導航:首頁 > 裝置知識 > 帶式運動機傳動裝置設計

帶式運動機傳動裝置設計

發布時間:2024-10-19 23:32:45

1. 設計帶式運輸機傳動裝置中的一級圓柱齒輪減速器

僅供參考

一、傳動方案擬定
第二組第三個數據:設計帶式輸送機傳動裝置中的一級圓柱齒輪減速器
(1) 工作條件:使用年限10年,每年按300天計算,兩班制工作,載荷平穩。
(2) 原始數據:滾筒圓周力F=1.7KN;帶速V=1.4m/s;
滾筒直徑D=220mm。
運動簡圖
二、電動機的選擇
1、電動機類型和結構型式的選擇:按已知的工作要求和 條件,選用 Y系列三相非同步電動機。
2、確定電動機的功率:
(1)傳動裝置的總效率:
η總=η帶×η2軸承×η齒輪×η聯軸器×η滾筒
=0.96×0.992×0.97×0.99×0.95
=0.86
(2)電機所需的工作功率:
Pd=FV/1000η總
=1700×1.4/1000×0.86
=2.76KW
3、確定電動機轉速:
滾筒軸的工作轉速:
Nw=60×1000V/πD
=60×1000×1.4/π×220
=121.5r/min

根據【2】表2.2中推薦的合理傳動比范圍,取V帶傳動比Iv=2~4,單級圓柱齒輪傳動比范圍Ic=3~5,則合理總傳動比i的范圍為i=6~20,故電動機轉速的可選范圍為nd=i×nw=(6~20)×121.5=729~2430r/min
符合這一范圍的同步轉速有960 r/min和1420r/min。由【2】表8.1查出有三種適用的電動機型號、如下表
方案 電動機型號 額定功率 電動機轉速(r/min) 傳動裝置的傳動比
KW 同轉 滿轉 總傳動比 帶 齒輪
1 Y132s-6 3 1000 960 7.9 3 2.63
2 Y100l2-4 3 1500 1420 11.68 3 3.89

綜合考慮電動機和傳動裝置尺寸、重量、價格和帶傳動、減速器的傳動比,比較兩種方案可知:方案1因電動機轉速低,傳動裝置尺寸較大,價格較高。方案2適中。故選擇電動機型號Y100l2-4。
4、確定電動機型號
根據以上選用的電動機類型,所需的額定功率及同步轉速,選定電動機型號為
Y100l2-4。
其主要性能:額定功率:3KW,滿載轉速1420r/min,額定轉矩2.2。
三、計算總傳動比及分配各級的傳動比
1、總傳動比:i總=n電動/n筒=1420/121.5=11.68
2、分配各級傳動比
(1) 取i帶=3
(2) ∵i總=i齒×i 帶π
∴i齒=i總/i帶=11.68/3=3.89
四、運動參數及動力參數計算
1、計算各軸轉速(r/min)
nI=nm/i帶=1420/3=473.33(r/min)
nII=nI/i齒=473.33/3.89=121.67(r/min)
滾筒nw=nII=473.33/3.89=121.67(r/min)
2、 計算各軸的功率(KW)
PI=Pd×η帶=2.76×0.96=2.64KW
PII=PI×η軸承×η齒輪=2.64×0.99×0.97=2.53KW

3、 計算各軸轉矩
Td=9.55Pd/nm=9550×2.76/1420=18.56N

2. 帶式輸送機傳動裝置畢業設計的每一步驟做簡要說明(怎麼完成)。

參考如下: 機械設計基礎課程設計任務書………………………………. 題目名稱帶式運輸機傳動裝置 學生學院 專業班級 姓 名 學 號 一、課程設計的內容設計一帶式運輸機傳動裝置(見圖1)。設計內容應包括:傳動裝置的總體設計;傳動零件、軸、軸承、聯軸器等的設計計算和選擇;減速器裝配圖和零件工作圖設計;設計計算說明書的編寫。圖2為參考傳動方案。 二、課程設計的要求與數據已知條件: 1.運輸帶工作拉力: F = 2.6 kN; 2.運輸帶工作速度: v = 2.0 m/s; 3.捲筒直徑: D = 320 mm; 4.使用壽命: 8年; 5.工作情況:兩班制,連續單向運轉,載荷較平穩; 6.製造條件及生產批量:一般機械廠製造,小批量。三、課程設計應完成的工作1.減速器裝配圖1張;2.零件工作圖 2張(軸、齒輪各1張);3.設計說明書 1份。四、課程設計進程安排序號設計各階段內容地點起止日期一設計准備: 明確設計任務;准備設計資料和繪圖用具教1-201第18周一二傳動裝置的總體設計: 擬定傳動方案;選擇電動機;計算傳動裝置運動和動力參數傳動零件設計計算:帶傳動、齒輪傳動主要參數的設計計算教1-201第18周一至第18周二 三減速器裝配草圖設計: 初繪減速器裝配草圖;軸系部件的結構設計;軸、軸承、鍵聯接等的強度計算;減速器箱體及附件的設計教1-201第18周二至第19周一四完成減速器裝配圖: 教1-201第19周二至第20周一五零件工作圖設計教1-201第20周周二六整理和編寫設計計算說明書教1-201第20周周三至周四七課程設計答辯工字2-617第20周五五、應收集的資料及主要參考文獻1 孫桓, 陳作模. 機械原理[M]. 北京:高等教育出版社,2001.2 濮良貴, 紀名剛. 機械設計[M]. 北京:高等教育出版社,2001.3 王昆, 何小柏, 汪信遠. 機械設計/機械設計基礎課程設計[M]. 北京:高等教育出版社,1995.4 機械制圖、機械設計手冊等書籍。發出任務書日期: 年 月 日 指導教師簽名: 計劃完成日期: 年 月 日 基層教學單位責任人簽章:主管院長簽章:目錄一、傳動方案的擬定及說明………………………………….3二、電動機的選擇…………………………………………….3三、計算傳動裝置的運動和動力參數……………………….4四、傳動件的設計計算………………………………………..6五、軸的設計計算…………………………………………….15六、滾動軸承的選擇及計算………………………………….23七、鍵聯接的選擇及校核計算……………………………….26八、高速軸的疲勞強度校核……………………………….….27九、鑄件減速器機體結構尺寸計算表及附件的選擇…..........30十、潤滑與密封方式的選擇、潤滑劑的選擇……………….31參考資料目錄

3. 急求!!!帶式輸送機傳動裝置設計!!!

帶式輸送機傳動裝置設計
目 錄
一、選擇電動機
二、確定傳動裝置的總傳動比和分配傳動比
三、計算傳動裝置的運動和動力參數
四、減速器的結構
五、傳動零件的設計計算
六、軸的計算
七、鍵的選擇和校核
八、軸承的的選擇與壽命校核
九、聯軸器的選擇
十、潤滑方法、潤滑油牌號
以上資料屬於部分資料 來自「三人行設計網」 你可以去看看 希望能幫到你~

4. 機械設計課程設計帶式運輸機傳動裝置

機械設計課程設計任務書
題目:設計一用於帶式運輸機傳動裝置中的同軸式二級圓柱齒輪減速器
一. 總體布置簡圖

1—電動機;2—聯軸器;3—齒輪減速器;4—帶式運輸機;5—鼓輪;6—聯軸器

二. 工作情況:
載荷平穩、單向旋轉

三. 原始數據
鼓輪的扭矩T(N·m):850
鼓輪的直徑D(mm):350
運輸帶速度V(m/s):0.7
帶速允許偏差(%):5
使用年限(年):5
工作制度(班/日):2

四. 設計內容
1. 電動機的選擇與運動參數計算;
2. 斜齒輪傳動設計計算
3. 軸的設計
4. 滾動軸承的選擇
5. 鍵和連軸器的選擇與校核;
6. 裝配圖、零件圖的繪制
7. 設計計算說明書的編寫

五. 設計任務
1. 減速器總裝配圖一張
2. 齒輪、軸零件圖各一張
3. 設計說明書一份

六. 設計進度
1、 第一階段:總體計算和傳動件參數計算
2、 第二階段:軸與軸系零件的設計
3、 第三階段:軸、軸承、聯軸器、鍵的校核及草圖繪制
4、 第四階段:裝配圖、零件圖的繪制及計算說明書的編寫

傳動方案的擬定及說明
由題目所知傳動機構類型為:同軸式二級圓柱齒輪減速器。故只要對本傳動機構進行分析論證。
本傳動機構的特點是:減速器橫向尺寸較小,兩大齒輪浸油深度可以大致相同。結構較復雜,軸向尺寸大,中間軸較長、剛度差,中間軸承潤滑較困難。

電動機的選擇
1.電動機類型和結構的選擇
因為本傳動的工作狀況是:載荷平穩、單向旋轉。所以選用常用的封閉式Y(IP44)系列的電動機。

2.電動機容量的選擇
1) 工作機所需功率Pw
Pw=3.4kW
2) 電動機的輸出功率
Pd=Pw/η
η= =0.904
Pd=3.76kW

3.電動機轉速的選擇
nd=(i1』·i2』…in』)nw
初選為同步轉速為1000r/min的電動機

4.電動機型號的確定
由表20-1查出電動機型號為Y132M1-6,其額定功率為4kW,滿載轉速960r/min。基本符合題目所需的要求。

計算傳動裝置的運動和動力參數
傳動裝置的總傳動比及其分配
1.計算總傳動比
由電動機的滿載轉速nm和工作機主動軸轉速nw可確定傳動裝置應有的總傳動比為:
i=nm/nw
nw=38.4
i=25.14

5. 急!!!帶式運輸機傳動裝置 計算說明書

「帶式運輸機傳動裝置的設計」一書在各市大的新華書店都有賣的。照本設計就行了。不難。

6. 設計帶式運輸機傳動裝置

僅供參考

一、傳動方案擬定
第二組第三個數據:設計帶式輸送機傳動裝置中的一級圓柱齒輪減速器
(1) 工作條件:使用年限10年,每年按300天計算,兩班制工作,載荷平穩。
(2) 原始數據:滾筒圓周力F=1.7KN;帶速V=1.4m/s;
滾筒直徑D=220mm。
運動簡圖
二、電動機的選擇
1、電動機類型和結構型式的選擇:按已知的工作要求和 條件,選用 Y系列三相非同步電動機。
2、確定電動機的功率:
(1)傳動裝置的總效率:
η總=η帶×η2軸承×η齒輪×η聯軸器×η滾筒
=0.96×0.992×0.97×0.99×0.95
=0.86
(2)電機所需的工作功率:
Pd=FV/1000η總
=1700×1.4/1000×0.86
=2.76KW
3、確定電動機轉速:
滾筒軸的工作轉速:
Nw=60×1000V/πD
=60×1000×1.4/π×220
=121.5r/min

根據表2.2中推薦的合理傳動比范圍,取V帶傳動比Iv=2~4,單級圓柱齒輪傳動比范圍Ic=3~5,則合理總傳動比i的范圍為i=6~20,故電動機轉速的可選范圍為nd=i×nw=(6~20)×121.5=729~2430r/min
符合這一范圍的同步轉速有960 r/min和1420r/min。由表8.1查出有三種適用的電動機型號、如下表
方案 電動機型號 額定功率 電動機轉速(r/min) 傳動裝置的傳動比
KW 同轉 滿轉 總傳動比 帶 齒輪
1 Y132s-6 3 1000 960 7.9 3 2.63
2 Y100l2-4 3 1500 1420 11.68 3 3.89

綜合考慮電動機和傳動裝置尺寸、重量、價格和帶傳動、減速器的傳動比,比較兩種方案可知:方案1因電動機轉速低,傳動裝置尺寸較大,價格較高。方案2適中。故選擇電動機型號Y100l2-4。
4、確定電動機型號
根據以上選用的電動機類型,所需的額定功率及同步轉速,選定電動機型號為
Y100l2-4。
其主要性能:額定功率:3KW,滿載轉速1420r/min,額定轉矩2.2。
三、計算總傳動比及分配各級的傳動比
1、總傳動比:i總=n電動/n筒=1420/121.5=11.68
2、分配各級傳動比
(1) 取i帶=3
(2) ∵i總=i齒×i 帶π
∴i齒=i總/i帶=11.68/3=3.89
四、運動參數及動力參數計算
1、計算各軸轉速(r/min)
nI=nm/i帶=1420/3=473.33(r/min)
nII=nI/i齒=473.33/3.89=121.67(r/min)
滾筒nw=nII=473.33/3.89=121.67(r/min)
2、 計算各軸的功率(KW)
PI=Pd×η帶=2.76×0.96=2.64KW
PII=PI×η軸承×η齒輪=2.64×0.99×0.97=2.53KW

3、 計算各軸轉矩
Td=9.55Pd/nm=9550×2.76/1420=18.56N•m
TI=9.55p2入/n1 =9550x2.64/473.33=53.26N•m

TII =9.55p2入/n2=9550x2.53/121.67=198.58N•m

五、傳動零件的設計計算
1、 皮帶輪傳動的設計計算
(1) 選擇普通V帶截型
由課本[1]P189表10-8得:kA=1.2 P=2.76KW
PC=KAP=1.2×2.76=3.3KW
據PC=3.3KW和n1=473.33r/min
由課本[1]P189圖10-12得:選用A型V帶
(2) 確定帶輪基準直徑,並驗算帶速
由[1]課本P190表10-9,取dd1=95mm>dmin=75
dd2=i帶dd1(1-ε)=3×95×(1-0.02)=279.30 mm
由課本[1]P190表10-9,取dd2=280
帶速V:V=πdd1n1/60×1000
=π×95×1420/60×1000
=7.06m/s
在5~25m/s范圍內,帶速合適。
(3) 確定帶長和中心距
初定中心距a0=500mm
Ld=2a0+π(dd1+dd2)/2+(dd2-dd1)2/4a0
=2×500+3.14(95+280)+(280-95)2/4×450
=1605.8mm
根據課本[1]表(10-6)選取相近的Ld=1600mm
確定中心距a≈a0+(Ld-Ld0)/2=500+(1600-1605.8)/2
=497mm
(4) 驗算小帶輪包角
α1=1800-57.30 ×(dd2-dd1)/a
=1800-57.30×(280-95)/497
=158.670>1200(適用)
(5) 確定帶的根數
單根V帶傳遞的額定功率.據dd1和n1,查課本圖10-9得 P1=1.4KW
i≠1時單根V帶的額定功率增量.據帶型及i查[1]表10-2得 △P1=0.17KW
查[1]表10-3,得Kα=0.94;查[1]表10-4得 KL=0.99
Z= PC/[(P1+△P1)KαKL]
=3.3/[(1.4+0.17) ×0.94×0.99]
=2.26 (取3根)
(6) 計算軸上壓力
由課本[1]表10-5查得q=0.1kg/m,由課本式(10-20)單根V帶的初拉力:
F0=500PC/ZV[(2.5/Kα)-1]+qV2=500x3.3/[3x7.06(2.5/0.94-1)]+0.10x7.062 =134.3kN
則作用在軸承的壓力FQ
FQ=2ZF0sin(α1/2)=2×3×134.3sin(158.67o/2)
=791.9N

2、齒輪傳動的設計計算
(1)選擇齒輪材料與熱處理:所設計齒輪傳動屬於閉式傳動,通常
齒輪採用軟齒面。查閱表[1] 表6-8,選用價格便宜便於製造的材料,小齒輪材料為45鋼,調質,齒面硬度260HBS;大齒輪材料也為45鋼,正火處理,硬度為215HBS;
精度等級:運輸機是一般機器,速度不高,故選8級精度。
(2)按齒面接觸疲勞強度設計
由d1≥ (6712×kT1(u+1)/φ[σH]2)1/3
確定有關參數如下:傳動比i齒=3.89
取小齒輪齒數Z1=20。則大齒輪齒數:Z2=iZ1= ×20=77.8取z2=78
由課本表6-12取φd=1.1
(3)轉矩T1
T1=9.55×106×P1/n1=9.55×106×2.61/473.33=52660N•mm
(4)載荷系數k : 取k=1.2
(5)許用接觸應力[σH]
[σH]= σHlim ZN/SHmin 由課本[1]圖6-37查得:
σHlim1=610Mpa σHlim2=500Mpa
接觸疲勞壽命系數Zn:按一年300個工作日,每天16h計算,由公式N=60njtn 計算
N1=60×473.33×10×300×18=1.36x109
N2=N/i=1.36x109 /3.89=3.4×108
查[1]課本圖6-38中曲線1,得 ZN1=1 ZN2=1.05
按一般可靠度要求選取安全系數SHmin=1.0
[σH]1=σHlim1ZN1/SHmin=610x1/1=610 Mpa
[σH]2=σHlim2ZN2/SHmin=500x1.05/1=525Mpa
故得:
d1≥ (6712×kT1(u+1)/φ[σH]2)1/3
=49.04mm
模數:m=d1/Z1=49.04/20=2.45mm
取課本[1]P79標准模數第一數列上的值,m=2.5
(6)校核齒根彎曲疲勞強度
σ bb=2KT1YFS/bmd1
確定有關參數和系數
分度圓直徑:d1=mZ1=2.5×20mm=50mm
d2=mZ2=2.5×78mm=195mm
齒寬:b=φdd1=1.1×50mm=55mm
取b2=55mm b1=60mm
(7)復合齒形因數YFs 由課本[1]圖6-40得:YFS1=4.35,YFS2=3.95
(8)許用彎曲應力[σbb]
根據課本[1]P116:
[σbb]= σbblim YN/SFmin
由課本[1]圖6-41得彎曲疲勞極限σbblim應為: σbblim1=490Mpa σbblim2 =410Mpa
由課本[1]圖6-42得彎曲疲勞壽命系數YN:YN1=1 YN2=1
彎曲疲勞的最小安全系數SFmin :按一般可靠性要求,取SFmin =1
計算得彎曲疲勞許用應力為
[σbb1]=σbblim1 YN1/SFmin=490×1/1=490Mpa
[σbb2]= σbblim2 YN2/SFmin =410×1/1=410Mpa
校核計算
σbb1=2kT1YFS1/ b1md1=71.86pa< [σbb1]
σbb2=2kT1YFS2/ b2md1=72.61Mpa< [σbb2]
故輪齒齒根彎曲疲勞強度足夠
(9)計算齒輪傳動的中心矩a
a=(d1+d2)/2= (50+195)/2=122.5mm
(10)計算齒輪的圓周速度V
計算圓周速度V=πn1d1/60×1000=3.14×473.33×50/60×1000=1.23m/s
因為V<6m/s,故取8級精度合適.

六、軸的設計計算
從動軸設計
1、選擇軸的材料 確定許用應力
選軸的材料為45號鋼,調質處理。查[2]表13-1可知:
σb=650Mpa,σs=360Mpa,查[2]表13-6可知:[σb+1]bb=215Mpa
[σ0]bb=102Mpa,[σ-1]bb=60Mpa
2、按扭轉強度估算軸的最小直徑
單級齒輪減速器的低速軸為轉軸,輸出端與聯軸器相接,
從結構要求考慮,輸出端軸徑應最小,最小直徑為:
d≥C
查[2]表13-5可得,45鋼取C=118
則d≥118×(2.53/121.67)1/3mm=32.44mm
考慮鍵槽的影響以及聯軸器孔徑系列標准,取d=35mm
3、齒輪上作用力的計算
齒輪所受的轉矩:T=9.55×106P/n=9.55×106×2.53/121.67=198582 N
齒輪作用力:
圓周力:Ft=2T/d=2×198582/195N=2036N
徑向力:Fr=Fttan200=2036×tan200=741N
4、軸的結構設計
軸結構設計時,需要考慮軸系中相配零件的尺寸以及軸上零件的固定方式,按比例繪制軸系結構草圖。
(1)、聯軸器的選擇
可採用彈性柱銷聯軸器,查[2]表9.4可得聯軸器的型號為HL3聯軸器:35×82 GB5014-85
(2)、確定軸上零件的位置與固定方式
單級減速器中,可以將齒輪安排在箱體中央,軸承對稱布置
在齒輪兩邊。軸外伸端安裝聯軸器,齒輪靠油環和套筒實現
軸向定位和固定,靠平鍵和過盈配合實現周向固定,兩端軸
承靠套筒實現軸向定位,靠過盈配合實現周向固定 ,軸通
過兩端軸承蓋實現軸向定位,聯軸器靠軸肩平鍵和過盈配合
分別實現軸向定位和周向定位
(3)、確定各段軸的直徑
將估算軸d=35mm作為外伸端直徑d1與聯軸器相配(如圖),
考慮聯軸器用軸肩實現軸向定位,取第二段直徑為d2=40mm
齒輪和左端軸承從左側裝入,考慮裝拆方便以及零件固定的要求,裝軸處d3應大於d2,取d3=4 5mm,為便於齒輪裝拆與齒輪配合處軸徑d4應大於d3,取d4=50mm。齒輪左端用用套筒固定,右端用軸環定位,軸環直徑d5
滿足齒輪定位的同時,還應滿足右側軸承的安裝要求,根據選定軸承型號確定.右端軸承型號與左端軸承相同,取d6=45mm.
(4)選擇軸承型號.由[1]P270初選深溝球軸承,代號為6209,查手冊可得:軸承寬度B=19,安裝尺寸D=52,故軸環直徑d5=52mm.
(5)確定軸各段直徑和長度
Ⅰ段:d1=35mm 長度取L1=50mm

II段:d2=40mm
初選用6209深溝球軸承,其內徑為45mm,
寬度為19mm.考慮齒輪端面和箱體內壁,軸承端面和箱體內壁應有一定距離。取套筒長為20mm,通過密封蓋軸段長應根據密封蓋的寬度,並考慮聯軸器和箱體外壁應有一定矩離而定,為此,取該段長為55mm,安裝齒輪段長度應比輪轂寬度小2mm,故II段長:
L2=(2+20+19+55)=96mm
III段直徑d3=45mm
L3=L1-L=50-2=48mm
Ⅳ段直徑d4=50mm
長度與右面的套筒相同,即L4=20mm
Ⅴ段直徑d5=52mm. 長度L5=19mm
由上述軸各段長度可算得軸支承跨距L=96mm
(6)按彎矩復合強度計算
①求分度圓直徑:已知d1=195mm
②求轉矩:已知T2=198.58N•m
③求圓周力:Ft
根據課本P127(6-34)式得
Ft=2T2/d2=2×198.58/195=2.03N
④求徑向力Fr
根據課本P127(6-35)式得
Fr=Ft•tanα=2.03×tan200=0.741N
⑤因為該軸兩軸承對稱,所以:LA=LB=48mm

(1)繪制軸受力簡圖(如圖a)
(2)繪制垂直面彎矩圖(如圖b)
軸承支反力:
FAY=FBY=Fr/2=0.74/2=0.37N
FAZ=FBZ=Ft/2=2.03/2=1.01N
由兩邊對稱,知截面C的彎矩也對稱。截面C在垂直面彎矩為
MC1=FAyL/2=0.37×96÷2=17.76N•m
截面C在水平面上彎矩為:
MC2=FAZL/2=1.01×96÷2=48.48N•m
(4)繪制合彎矩圖(如圖d)
MC=(MC12+MC22)1/2=(17.762+48.482)1/2=51.63N•m
(5)繪制扭矩圖(如圖e)
轉矩:T=9.55×(P2/n2)×106=198.58N•m
(6)繪制當量彎矩圖(如圖f)
轉矩產生的扭剪文治武功力按脈動循環變化,取α=0.2,截面C處的當量彎矩:
Mec=[MC2+(αT)2]1/2
=[51.632+(0.2×198.58)2]1/2=65.13N•m
(7)校核危險截面C的強度
由式(6-3)

σe=65.13/0.1d33=65.13x1000/0.1×453
=7.14MPa< [σ-1]b=60MPa
∴該軸強度足夠。

主動軸的設計
1、選擇軸的材料 確定許用應力
選軸的材料為45號鋼,調質處理。查[2]表13-1可知:
σb=650Mpa,σs=360Mpa,查[2]表13-6可知:[σb+1]bb=215Mpa
[σ0]bb=102Mpa,[σ-1]bb=60Mpa
2、按扭轉強度估算軸的最小直徑
單級齒輪減速器的低速軸為轉軸,輸出端與聯軸器相接,
從結構要求考慮,輸出端軸徑應最小,最小直徑為:
d≥C
查[2]表13-5可得,45鋼取C=118
則d≥118×(2.64/473.33)1/3mm=20.92mm
考慮鍵槽的影響以系列標准,取d=22mm
3、齒輪上作用力的計算
齒輪所受的轉矩:T=9.55×106P/n=9.55×106×2.64/473.33=53265 N
齒輪作用力:
圓周力:Ft=2T/d=2×53265/50N=2130N
徑向力:Fr=Fttan200=2130×tan200=775N
確定軸上零件的位置與固定方式
單級減速器中,可以將齒輪安排在箱體中央,軸承對稱布置
在齒輪兩邊。齒輪靠油環和套筒實現 軸向定位和固定
,靠平鍵和過盈配合實現周向固定,兩端軸
承靠套筒實現軸向定位,靠過盈配合實現周向固定 ,軸通
過兩端軸承蓋實現軸向定位,
4 確定軸的各段直徑和長度
初選用6206深溝球軸承,其內徑為30mm,
寬度為16mm.。考慮齒輪端面和箱體內壁,軸承端面與箱體內壁應有一定矩離,則取套筒長為20mm,則該段長36mm,安裝齒輪段長度為輪轂寬度為2mm。
(2)按彎扭復合強度計算
①求分度圓直徑:已知d2=50mm
②求轉矩:已知T=53.26N•m
③求圓周力Ft:根據課本P127(6-34)式得
Ft=2T3/d2=2×53.26/50=2.13N
④求徑向力Fr根據課本P127(6-35)式得
Fr=Ft•tanα=2.13×0.36379=0.76N
⑤∵兩軸承對稱
∴LA=LB=50mm
(1)求支反力FAX、FBY、FAZ、FBZ
FAX=FBY=Fr/2=0.76/2=0.38N
FAZ=FBZ=Ft/2=2.13/2=1.065N
(2) 截面C在垂直面彎矩為
MC1=FAxL/2=0.38×100/2=19N•m
(3)截面C在水平面彎矩為
MC2=FAZL/2=1.065×100/2=52.5N•m
(4)計算合成彎矩
MC=(MC12+MC22)1/2
=(192+52.52)1/2
=55.83N•m
(5)計算當量彎矩:根據課本P235得α=0.4
Mec=[MC2+(αT)2]1/2=[55.832+(0.4×53.26)2]1/2
=59.74N•m
(6)校核危險截面C的強度
由式(10-3)
σe=Mec/(0.1d3)=59.74x1000/(0.1×303)
=22.12Mpa<[σ-1]b=60Mpa
∴此軸強度足夠

(7) 滾動軸承的選擇及校核計算
一從動軸上的軸承
根據根據條件,軸承預計壽命
L'h=10×300×16=48000h
(1)由初選的軸承的型號為: 6209,
查[1]表14-19可知:d=55mm,外徑D=85mm,寬度B=19mm,基本額定動載荷C=31.5KN, 基本靜載荷CO=20.5KN,
查[2]表10.1可知極限轉速9000r/min

(1)已知nII=121.67(r/min)

兩軸承徑向反力:FR1=FR2=1083N
根據課本P265(11-12)得軸承內部軸向力
FS=0.63FR 則FS1=FS2=0.63FR1=0.63x1083=682N
(2) ∵FS1+Fa=FS2 Fa=0
故任意取一端為壓緊端,現取1端為壓緊端
FA1=FS1=682N FA2=FS2=682N
(3)求系數x、y
FA1/FR1=682N/1038N =0.63
FA2/FR2=682N/1038N =0.63
根據課本P265表(14-14)得e=0.68
FA1/FR1<e x1=1 FA2/FR2<e x2=1
y1=0 y2=0
(4)計算當量載荷P1、P2
根據課本P264表(14-12)取f P=1.5
根據課本P264(14-7)式得
P1=fP(x1FR1+y1FA1)=1.5×(1×1083+0)=1624N
P2=fp(x2FR1+y2FA2)= 1.5×(1×1083+0)=1624N
(5)軸承壽命計算
∵P1=P2 故取P=1624N
∵深溝球軸承ε=3
根據手冊得6209型的Cr=31500N
由課本P264(14-5)式得
LH=106(ftCr/P)ε/60n
=106(1×31500/1624)3/60X121.67=998953h>48000h
∴預期壽命足夠

二.主動軸上的軸承:
(1)由初選的軸承的型號為:6206
查[1]表14-19可知:d=30mm,外徑D=62mm,寬度B=16mm,
基本額定動載荷C=19.5KN,基本靜載荷CO=111.5KN,
查[2]表10.1可知極限轉速13000r/min
根據根據條件,軸承預計壽命
L'h=10×300×16=48000h
(1)已知nI=473.33(r/min)
兩軸承徑向反力:FR1=FR2=1129N
根據課本P265(11-12)得軸承內部軸向力
FS=0.63FR 則FS1=FS2=0.63FR1=0.63x1129=711.8N
(2) ∵FS1+Fa=FS2 Fa=0
故任意取一端為壓緊端,現取1端為壓緊端
FA1=FS1=711.8N FA2=FS2=711.8N
(3)求系數x、y
FA1/FR1=711.8N/711.8N =0.63
FA2/FR2=711.8N/711.8N =0.63
根據課本P265表(14-14)得e=0.68
FA1/FR1<e x1=1 FA2/FR2<e x2=1
y1=0 y2=0
(4)計算當量載荷P1、P2
根據課本P264表(14-12)取f P=1.5
根據課本P264(14-7)式得
P1=fP(x1FR1+y1FA1)=1.5×(1×1129+0)=1693.5N
P2=fp(x2FR1+y2FA2)=1.5×(1×1129+0)= 1693.5N
(5)軸承壽命計算
∵P1=P2 故取P=1693.5N
∵深溝球軸承ε=3
根據手冊得6206型的Cr=19500N
由課本P264(14-5)式得
LH=106(ftCr/P)ε/60n
=106(1×19500/1693.5)3/60X473.33=53713h>48000h
∴預期壽命足夠

七、鍵聯接的選擇及校核計算
1.根據軸徑的尺寸,由[1]中表12-6
高速軸(主動軸)與V帶輪聯接的鍵為:鍵8×36 GB1096-79
大齒輪與軸連接的鍵為:鍵 14×45 GB1096-79
軸與聯軸器的鍵為:鍵10×40 GB1096-79
2.鍵的強度校核
大齒輪與軸上的鍵 :鍵14×45 GB1096-79
b×h=14×9,L=45,則Ls=L-b=31mm
圓周力:Fr=2TII/d=2×198580/50=7943.2N
擠壓強度: =56.93<125~150MPa=[σp]
因此擠壓強度足夠
剪切強度: =36.60<120MPa=[ ]
因此剪切強度足夠
鍵8×36 GB1096-79和鍵10×40 GB1096-79根據上面的步驟校核,並且符合要求。

八、減速器箱體、箱蓋及附件的設計計算~
1、減速器附件的選擇
通氣器
由於在室內使用,選通氣器(一次過濾),採用M18×1.5
油麵指示器
選用游標尺M12
起吊裝置
採用箱蓋吊耳、箱座吊耳.

放油螺塞
選用外六角油塞及墊片M18×1.5
根據《機械設計基礎課程設計》表5.3選擇適當型號:
起蓋螺釘型號:GB/T5780 M18×30,材料Q235
高速軸軸承蓋上的螺釘:GB5783~86 M8X12,材料Q235
低速軸軸承蓋上的螺釘:GB5783~86 M8×20,材料Q235
螺栓:GB5782~86 M14×100,材料Q235
箱體的主要尺寸:

(1)箱座壁厚z=0.025a+1=0.025×122.5+1= 4.0625 取z=8
(2)箱蓋壁厚z1=0.02a+1=0.02×122.5+1= 3.45
取z1=8
(3)箱蓋凸緣厚度b1=1.5z1=1.5×8=12
(4)箱座凸緣厚度b=1.5z=1.5×8=12
(5)箱座底凸緣厚度b2=2.5z=2.5×8=20

(6)地腳螺釘直徑df =0.036a+12=
0.036×122.5+12=16.41(取18)
(7)地腳螺釘數目n=4 (因為a<250)
(8)軸承旁連接螺栓直徑d1= 0.75df =0.75×18= 13.5 (取14)
(9)蓋與座連接螺栓直徑 d2=(0.5-0.6)df =0.55× 18=9.9 (取10)
(10)連接螺栓d2的間距L=150-200
(11)軸承端蓋螺釘直d3=(0.4-0.5)df=0.4×18=7.2(取8)
(12)檢查孔蓋螺釘d4=(0.3-0.4)df=0.3×18=5.4 (取6)
(13)定位銷直徑d=(0.7-0.8)d2=0.8×10=8
(14)df.d1.d2至外箱壁距離C1
(15) Df.d2

(16)凸台高度:根據低速級軸承座外徑確定,以便於扳手操作為准。
(17)外箱壁至軸承座端面的距離C1+C2+(5~10)
(18)齒輪頂圓與內箱壁間的距離:>9.6 mm
(19)齒輪端面與內箱壁間的距離:=12 mm
(20)箱蓋,箱座肋厚:m1=8 mm,m2=8 mm
(21)軸承端蓋外徑∶D+(5~5.5)d3

D~軸承外徑
(22)軸承旁連接螺栓距離:盡可能靠近,以Md1和Md3 互不幹涉為准,一般取S=D2.

九、潤滑與密封
1.齒輪的潤滑
採用浸油潤滑,由於為單級圓柱齒輪減速器,速度ν<12m/s,當m<20 時,浸油深度h約為1個齒高,但不小於10mm,所以浸油高度約為36mm。
2.滾動軸承的潤滑
由於軸承周向速度為,所以宜開設油溝、飛濺潤滑。
3.潤滑油的選擇
齒輪與軸承用同種潤滑油較為便利,考慮到該裝置用於小型設備,選用GB443-89全損耗系統用油L-AN15潤滑油。
4.密封方法的選取
選用凸緣式端蓋易於調整,採用悶蓋安裝骨架式旋轉軸唇型密封圈實現密封。密封圈型號按所裝配軸的直徑確定為GB894.1-86-25軸承蓋結構尺寸按用其定位的軸承的外徑決定。

十、設計小結
課程設計體會
課程設計都需要刻苦耐勞,努力鑽研的精神。對於每一個事物都會有第一次的吧,而沒一個第一次似乎都必須經歷由感覺困難重重,挫折不斷到一步一步克服,可能需要連續幾個小時、十幾個小時不停的工作進行攻關;最後出成果的瞬間是喜悅、是輕松、是舒了口氣!
課程設計過程中出現的問題幾乎都是過去所學的知識不牢固,許多計算方法、公式都忘光了,要不斷的翻資料、看書,和同學們相互探討。雖然過程很辛苦,有時還會有放棄的念頭,但始終堅持下來,完成了設計,而且學到了,應該是補回了許多以前沒學好的知識,同時鞏固了這些知識,提高了運用所學知識的能力。

十一、參考資料目錄
[1]《機械設計基礎課程設計》,高等教育出版社,陳立德主編,2004年7月第2版;
[2] 《機械設計基礎》,機械工業出版社 胡家秀主編 2007年7月第1版

7. 機械設計課程設計設計帶式運輸機傳動裝置其中運輸帶工作拉力F=2900N V=1. 5滾筒直徑D=400滾筒效率0....

課程設計 帶式運輸機傳動裝置設計,共31頁,6698字
目錄
第一章 設計任務版書 1
第二章 傳動裝置的總體設權計 2
2.1 電動機的選擇 2
2.2 傳動裝置的總傳動比和傳動比分配 3
2.3傳動裝置的運動和動力參數計算 3
第三章 傳動零件的設計計算 5
3.1 V帶傳動的設計計算 5
3.2蝸輪輪蝸桿傳動的設計計算 6
第四章 軸的結構尺寸計算 8
4.1蝸輪轉軸的機構尺寸計算 8
4.2蝸桿軸的結構尺寸設計 8
第五章 軸的強度校核 10
5.1 蝸輪轉軸的強度校核 10
5.2 蝸桿軸的強度校核 12
第六章 滾動軸承的選擇和校核 16
6.1 蝸輪轉軸軸承選擇和校核 16
6.2蝸桿軸軸承選擇和校核 16
第七章 平鍵的選擇計算以及聯軸器的選擇 18
7.1 蝸桿轉軸與蝸輪接觸的鍵的選擇計算 18
7.2 周轉定向連軸起的鍵的選擇計算 18
7.4 聯軸器的選擇 19
第八章 減速器箱體設計及附件的選擇和說明 20
8.1箱體主要尺寸設計 20
8.2附屬零件的設計 20
第九章 潤滑與密封 21
第十章 課程設計小結 22
參考文獻 22

8. 機械設計基礎課程設計的題目是帶式運輸機傳動裝置設計

是指一個傳送帶嗎,是橫卧,還是有角度的。

9. 機械設計-課程設計-帶式運輸機傳動裝置-二級齒輪減速器

一、 設計題目:二級直齒圓柱齒輪減速器
1. 要求:擬定傳動關系:由電動機、V帶、減速器、聯軸器、工作機構成。
2. 工作條件:雙班工作,有輕微振動,小批量生產,單向傳動,使用5年,運輸帶允許誤差5%。
3. 知條件:運輸帶捲筒轉速 ,
減速箱輸出軸功率 馬力,
二、 傳動裝置總體設計:
1. 組成:傳動裝置由電機、減速器、工作機組成。
2. 特點:齒輪相對於軸承不對稱分布,故沿軸向載荷分布不均勻,要求軸有較大的剛度。
3. 確定傳動方案:考慮到電機轉速高,傳動功率大,將V帶設置在高速級。 其傳動方案如下:

三、 選擇電機
1. 計算電機所需功率 : 查手冊第3頁表1-7:
-帶傳動效率:0.96
-每對軸承傳動效率:0.99
-圓柱齒輪的傳動效率:0.96
-聯軸器的傳動效率:0.993
—捲筒的傳動效率:0.96
說明:
-電機至工作機之間的傳動裝置的總效率:

2確定電機轉速:查指導書第7頁表1:取V帶傳動比i=2 4
二級圓柱齒輪減速器傳動比i=8 40所以電動機轉速的可選范圍是:

符合這一范圍的轉速有:750、1000、1500、3000
根據電動機所需功率和轉速查手冊第155頁表12-1有4種適用的電動機型號,因此有4種傳動比方案如下:
方案 電動機型號 額定功率 同步轉速
r/min 額定轉速
r/min 重量 總傳動比
1 Y112M-2 4KW 3000 2890 45Kg 152.11
2 Y112M-4 4KW 1500 1440 43Kg 75.79
3 Y132M1-6 4KW 1000 960 73Kg 50.53
4 Y160M1-8 4KW 750 720 118Kg 37.89
綜合考慮電動機和傳動裝置的尺寸、重量、和帶傳動、減速器的傳動比,可見第3種方案比較合適,因此選用電動機型號為Y132M1-6,其主要參數如下:

額定功率kW 滿載轉速 同步轉速 質量 A D E F G H L AB
4 960 1000 73 216 38 80 10 33 132 515 280
四 確定傳動裝置的總傳動比和分配傳動比:
總傳動比:
分配傳動比:取 則
取 經計算
註: 為帶輪傳動比, 為高速級傳動比, 為低速級傳動比。
五 計算傳動裝置的運動和動力參數:
將傳動裝置各軸由高速到低速依次定為1軸、2軸、3軸、4軸
——依次為電機與軸1,軸1與軸2,軸2與軸3,軸3與軸4之間的傳動效率。
1. 各軸轉速:

2各軸輸入功率:

3各軸輸入轉矩:

運動和動力參數結果如下表:
軸名 功率P KW 轉矩T Nm 轉速r/min
輸入 輸出 輸入 輸出
電動機軸 3.67 36.5 960
1軸 3.52 3.48 106.9 105.8 314.86
2軸 3.21 3.18 470.3 465.6 68
3軸 3.05 3.02 1591.5 1559.6 19.1
4軸 3 2.97 1575.6 1512.6 19.1
六 設計V帶和帶輪:
1.設計V帶
①確定V帶型號
查課本 表13-6得: 則
根據 =4.4, =960r/min,由課本 圖13-5,選擇A型V帶,取 。
查課本第206頁表13-7取 。
為帶傳動的滑動率 。
②驗算帶速: 帶速在 范圍內,合適。
③取V帶基準長度 和中心距a:
初步選取中心距a: ,取 。
由課本第195頁式(13-2)得: 查課本第202頁表13-2取 。由課本第206頁式13-6計算實際中心距: 。
④驗算小帶輪包角 :由課本第195頁式13-1得: 。
⑤求V帶根數Z:由課本第204頁式13-15得:
查課本第203頁表13-3由內插值法得 。

EF=0.1
=1.37+0.1=1.38

EF=0.08

查課本第202頁表13-2得 。
查課本第204頁表13-5由內插值法得 。 =163.0 EF=0.009
=0.95+0.009=0.959


取 根。
⑥求作用在帶輪軸上的壓力 :查課本201頁表13-1得q=0.10kg/m,故由課本第197頁式13-7得單根V帶的初拉力:
作用在軸上壓力:

七 齒輪的設計:
1高速級大小齒輪的設計:
①材料:高速級小齒輪選用 鋼調質,齒面硬度為250HBS。高速級大齒輪選用 鋼正火,齒面硬度為220HBS。
②查課本第166頁表11-7得: 。
查課本第165頁表11-4得: 。
故 。
查課本第168頁表11-10C圖得: 。
故 。
③按齒面接觸強度設計:9級精度製造,查課本第164頁表11-3得:載荷系數 ,取齒寬系數 計算中心距:由課本第165頁式11-5得:
考慮高速級大齒輪與低速級大齒輪相差不大取
則 取
實際傳動比:
傳動比誤差: 。
齒寬: 取
高速級大齒輪: 高速級小齒輪:
④驗算輪齒彎曲強度:
查課本第167頁表11-9得:
按最小齒寬 計算:
所以安全。
⑤齒輪的圓周速度:
查課本第162頁表11-2知選用9級的的精度是合適的。
2低速級大小齒輪的設計:
①材料:低速級小齒輪選用 鋼調質,齒面硬度為250HBS。
低速級大齒輪選用 鋼正火,齒面硬度為220HBS。
②查課本第166頁表11-7得: 。
查課本第165頁表11-4得: 。
故 。
查課本第168頁表11-10C圖得: 。
故 。
③按齒面接觸強度設計:9級精度製造,查課本第164頁表11-3得:載荷系數 ,取齒寬系數
計算中心距: 由課本第165頁式11-5得:

取 則 取
計算傳動比誤差: 合適
齒寬: 則取
低速級大齒輪:
低速級小齒輪:
④驗算輪齒彎曲強度:查課本第167頁表11-9得:
按最小齒寬 計算:
安全。
⑤齒輪的圓周速度:
查課本第162頁表11-2知選用9級的的精度是合適的。
八 減速器機體結構尺寸如下:
名稱 符號 計算公式 結果
箱座厚度

10
箱蓋厚度

9
箱蓋凸緣厚度

12
箱座凸緣厚度

15
箱座底凸緣厚度

25
地腳螺釘直徑

M24
地腳螺釘數目
查手冊 6
軸承旁聯結螺栓直徑

M12
蓋與座聯結螺栓直徑
=(0.5 0.6)
M10
軸承端蓋螺釘直徑
=(0.4 0.5)

10
視孔蓋螺釘直徑
=(0.3 0.4)
8
定位銷直徑
=(0.7 0.8)
8
, , 至外箱壁的距離
查手冊表11—2 34
22
18
, 至凸緣邊緣距離
查手冊表11—2 28
16
外箱壁至軸承端面距離
= + +(5 10)
50
大齒輪頂圓與內箱壁距離
>1.2
15
齒輪端面與內箱壁距離
>
10
箱蓋,箱座肋厚

9
8.5
軸承端蓋外徑
+(5 5.5)
120(1軸)
125(2軸)
150(3軸)
軸承旁聯結螺栓距離

120(1軸)
125(2軸)
150(3軸)
九 軸的設計:
1高速軸設計:
①材料:選用45號鋼調質處理。查課本第230頁表14-2取 C=100。
②各軸段直徑的確定:根據課本第230頁式14-2得: 又因為裝小帶輪的電動機軸徑 ,又因為高速軸第一段軸徑裝配大帶輪,且 所以查手冊第9頁表1-16取 。L1=1.75d1-3=60。
因為大帶輪要靠軸肩定位,且還要配合密封圈,所以查手冊85頁表7-12取 ,L2=m+e+l+5=28+9+16+5=58。
段裝配軸承且 ,所以查手冊62頁表6-1取 。選用6009軸承。
L3=B+ +2=16+10+2=28。
段主要是定位軸承,取 。L4根據箱體內壁線確定後在確定。
裝配齒輪段直徑:判斷是不是作成齒輪軸:
查手冊51頁表4-1得:
得:e=5.9<6.25。
段裝配軸承所以 L6= L3=28。
2 校核該軸和軸承:L1=73 L2=211 L3=96
作用在齒輪上的圓周力為:
徑向力為
作用在軸1帶輪上的外力:
求垂直面的支反力:

求垂直彎矩,並繪制垂直彎矩圖:

求水平面的支承力:
由 得
N
N
求並繪制水平面彎矩圖:

求F在支點產生的反力:

求並繪制F力產生的彎矩圖:

F在a處產生的彎矩:

求合成彎矩圖:
考慮最不利的情況,把 與 直接相加。

求危險截面當量彎矩:
從圖可見,m-m處截面最危險,其當量彎矩為:(取摺合系數 )

計算危險截面處軸的直徑:
因為材料選擇 調質,查課本225頁表14-1得 ,查課本231頁表14-3得許用彎曲應力 ,則:

因為 ,所以該軸是安全的。
3軸承壽命校核:
軸承壽命可由式 進行校核,由於軸承主要承受徑向載荷的作用,所以 ,查課本259頁表16-9,10取 取
按最不利考慮,則有:

則 因此所該軸承符合要求。
4彎矩及軸的受力分析圖如下:

5鍵的設計與校核:
根據 ,確定V帶輪選鑄鐵HT200,參考教材表10-9,由於 在 范圍內,故 軸段上採用鍵 : ,
採用A型普通鍵:
鍵校核.為L1=1.75d1-3=60綜合考慮取 =50得 查課本155頁表10-10 所選鍵為:
中間軸的設計:
①材料:選用45號鋼調質處理。查課本第230頁表14-2取 C=100。
②根據課本第230頁式14-2得:
段要裝配軸承,所以查手冊第9頁表1-16取 ,查手冊62頁表6-1選用6208軸承,L1=B+ + + =18+10+10+2=40。
裝配低速級小齒輪,且 取 ,L2=128,因為要比齒輪孔長度少 。
段主要是定位高速級大齒輪,所以取 ,L3= =10。
裝配高速級大齒輪,取 L4=84-2=82。
段要裝配軸承,所以查手冊第9頁表1-16取 ,查手冊62頁表6-1選用6208軸承,L1=B+ + +3+ =18+10+10+2=43。
③校核該軸和軸承:L1=74 L2=117 L3=94
作用在2、3齒輪上的圓周力:
N
徑向力:

求垂直面的支反力

計算垂直彎矩:

求水平面的支承力:

計算、繪制水平面彎矩圖:

求合成彎矩圖,按最不利情況考慮:

求危險截面當量彎矩:
從圖可見,m-m,n-n處截面最危險,其當量彎矩為:(取摺合系數 )

計算危險截面處軸的直徑:
n-n截面:
m-m截面:
由於 ,所以該軸是安全的。
軸承壽命校核:
軸承壽命可由式 進行校核,由於軸承主要承受徑向載荷的作用,所以 ,查課本259頁表16-9,10取 取

則 ,軸承使用壽命在 年范圍內,因此所該軸承符合要求。
④彎矩及軸的受力分析圖如下:
⑤鍵的設計與校核:
已知 參考教材表10-11,由於 所以取
因為齒輪材料為45鋼。查課本155頁表10-10得
L=128-18=110取鍵長為110. L=82-12=70取鍵長為70
根據擠壓強度條件,鍵的校核為:

所以所選鍵為:
從動軸的設計:
⑴確定各軸段直徑
①計算最小軸段直徑。
因為軸主要承受轉矩作用,所以按扭轉強度計算,由式14-2得:
考慮到該軸段上開有鍵槽,因此取
查手冊9頁表1-16圓整成標准值,取
②為使聯軸器軸向定位,在外伸端設置軸肩,則第二段軸徑 。查手冊85頁表7-2,此尺寸符合軸承蓋和密封圈標准值,因此取 。
③設計軸段 ,為使軸承裝拆方便,查手冊62頁,表6-1,取 ,採用擋油環給軸承定位。選軸承6215: 。
④設計軸段 ,考慮到擋油環軸向定位,故取
⑤設計另一端軸頸 ,取 ,軸承由擋油環定位,擋油環另一端靠齒輪齒根處定位。
⑥ 輪裝拆方便,設計軸頭 ,取 ,查手冊9頁表1-16取 。
⑦設計軸環 及寬度b
使齒輪軸向定位,故取 取
,
⑵確定各軸段長度。
有聯軸器的尺寸決定 (後面將會講到).

因為 ,所以
軸頭長度 因為此段要比此輪孔的長度短

其它各軸段長度由結構決定。
(4).校核該軸和軸承:L1=97.5 L2=204.5 L3=116
求作用力、力矩和和力矩、危險截面的當量彎矩。
作用在齒輪上的圓周力:

徑向力:

求垂直面的支反力:

計算垂直彎矩:

.m
求水平面的支承力。

計算、繪制水平面彎矩圖。

求F在支點產生的反力

求F力產生的彎矩圖。

F在a處產生的彎矩:

求合成彎矩圖。
考慮最不利的情況,把 與 直接相加。

求危險截面當量彎矩。
從圖可見,m-m處截面最危險,其當量彎矩為:(取摺合系數 )

計算危險截面處軸的直徑。
因為材料選擇 調質,查課本225頁表14-1得 ,查課本231頁表14-3得許用彎曲應力 ,則:

考慮到鍵槽的影響,取
因為 ,所以該軸是安全的。
(5).軸承壽命校核。
軸承壽命可由式 進行校核,由於軸承主要承受徑向載荷的作用,所以 ,查課本259頁表16-9,10取 取
按最不利考慮,則有:
則 ,
該軸承壽命為64.8年,所以軸上的軸承是適合要求的。
(6)彎矩及軸的受力分析圖如下:
(7)鍵的設計與校核:
因為d1=63裝聯軸器查課本153頁表10-9選鍵為 查課本155頁表10-10得
因為L1=107初選鍵長為100,校核 所以所選鍵為:
裝齒輪查課本153頁表10-9選鍵為 查課本155頁表10-10得
因為L6=122初選鍵長為100,校核
所以所選鍵為: .
十 高速軸大齒輪的設計
因 採用腹板式結構
代號 結構尺寸和計算公式 結果
輪轂處直徑

72
輪轂軸向長度

84
倒角尺寸

1
齒根圓處的厚度

10
腹板最大直徑

321.25
板孔直徑

62.5
腹板厚度

25.2
電動機帶輪的設計

代號 結構尺寸和計算公式 結果

手冊157頁 38mm

68.4mm

取60mm

81mm

74.7mm

10mm

15mm

5mm
十一.聯軸器的選擇:
計算聯軸器所需的轉矩: 查課本269表17-1取 查手冊94頁表8-7選用型號為HL6的彈性柱銷聯軸器。
十二潤滑方式的確定:
因為傳動裝置屬於輕型的,且傳速較低,所以其速度遠遠小於 ,所以採用脂潤滑,箱體內選用SH0357-92中的50號潤滑,裝至規定高度。
十三.其他有關數據見裝配圖的明細表和手冊中的有關數據。
十四.參考資料:
《機械設計課程設計手冊》(第二版)——清華大學 吳宗澤,北京科技大學 羅聖國主編。
《機械設計課程設計指導書》(第二版)——羅聖國,李平林等主編。
《機械課程設計》(重慶大學出版社)——周元康等主編。
《機械設計基礎》(第四版)課本——楊可楨 程光蘊 主編。

10. 機械設計課程設計帶式運輸機傳動裝置的設計

給你做個參考
一、前言
(一)
設計目的:
通過本課程設計將學過的基礎理論知識進行綜合應用,培養結構設計,計算能力,熟悉一般的機械裝置設計過程。
(二)
傳動方案的分析
機器一般是由原動機、傳動裝置和工作裝置組成。傳動裝置是用來傳遞原動機的運動和動力、變換其運動形式以滿足工作裝置的需要,是機器的重要組成部分。傳動裝置是否合理將直接影響機器的工作性能、重量和成本。合理的傳動方案除滿足工作裝置的功能外,還要求結構簡單、製造方便、成本低廉、傳動效率高和使用維護方便。
本設計中原動機為電動機,工作機為皮帶輸送機。傳動方案採用了兩級傳動,第一級傳動為帶傳動,第二級傳動為單級直齒圓柱齒輪減速器。
帶傳動承載能力較低,在傳遞相同轉矩時,結構尺寸較其他形式大,但有過載保護的優點,還可緩和沖擊和振動,故布置在傳動的高速級,以降低傳遞的轉矩,減小帶傳動的結構尺寸。
齒輪傳動的傳動效率高,適用的功率和速度范圍廣,使用壽命較長,是現代機器中應用最為廣泛的機構之一。本設計採用的是單級直齒輪傳動。
減速器的箱體採用水平剖分式結構,用HT200灰鑄鐵鑄造而成。
二、傳動系統的參數設計
原始數據:運輸帶的工作拉力F=0.2 KN;帶速V=2.0m/s;滾筒直徑D=400mm(滾筒效率為0.96)。
工作條件:預定使用壽命8年,工作為二班工作制,載荷輕。
工作環境:室內灰塵較大,環境最高溫度35°。
動力來源:電力,三相交流380/220伏。
1
、電動機選擇
(1)、電動機類型的選擇: Y系列三相非同步電動機
(2)、電動機功率選擇:
①傳動裝置的總效率:
=0.98×0.99 ×0.96×0.99×0.96
②工作機所需的輸入功率:
因為 F=0.2 KN=0.2 KN= 1908N
=FV/1000η
=1908×2/1000×0.96
=3.975KW
③電動機的輸出功率:
=3.975/0.87=4.488KW
使電動機的額定功率P =(1~1.3)P ,由查表得電動機的額定功率P = 5.5KW 。
⑶、確定電動機轉速:
計算滾筒工作轉速:
=(60×v)/(2π×D/2)
=(60×2)/(2π×0.2)
=96r/min
由推薦的傳動比合理范圍,取圓柱齒輪傳動一級減速器傳動比范圍I』 =3~6。取V帶傳動比I』 =2~4,則總傳動比理時范圍為I』 =6~24。故電動機轉速的可選范圍為n』 =(6~24)×96=576~2304r/min
⑷、確定電動機型號
根據以上計算在這個范圍內電動機的同步轉速有1000r/min和1500r/min,綜合考慮電動機和傳動裝置的情況,同時也要降低電動機的重量和成本,最終可確定同步轉速為1500r/min ,根據所需的額定功率及同步轉速確定電動機的型號為Y132S-4 ,滿載轉速 1440r/min 。
其主要性能:額定功率:5.5KW,滿載轉速1440r/min,額定轉矩2.2,質量68kg。
2 、計算總傳動比及分配各級的傳動比
(1)、總傳動比:i =1440/96=15
(2)、分配各級傳動比:
根據指導書,取齒輪i =5(單級減速器i=3~6合理)
=15/5=3
3 、運動參數及動力參數計算
⑴、計算各軸轉速(r/min)
=960r/min
=1440/3=480(r/min)
=480/5=96(r/min)
⑵計算各軸的功率(KW)
電動機的額定功率Pm=5.5KW
所以
P =5.5×0.98×0.99=4.354KW
=4.354×0.99×0.96 =4.138KW
=4.138×0.99×0.99=4.056KW
⑶計算各軸扭矩(N•mm)
TI=9550×PI/nI=9550×4.354/480=86.63N•m
=9550×4.138/96 =411.645N•m
=9550×4.056/96 =403.486N•m
三、傳動零件的設計計算
(一)齒輪傳動的設計計算
(1)選擇齒輪材料及精度等級
考慮減速器傳遞功率不大,所以齒輪採用軟齒面。小齒輪選用40Cr調質,齒面硬度為240~260HBS。大齒輪選用45#鋼,調質,齒面硬度220HBS;根據指導書選7級精度。齒面精糙度R ≤1.6~3.2μm
(2)確定有關參數和系數如下:
傳動比i
取小齒輪齒數Z =20。則大齒輪齒數:
=5×20=100 ,所以取Z
實際傳動比
i =101/20=5.05
傳動比誤差:(i -i)/I=(5.05-5)/5=1%<2.5% 可用
齒數比: u=i
取模數:m=3 ;齒頂高系數h =1;徑向間隙系數c =0.25;壓力角 =20°;
則 h *m=3,h )m=3.75
h=(2 h )m=6.75,c= c
分度圓直徑:d =×20mm=60mm
d =3×101mm=303mm
由指導書取 φ
齒寬: b=φ =0.9×60mm=54mm
=60mm ,
b
齒頂圓直徑:d )=66,
d
齒根圓直徑:d )=52.5,
d )=295.5
基圓直徑:
d cos =56.38,
d cos =284.73
(3)計算齒輪傳動的中心矩a:
a=m/2(Z )=3/2(20+101)=181.5mm 液壓絞車≈182mm
(二)軸的設計計算
1 、輸入軸的設計計算
⑴、按扭矩初算軸徑
選用45#調質,硬度217~255HBS
根據指導書並查表,取c=110
所以 d≥110 (4.354/480) 1/3mm=22.941mm
d=22.941×(1+5%)mm=24.08mm
∴選d=25mm
⑵、軸的結構設計
①軸上零件的定位,固定和裝配
單級減速器中可將齒輪安排在箱體中央,相對兩軸承對稱分布,齒輪左面由軸肩定位,右面用套筒軸向固定,聯接以平鍵作過渡配合固定,兩軸承分別以軸肩和大筒定位,則採用過渡配合固定
②確定軸各段直徑和長度
Ⅰ段:d =25mm
, L =(1.5~3)d ,所以長度取L
∵h=2c
c=1.5mm
+2h=25+2×2×1.5=31mm
考慮齒輪端面和箱體內壁,軸承端面和箱體內壁應有一定距離。取套筒長為20mm,通過密封蓋軸段長應根據密封蓋的寬度,並考慮聯軸器和箱體外壁應有一定矩離而定,為此,取該段長為55mm,安裝齒輪段長度應比輪轂寬度小2mm,故II段長:
L =(2+20+55)=77mm
III段直徑:
初選用30207型角接觸球軸承,其內徑d為35mm,外徑D為72mm,寬度T為18.25mm.
=d=35mm,L =T=18.25mm,取L
Ⅳ段直徑:
由手冊得:c=1.5
h=2c=2×1.5=3mm
此段左面的滾動軸承的定位軸肩考慮,應便於軸承的拆卸,應按標准查取由手冊得安裝尺寸h=3.該段直徑應取:d =(35+3×2)=41mm
因此將Ⅳ段設計成階梯形,左段直徑為41mm
+2h=35+2×3=41mm
長度與右面的套筒相同,即L
Ⅴ段直徑:d =50mm. ,長度L =60mm
取L
由上述軸各段長度可算得軸支承跨距L=80mm
Ⅵ段直徑:d =41mm, L
Ⅶ段直徑:d =35mm, L <L3,取L
2 、輸出軸的設計計算
⑴、按扭矩初算軸徑
選用45#調質鋼,硬度(217~255HBS)
根據課本P235頁式(10-2),表(10-2)取c=110
=110× (2.168/76.4) =38.57mm
考慮有鍵槽,將直徑增大5%,則
d=38.57×(1+5%)mm=40.4985mm
∴取d=42mm
⑵、軸的結構設計
①軸的零件定位,固定和裝配
單級減速器中,可以將齒輪安排在箱體中央,相對兩軸承對稱分布,齒輪左面用軸肩定位,右面用套筒軸向定位,周向定位採用鍵和過渡配合,兩軸承分別以軸承肩和套筒定位,周向定位則用過渡配合或過盈配合,軸呈階狀,左軸承從左面裝入,齒輪套筒,右軸承和皮帶輪依次從右面裝入。
②確定軸的各段直徑和長度
初選30211型角接球軸承,其內徑d為55mm,外徑D=100mm,寬度T為22.755mm。考慮齒輪端面和箱體內壁,軸承端面與箱體內壁應有一定矩離,則取套筒長為20mm,則該段長42.755mm,安裝齒輪段長度為輪轂寬度為2mm。
則 d =42mm L = 50mm
L = 55mm
L = 60mm
L = 68mm
L =55mm
L
四、滾動軸承的選擇
1 、計算輸入軸承
選用30207型角接觸球軸承,其內徑d為35mm,外徑D為72mm,寬度T為18.25mm.
2 、計算輸出軸承
選30211型角接球軸承,其內徑d為55mm,外徑D=100mm,寬度T為22.755mm
五、鍵聯接的選擇
1 、輸出軸與帶輪聯接採用平鍵聯接
鍵的類型及其尺寸選擇:
帶輪傳動要求帶輪與軸的對中性好,故選擇C型平鍵聯接。
根據軸徑d =42mm ,L =65mm
查手冊得,選用C型平鍵,得: 卷揚機
裝配圖中22號零件選用GB1096-79系列的鍵12×56
則查得:鍵寬b=12,鍵高h=8,因軸長L =65,故取鍵長L=56
2 、輸出軸與齒輪聯接用平鍵聯接
=60mm,L
查手冊得,選用C型平鍵,得:
裝配圖中 赫格隆36號零件選用GB1096-79系列的鍵18×45
則查得:鍵寬b=18,鍵高h=11,因軸長L =53,故取鍵長L=45
3 、輸入軸與帶輪聯接採用平鍵聯接 =25mm L
查手冊
選A型平鍵,得:
裝配圖中29號零件選用GB1096-79系列的鍵8×50
則查得:鍵寬b=8,鍵高h=7,因軸長L =62,故取鍵長L=50
4 、輸出軸與齒輪聯接用平鍵聯接
=50mm
L
查手冊
選A型平鍵,得:
裝配圖中26號零件選用GB1096-79系列的鍵14×49
則查得:鍵寬b=14,鍵高h=9,因軸長L =60,故取鍵長L=49
六、箱體、箱蓋主要尺寸計算
箱體採用水平剖分式結構,採用HT200灰鑄鐵鑄造而成。箱體主要尺寸計算如下:
七、軸承端蓋
主要尺寸計算
軸承端蓋:HT150 d3=8
n=6 b=10
八、減速器的
減速器的附件的設計
1
、擋圈 :GB886-86
查得:內徑d=55,外徑D=65,擋圈厚H=5,右肩軸直徑D1≥58
2
、油標 :M12:d =6,h=28,a=10,b=6,c=4,D=20,D
3
、角螺塞
M18
×
1.5 :JB/ZQ4450-86
九、
設計參考資料目錄
1、吳宗澤、羅聖國主編.機械設計課程設計手冊.北京:高等教育出版社,1999.6
2、解蘭昌等編著.緊密儀器儀表機構設計.杭州:浙江大學出版社,1997.11

閱讀全文

與帶式運動機傳動裝置設計相關的資料

熱點內容
動力設備主要用於什麼機械裝置 瀏覽:610
軸承內徑2062是什麼型號 瀏覽:706
天梭男機械表什麼機芯好 瀏覽:293
合肥五金批發市場哪裡 瀏覽:577
農用電動工具市場 瀏覽:112
閥門與管道螺紋連接方式 瀏覽:991
地暖進水出水閥門怎麼調 瀏覽:907
機械能12mv是什麼 瀏覽:667
廚房推拉門軸承多少規格 瀏覽:325
家用非法入侵報警裝置設計新穎 瀏覽:343
px裝置的解析劑作用 瀏覽:893
如何看機械表好壞 瀏覽:586
三維圖中用什麼擋住軸承 瀏覽:272
超聲波聲強是什麼 瀏覽:284
鑄造工塵肺幾期根據什麼判定的 瀏覽:467
在閥門生產中的速比是指什麼意思 瀏覽:734
河南鑄鐵閥門廠 瀏覽:910
金府西部五金機電城拆遷 瀏覽:333
實驗室蒸發裝置示意圖 瀏覽:796
機械潤滑劑的作用是什麼 瀏覽:593