㈠ 聲吶的概念及應用有哪些
聲吶系統是利用聲波對水下物體進行探測和定位識別的方法及所用設備的總稱。聲吶就是利用水中聲波對水下目標進行探測、定位和通信的電子設備,是水聲學中應用最廣泛、最重要的一種裝置。
聲納可按工作方式,按裝備對象,按戰術用途、按基陣攜帶方式和技術特點等分類方法分成為各種不同的聲納;按工作方式可分為主動聲納和被動聲納;按裝備對象可分為水面艦艇聲納、潛艇聲納、航空聲納、攜帶型聲納和海岸聲納等。
聲吶系統的應用:
(1)軍事:水聲技術是各國海軍進行水下監視使用的主要技術,用於對水下目標進行探測、分類、定位和跟蹤,進行水下通信和導航,保障艦艇、反潛飛機和反潛直升機的戰術機動和水中武器的使用。
(2)海洋測繪::隨著海洋高新技術的介入和裝備的不斷升級,水下地形聲學探測技術獲得了迅速的發展,現已成為世界各海洋國家在海洋測繪方面的重要研究領域之一。
(3)海流流速測量::現代聲吶技術可以利用多普勒效應進行流速測定,這種聲吶系統使用一對裝在船底傾斜向下的指向性換能器,由海底回波中的多普勒頻移可以得到艦船相對於海底的航速。另一方面,若將聲吶固定在流動的海域中,它可以自動檢測和記錄海水的流動速度及方向。
(4)海洋漁業:探魚儀是一種可用於發現魚群的動向、魚群所在地點、范圍的聲吶系統,利用它可以大大提高捕魚的產量和效率;助魚聲吶設備可用於計數、誘魚、捕魚、或者跟蹤尾隨某條魚等。
(5)水聲通信:水聲通信是水面艦艇、潛艇間相互通信的重要手段,利用聲吶系統在水下可代替導線的連接,使用聲束來傳遞信息,實現艦艇之間的通信和交流。
㈡ 什麼是聲納,它的主要工作原理,它有哪些應用
[編輯本段]釋義與簡介
聲吶就是利用水中聲波對水下目標進行探測、定位和通信的電子設備,是水聲學中應用最廣泛、最重要的一種裝置。它是SONAR一詞的「義音兩顧」的譯稱(舊譯為聲納),SONAR是Sound Navigationand Ranging(聲音導航測距)的縮寫。
聲吶技術至今已有100年歷史,它是1906年由英國海軍的劉易斯·尼克森所發明。他發明的第一部聲吶儀是一種被動式的聆聽裝置,主要用來偵測冰山。這種技術,到第一次世界大戰時被應用到戰場上,用來偵測潛藏在水底的潛水艇。
目前,聲吶是各國海軍進行水下監視使用的主要技術,用於對水下目標進行探測、分類、定位和跟蹤;進行水下通信和導航,保障艦艇、反潛飛機和反潛直升機的戰術機動和水中武器的使用。此外,聲吶技術還廣泛用於魚雷制導、水雷引信,以及魚群探測、海洋石油勘探、船舶導航、水下作業、水文測量和海底地質地貌的勘測等。
和許多科學技術的發展一樣,社會的需要和科技的進步促進了聲吶技術的發展。
[編輯本段]工作的原理
聲波是觀察和測量的重要手段。有趣的是,英文「sound」一詞作為名詞是「聲」的意思,作為動詞就有「探測」的意思,可見聲與探測關系之緊密。
在水中進行觀察和測量,具有得天獨厚條件的只有聲波。這是由於其他探測手段的作用距離都很短,光在水中的穿透能力很有限,即使在最清澈的海水中,人們也只能看到十幾米到幾十米內的物體;電磁波在水中也衰減太快,而且波長越短,損失越大,即使用大功率的低頻電磁波,也只能傳播幾十米。然而,聲波在水中傳播的衰減就小得多,在深海聲道中爆炸一個幾公斤的炸彈,在兩萬公里外還可以收到信號,低頻的聲波還可以穿透海底幾千米的地層,並且得到地層中的信息。在水中進行測量和觀察,至今還沒有發現比聲波更有效的手段。
[編輯本段]結構與分類
聲吶裝置一般由基陣、電子機櫃和輔助設備三部分組成。基陣由水聲換能器以一定幾何圖形排列組合而成,其外形通常為球形、柱形、平板形或線列行,有接收基陣、發射機陣或收發合一基陣之分。電子機櫃一般有發射、接收、顯示和控制等分系統。輔助設備包括電源設備、連接電纜、水下接線箱和增音機、與聲吶基陣的傳動控制相配套的升降、回轉、俯仰、收放、拖曳、吊放、投放等裝置,以及聲吶導流罩等。
換能器是聲吶中的重要器件,它是聲能與其它形式的能如機械能、電能、磁能等相互轉換的裝置。它有兩個用途:一是在水下發射聲波,稱為「發射換能器」,相當於空氣中的揚聲器;二是在水下接收聲波,稱為「接收換能器」,相當於空氣中的傳聲器(俗稱「麥克風」或「話筒」)。換能器在實際使用時往往同時用於發射和接收聲波,專門用於接收的換能器又稱為「水聽器」。換能器的工作原理是利用某些材料在電場或磁場的作用下發生伸縮的壓電效應或磁致伸縮效應。
聲吶的分類可按其工作方式,按裝備對象,按戰術用途、按基陣攜帶方式和技術特點等分類方法分成為各種不同的聲吶。例如按工作方式可分為主動聲吶和被動聲吶;按裝備對象可分為水面艦艇聲吶、潛艇聲吶、航空聲吶、攜帶型聲吶和海岸聲吶等。
主動聲吶:主動聲吶技術是指聲吶主動發射聲波「照射」目標,而後接收水中目標反射的回波以測定目標的參數。大多數採用脈沖體制,也有採用連續波體制的。它由簡單的回聲探測儀器演變而來,它主動地發射超聲波,然後收測回波進行計算,適用於探測冰山、暗礁、沉船、海深、魚群、水雷和關閉了發動機的隱蔽的潛艇;
被動聲吶:被動聲吶技術是指聲吶被動接收艦船等水中目標產生的輻射雜訊和水聲設備發射的信號,以測定目標的方位。它由簡單的水聽器演變而來,它收聽目標發出的雜訊,判斷出目標的位置和某些特性,特別適用於不能發聲暴露自己而又要探測敵艦活動的潛艇。
[編輯本段]安裝及運用
傳統上潛艇安裝聲吶的主要位置是在最前端的位置,由於現代潛艇非常依賴被動聲吶的探測效果,巨大的收音裝置不僅僅讓潛艇的直徑水漲船高,原先在這個位置上的魚雷管也得乖乖讓出位置而退到兩旁去。
其他安裝在潛艇上的聲吶型態還包括安裝在艇身其他位置的被動聲吶聽音裝置,利用不同位置收到的同一訊號,經過電腦處理和運算之後,就可以迅速的進行粗淺的定位,對於艇身較大的潛艇來說比較有利,因為測量的基線較長,准確度較高。
另外一種聲吶稱為「拖曳聲納」,因為這種聲吶裝置在使用時,以纜線與潛艇連接,聲吶的本體則遠遠的拖在潛艇的後面進行探測,拖曳聲吶的使用大幅強化潛艇對於全方位與不同深度的偵測能力,尤其是潛艇的尾端。這是因為潛艇的尾端同時也是動力輸出的部分,由於水流的聲音的干擾,位於前方的聲吶無法聽到這個區域的訊號而形成一個盲區。使用拖曳聲吶之後就能夠消除這個盲區,找出躲在這個區域的目標。
有趣的是,聲吶並非人類的專利,不少動物都有它們自己的「聲吶」。蝙蝠就用喉頭發射每秒10-20次的超聲脈沖而用耳朵接收其回波,藉助這種「主動聲吶」它可以探查到很細小的昆蟲及0.1mm粗細的金屬絲障礙物。而飛蛾等昆蟲也具有「被動聲吶」,能清晰地聽到40m以外的蝙蝠超聲,因而往往得以逃避攻擊。然而有的蝙蝠能使用超出昆蟲偵聽范圍的高頻超聲或低頻超聲,從而使捕捉昆蟲的命中率仍然很高。看來,動物也和人類一樣進行著「聲吶戰」!海豚和鯨等海洋哺乳動物則擁有「水下聲吶」,它們能產生一種十分確定的訊號探尋食物和相互通迅。
海豚聲吶的靈敏度很高,能發現幾米以外直徑0.2mm的金屬絲和直徑lmm的尼龍繩,能區別開只相差200卜s時間的兩個信號,能發現幾百米外的魚群,能遮住眼睛在插滿竹竿的水池子中靈活迅速地穿行而不會碰到竹竿;海豚聲吶的「目標識別」能力很強,不但能識別不同的魚類,區分開黃銅、鋁、電木、塑料等不同的物質材料,還能區分開自己發聲的回波和人們錄下它的聲音而重放的聲波;海豚聲吶的抗干擾能力也是驚人的,如果有雜訊干擾,它會提高叫聲的強度蓋過雜訊,以使自己的判斷不受影響;而且,海豚聲吶還具有感情表達能力,已經證實海豚是一種有「語言」的動物,它們的「交談」正是通過其聲吶系統。尤其是僅存於世的四種淡水豚中最珍貴的一種-我國長江中下游的白鰭豚,它的聲吶系統「分工」明確,有為定位用的,有為通訊用的,有為報警用的,並有通過調頻來調制位相的特殊功能。
多種鯨類都用聲來探測和通信,它們使用的頻率比海豚的低得多,作用距離也遠得多。其他海洋哺乳動物,如海豹、海獅等也都會發射出聲吶信號,進行探測。
終身在極度黑暗的大洋深處生活的動物是不得不採用聲吶等各種手段來搜尋獵物和防避攻擊的,它們的聲吶的性能是人類現代技術所遠不能及的。解開這些動物聲吶的謎,一直是現代聲吶技術的重要研究課題。
[編輯本段]影響的因素
影響聲吶工作性能的因素除聲吶本身的技術狀況外,外界條件的影響很嚴重。比較直接的因素有傳播衰減、多路徑效應、混響干擾、海洋雜訊、自雜訊、目標反射特徵或輻射雜訊強度等,它們大多與海洋環境因素有關。例如,聲波在傳播途中受海水介質不均勻分布和海面、海底的影響和制約,會產生折射、散射、反射和干涉,會產生聲線彎曲、信號起伏和畸變,造成傳播途徑的改變,以及出現聲陰區,嚴重影響聲吶的作用距離和測量精度。現代聲吶根據海區聲速--深度變化形成的傳播條件,可適當選擇基陣工作深度和俯仰角,利用聲波的不同傳播途徑(直達聲、海底反射聲、會聚區、深海聲道)來克服水聲傳播條件的不利影響,提高聲吶探測距離。又如,運載平台的自雜訊主要與航速有關,航速越大自雜訊越大,聲吶作用距離就越近,反之則越遠;目標反射本領越大,被對方主動聲吶發現的距離就越遠;目標輻射雜訊強度越大,被對方被動聲吶發現的距離就越遠。