安全自動裝置等智能設備的實時/非實時運行、配置和故障信息。
繼電保護裝置必須具有正確區分被保護元件是處於正常運行狀態還是發生了故障,是保護區內故障還是區外故障的功能。保護裝置要實現這一功能,需要根據電力系統發生故障前後電氣物理量變化的特徵為基礎來構成。
(3)智能變電站繼電保護和安全自動裝置擴展閱讀:
電力系統發生故障後,工頻電氣量變化的主要特徵是:
(1)電流增大。短路時故障點與電源之間的電氣設備和輸電線路上的電流將由負荷電流增大至大大超過負荷電流。
(2)電壓降低。當發生相間短路和接地短路故障時,系統各點的相間電壓或相電壓值下降,且越靠近短路點,電壓越低。
(3)電流與電壓之間的相位角改變。正常運行時電流與電壓間的相位角是負荷的功率因數角,一般約為20°,三相短路時,電流與電壓之間的相位角是由線路的阻抗角決定的,一般為60°~85°,而在保護反方向三相短路時,電流與電壓之間的相位角則是180°+(60°~85°)。
(4)測量阻抗發生變化。測量阻抗即測量點(保護安裝處)電壓與電流之比值。正常運行時,測量阻抗為負荷阻抗;金屬性短路時,測量阻抗轉變為線路阻抗,故障後測量阻抗顯著減小,而阻抗角增大。
Ⅳ 淺談35kV變電站的微機繼電保護:智能變電站繼電保護技術問答
中圖分類號:TM41 文獻標識碼:A隨著我國電力工業的迅速發展,各大電力系統的容量和電網區域不斷擴大。電力系統在運行過程中,會因為各種各樣的原因而出現事故,從而可能導致電力系統的運行暫時中斷,也雀含清可能引發更大的電力事故。所以在變電站中,人們採用微機繼電保護裝置進行電力系統的保護,微機繼電保護裝置在電力系統的廣泛應用是電網及電氣設備安全可靠運行的保證。微機繼電保護裝置可以在電力系統發生異常情況時進行檢測、預警等,並且可以進行相應的自救措施。隨著電力改革的進行,電網規模的不斷增大,對於微機繼電保護裝置的要求也越來越高。電力工作者在不斷地研究微機繼電保護裝置對電力系統運行的保護功能,不斷地開發新型的微機繼電保護裝置,以適應我國國民對電力不斷增加的需求。
一、35kV變電站中微機繼電保護特點
為了更好地保證電力系統的正常運行,35kV變電站中微機繼電保護特點如下:
可靠性是對微機繼電保護裝置提出的最基本的要求,也是微機繼電保護裝置最基本的特點。計算機老悉在程序的指揮下,有極強的綜合分析和判斷能力,因而微機繼電保護裝置可以實現常規保護很難辦到的自動糾錯,即自動地識別和排除干擾,防止由於干擾而造成誤頃前動作。另外微機繼電保護裝置有自診斷能力,能夠自動檢測出計算機本身硬體的異常部分,配合多重化可以有效地防止拒動,因此可靠性很高。
由於計算機保護的特性主要由程序決定,所以不同原理的保護可以採用通用的硬體,只要改變程序就可以改變保護的特性和功能,因此可靈活地適應電力系統運行方式的變化。
採用微型計算構成的保護,使原有型式的繼電保護裝置中存在的技術問題,可以找到新的解決辦法。如對距離保護如何區分振盪和短路,如何識別變壓器差動保護勵磁涌流和內部故障等問題,都提供了許多新的原理和解決方法。
當電力系統的運行發生異常情況時,微機繼電保護裝置必須及時作出相應的反應,以保障電力系統供電的可靠性。對於電力系統運行來說,在故障發生時不能及時得到處理,其影響程度可大可小。35kV變電站中微機繼電保護克服傳統繼電保護裝置功能單一的缺陷,增設了故障測距、事件記錄、三角極性電壓判斷封功能,提高了繼電保護裝置的保護速度。
微機繼電保護裝置具有自動性,它擺脫了對站里工作人員定期檢查的依賴性。在電力系統中所規定范圍內的元件,如果發生異常情況,無論是短路的類型,還是短路點的位置,微機繼電保護裝置可以第一時間發現,並且給予正確的反應動作。另外在繼電保護裝置中連接微機管理系統,大大提高了繼電保護的靈敏性。
二、35kV變電站中微機繼電保護設計
在對電力系統35kV變電站中微機繼電保護裝置的設計中,一定要注意對微機繼電保護裝置中自動識別系統的設計。微機繼電保護裝置要正確區分其保護的元件是處於什麼樣的狀態,要可以精確地區分元件發生故障的區段,所以,在進行35kV變電站中微機繼電保護裝置的設計中,需以電力系統故障的電氣物理量變化為根據,結合電力系統的電壓、電流等變化設計35kV變電站中微機繼電保護。
(一)微機繼電保護裝置的組成
微機繼電保護裝置的主要作用是進行電力系統故障的檢測與預警等,所以必須具有數據採集系統、微機裝置的保護與管理裝置等,這些基本硬體共同組成微機繼電保護裝置,共同為保證電力系統的正常運行做貢獻。
數據採集系統主要負責採集電力系統中的各項電氣物理參數,將電壓與電流互感器發射的信號轉化為數字信號,通過輸入輸出處理器傳遞給微機系統,以進行進一步的處理;微機裝置是微機繼電保護裝置的核心部分,分為微機保護裝置和微機管理裝置。微機保護裝置是繼電保護的主要運行部分,它受變電所使用的軟體的限制,根據不同的軟體使用,確定不同的保護功能;微機管理裝置的主導者是電力系統的工作人員,通過工作人員的有關操作,進行模擬量信號的輸出和開關信號的輸入,關繫到變電站中外部繼電器、操作把手等接點的運行。除此之外,為適應用戶的需要,還配備了列印機,以對用戶提供書面故障信息。
(二)微機繼電保護裝置的不足之處
1.語音報警慢
微機繼電保護裝置可以在發生電力系統故障時,進行預警,但是這種語音報警的速度並不理想。當進行停送電操作時,接連操作幾個開關後,報警才會響起。
2.低周減載功能重復
專門的低周減載櫃的設計是不必要的,因為在每台線路保護上都有低周減載功能,重復設計則會導致資金的浪費。
3.錯誤使用單項供電表
在變電站中,進線分為主用和備用兩路,備用迴路設計計量電度表忽略了雙向供電,只使用單項供電表,不符合設計要求。
三、35kV變電站中微機繼電保護的應用改進策略
對35kV變電站中微機繼電保護的改進,應該建立在保持原有裝置功能的基礎上,提高語音報警速度、加強繼電檔案管理工作等方面進行,全面的提高微機繼電保護系統的可靠性和適用性,使微機繼電保護系統能夠具備廣的應用范圍。
(一)相位校正
變壓器兩側電流的相位差在超過一定限度時會引起不平衡電流,致使繼電保護的准確性受到影響。所以,在實際工程中,利用星形接法處理變壓器兩側的電線,將微機軟體計算功能直接應用到相位校正中,調整電流差值,增加電流相位差超限的報警功能。
(二)過電流保護
35kV變電站中的復合電壓啟動時形成過電流,這種過電流將對電力系統調度造成影響,所以微機繼電保護裝置將過電流、低電壓、進行過負載保護,穩定電力系統的供電功能,形成安全的後備保護系統。
(三)主變本體保護
微機繼電保護裝置對於小匝間短路的靈敏度較低,所以在35kV變電站中微機繼電保護的應用時,應該注意這種保護死角的設置。利用微機的自動調節功能,按照主變本體內的氣體保護程序,加強對於有載調壓氣體保護和壓力釋放保護對於主變本體的保護。
四、35kV微機繼電保護裝置與110kV微機繼電保護裝置的不同
由於35kV微機繼電保護裝置與110kV微機繼電保護裝置,在電壓上存在差異,所以兩者在選擇電源方面,雖然都以保障微機繼電保護裝置的安全性為主要目的,但是在選擇電源電壓上還具有一定的差異;110kV微機繼電保護裝置採用高精度、高穩定的元件來構成采樣迴路,這就大大降低了環境因素對繼電保護誤差的影響,同時增強微機繼電保護裝置的自檢功能,打破繼電保護裝置自檢的時間與空間的限制。取消調節器件,實現調節采樣精度的非現場化,並且提高裝置的穩定性,這些都是35kV微機繼電保護裝置所欠缺的;但是35kV微機繼電保護裝置具有更強大的抗干擾性,降低了電磁對於裝置的影響。
小結:
傳統的微機繼電保護裝置已經適應不了電力系統的不斷發展,所以電力系統的工作者加緊研究新型微機繼電保護裝置的腳步,以求可以不斷完善電力系統的改革,最大限度地減少電力事故對電力設備的損害,提高電力系統供電運行的安全性、穩定性、可靠性,從而滿足我國國民不斷增長的電力需求。
參考文獻:
[1]羅鈺玲 電力系統微機繼電保護 人民郵電出版社.
[2]文玉玲, 孫博, 陳軍. 淺談微機繼電保護[J]. 新疆電力技術, 2009, (04).
[3]徐平 變電站微機繼電保護事故處理[J]. 中國新技術新產品, 2011,(03) .
[4]陳德樹 微機繼電保護 中國電力出版社.
Ⅳ 智能變電站的自動化系統是如何構成的
智能變電站自動化系統的基本特點,分層:該系統分間隔層和站控層兩層,層與層之間相對獨立,通過具有冗餘結構的前置層(通訊管理機)設備連接通信。間隔層設備包括保護設備、數據採集、控制設備及指示顯示部分等。站控層設備包括工控機、綜合自動化監控軟體,可組單機網路,也可組多機熱備用網路。站控層通過通信管理機與間隔層通信,實現站級協調、優化控制和當地監控;同時實現與遠方調度中心的通信。既可完成RTU四遙和遠程接入功能,也可直接進入上一級調度網路。分布:間隔層以站內一次設備(如變壓器、電機、線路等)為間隔對象,面向對象,綜合分析電站對信息的採集控制要求,分布式配置小型化、高可靠性的微機保護和測控單元裝置。各間隔單元相對獨立,通過可選擇的RS485、CAN、乙太網等網路互聯。在功能分配上,凡可以在本間隔單元就地完成的功能,不依賴通信網路,即使網路癱瘓也不影響保護迅速切除故障。由於採用保護、測控一體化小型化設計,屏櫃的數量較傳統設計大為減少。分散:系統對35KV及以下電壓等級的二次保護和監控單元設備,可選擇就地分散安裝在開關櫃上,做到地理位置上的分散。對於無人值班的35KV及以下電站,根據用戶需要,站控層的設備也可移到調度中心或集控站,電站內不設當地監控而只留介面,當維護人員進入電站時,使用便攜機即可替代後台機。這樣的分層、分布和分散式系統與集中式系統相比,具有明顯優點:提高了系統可告性,任一部分設備有故障時,隻影響局部;站內減少了二次電纜和屏櫃,節省了投資,也簡化了施工與維護;提高了系統可擴展性和靈活性,既適用於新建電站,也適用於老站改造;運行維護方便。
Ⅵ 繼電保護,自動裝置,直流電源裝置都是屬於二次設備嗎
所謂二次設備,就是對一次設備進行控制、測量、監察、保護及調節的設備,它包括控制和信號器具、測量儀表、繼電保護裝置、自動裝置、遠動裝置、操作電源及二次電纜等。
反應二次部分的圖紙有原理與和接線圖:原理圖主要反映二次裝置的工作原理(通常使用展開圖);接線圖主要用於安裝維護。
控制迴路:對斷路器進行合、跳閘操作以及監視斷路器位置狀態的的電路。按監視迴路完好性的方式不同分為燈光監視和音響監視兩種。
中央信號:由事故信號和預告信號組成,主要通過跳閘及發信號的方式反映電力系統的故障與不正常,由燈光和音響兩部分組成。
測量監視系統:主要由電流、電壓變換裝置和各種測量儀表等構成,其主要作用是通過對運行參數的測量來監視一次設備的運行情況,以便運行人員調整、控制運行狀態、分析處理運行中的問題。
同期迴路:電力系統中的發電機並列運行的條件電壓幅值相等;頻率相同;相位差為零,為此在電力系統的發電廠與變電所中均有同期裝置,以進行並列操作
操作電源:在發電廠、變電站中為二次設備提供工作電能的電源。現常用的有:
(1)蓄電池組直流系統:可靠性高,容量大,電壓平穩,在系統中普遍應用,但附屬設備多,維護工作量大。
(2)整流直流系統:利用變換裝置將交流變為直流供二次部分使用,根據工作原理分為電容儲能整流系統及復式直流系統,因可靠性較差,只適用於中、小型變電所中。
繼電保護的作用
反映電力系統故障,自動、可靠、快速而有選擇地通過斷路器將故障元件從系統中切除,保證無故障部分繼續運行,這是繼電保護的首要任務
反映電力系統不正常工作狀態,是繼電保護的另一任務,此保護一般作用於信號,有時也作用於跳閘,但要帶有一定的延時。
繼電保護的基本構成
測量:反映被保護元件運行參數的變化,並與保護的整定值進行比較,若達到整定值,則向邏輯部分發出信號;
邏輯部分:對測量部分傳送來的信號進行綜合判斷,決定保護裝置是否動作
執行部分:根據保護裝置的性質與作用,向斷路器發出跳閘脈沖或發出信號。
電力系統中常用的保護分析:
過電流保護:利用短路時電流增大的現象實現的保護。為保證選擇性與快速性,通常設為三段,Ⅰ段為速斷,只保護線路的一部分;Ⅱ段保護線路全長,但要加一時間延時;Ⅲ段作為後備保護。在雙側有電源的線路中通常加入功率方向來保證動作的可靠性。其缺點是受系統運行方式以及短路類型的影響較大,一般應用於110KV以下線路。
低電壓保護:電力系統短路時另一個現象是電壓降低,由此構成的繼電保護就稱為低電壓保護。由於電壓信號一般取自母線,所以低電壓保護往往與別的保護配合使用,如低壓閉鎖的過流保護。
距離保護:線路正常運行時,電壓與電流的比值(阻抗)較大,而系統發生短路時,此比值將降低,利用電壓與電流比值降低而動作的保護,稱為距離保護(或阻抗保護),該保護的優點是受系統運行方式影響較小,其缺點是不能全廠速動,通常也設為三段。一般作為110KV線路的主保護以及220KV線路的後備保護
差動保護:線路正常運行時,流過線路兩端的電流方向相反,而線路內部短路時電流的方向相同,利用此原理構成的保護稱為差動保護。其優點是不受系統運行方式及短路類型的影響,主要作為主要設備及重要線路的保護,有縱差動和橫差動之分。
高頻保護:利用高頻信號比較線路兩端的電氣量的差動保護稱為高頻保護,根據比較的信號分為方向高頻保護(功率方向)及相差高頻保護(電流相位)。作為220KV線路的主保護以及500KV線路的後備保護。
光纖差動:其造價高,一般作為500KV線路的主保護。
為避免保護故障造成的影響,一般電力系統的元件都有多重保護,分為:
主保護:能按要求的速度切除被保護線路(或元件)范圍內的某種短路故障
輔助保護:一般用於彌補主保護某些性能的不足而設
後備保護:當主保護或斷路器拒絕動作時起作用的繼電保護,有近後備和遠後備之分
繼電保護技術發展歷史過程中經歷了四個時期:(1)電磁型:(2)晶體管型:(3)集成電路型:(4)微機型:
微機保護裝置的特點:
維護調試方便
可靠性高
動作正確率高
易於獲得各種附加功能
保護性能易得到改善
使用方便靈活
具有遠方監控特性
我國微機保護發展概況
1972年世界上第一台微機保護樣機——PRODAR-70投入試運行,1978~1980年前後我國在一些高校(華北電力大學、華中理工大學等)展開了微機保護的研究,我國首台微機保護樣機MDP-1(距離保護)投入試運行,第二代「11」型微機保護裝置於1990年投入試運行,其代表產品WXH-11和WXB-11,第三代產品是CS系列,如CSL-101、CST-200等。國家電力公司自動化研究院的LFP-900系列突破了我國快速保護的現狀。
微機保護裝置的硬體結構
信號輸入電路:對開關量和模擬量信號進行處理。
微機系統:由單片機和擴展晶元構成的控制系統,以完成數值測量、計算、邏輯運算、控制和記錄等智能化任務,此外微機保護還具有遠方功能。
人機介面部分:如鍵盤、顯示器、列印機等,完成整定值的輸入、工作方式的變更、系統狀態的檢查等
輸出通道:對控制對象實現控制操作
電源
為了提高供電可靠性、保證電能質量、提高電能生產和分配的經濟性、減輕運行人員的勞動強度,電力系統中還廣泛裝設有自動裝置。
電力系統自動化一般有兩方面的內容:
(1)常規自動裝置:重合閘裝置、備用電源自動投入裝置、發電機的自動勵磁調節裝置、自動按頻率減負荷裝置、自動准同期裝置;
(2)電力系統調度自動化:即電力系統的實時調度,對電力系統的運行狀態實時監視和控制,以提高系統安全、經濟運行水平,提高電能質量。主要通過遠動裝置、利用四遙(遙測、遙控、遙信、遙調)技術實現。
傳統變電站存在的問題:安全性、可靠性不能滿足現代電力系統高可靠性的要求;供電質量缺乏科學的保證;佔地面積大;不是應電力系統快速計算和實時控制的要求;維護工作量大
變電站綜合自動化是將變電站的二次設備(包括測量、信號、繼電保護、自動裝置、遠動裝置等)經功能組合與優化,利用先進的計算機技術、現代電子技術、通信技術、信號處理技術,實現對全變電站的主要設備和輸、配電線路的自動監視、測量、自動控制和微機保護,以及與調度通信等綜合性的自動化功能。是自動化技術、計算機技術與通信技術在變電站領域的綜合應用。因此變電站綜合自動化系統具有功能綜合化、結構微機化、操作監視屏幕化、運行管理職能化等特徵。