導航:首頁 > 裝置知識 > 設計一帶式輸送機傳動裝置裝配圖

設計一帶式輸送機傳動裝置裝配圖

發布時間:2024-11-22 15:56:11

A. 設計一用於帶式運輸機上的單級圓柱齒輪減

我也在做這個,寫不下的這么多,不過可以參考機械設計手冊!這種設計 在學校幫忙做是200元

械設計課程設計任務書

班 級 姓 名

設計題目:帶式運輸機傳動裝置設計

布置形式:設計用於帶式運輸機的一級直齒圓柱齒輪減速器(Ⅰ)

傳動簡圖

原始數據:

數據編號 1 2 3 4 5 6

運輸帶工作拉力F/N 800 850 900 950 1100 1150

運輸帶工作速度v/(m/s) 1.5 1.6 1.7 1.5 1.55 1.6

捲筒直徑D/mm 250 260 270 240 250 260

工作條件:一班制,連續單向運轉。載荷平穩,室內工作,有粉塵。

使用期限:10 年

生產批量:10 套

動力來源:三相交流電(220V/380V )

運輸帶速度允許誤差:±5% 。
提問者: 浪人5 - 試用期 一級 其他回答 共 1 條
這個是我好不容易才找到的,一個東東啊,你可以自己看看啊,就差不多能自己理解了。。。給我你的郵箱發給你啊!我的是[email protected]

目 錄
設計任務書…………………………………………………2
第一部分 傳動裝置總體設計……………………………4
第二部分 V帶設計………………………………………6
第三部分 各齒輪的設計計算……………………………9
第四部分 軸的設計………………………………………13
第五部分 校核……………………………………………19
第六部分 主要尺寸及數據………………………………21

設 計 任 務 書

一、 課程設計題目:
設計帶式運輸機傳動裝置(簡圖如下)

原始數據:
數據編號 3 5 7 10
運輸機工作轉矩T/(N.m) 690 630 760 620
運輸機帶速V/(m/s) 0.8 0.9 0.75 0.9
捲筒直徑D/mm 320 380 320 360

工作條件:
連續單向運轉,工作時有輕微振動,使用期限為10年,小批量生產,單班制工作(8小時/天)。運輸速度允許誤差為 。
二、 課程設計內容
1)傳動裝置的總體設計。
2)傳動件及支承的設計計算。
3)減速器裝配圖及零件工作圖。
4)設計計算說明書編寫。

每個學生應完成:
1) 部件裝配圖一張(A1)。
2) 零件工作圖兩張(A3)
3) 設計說明書一份(6000~8000字)。

本組設計數據:
第三組數據:運輸機工作軸轉矩T/(N.m) 690 。
運輸機帶速V/(m/s) 0.8 。
捲筒直徑D/mm 320 。

已給方案:外傳動機構為V帶傳動。
減速器為兩級展開式圓柱齒輪減速器。

第一部分 傳動裝置總體設計

一、 傳動方案(已給定)
1) 外傳動為V帶傳動。
2) 減速器為兩級展開式圓柱齒輪減速器。
3) 方案簡圖如下:
二、該方案的優缺點:
該工作機有輕微振動,由於V帶有緩沖吸振能力,採用V帶傳動能減小振動帶來的影響,並且該工作機屬於小功率、載荷變化不大,可以採用V帶這種簡單的結構,並且價格便宜,標准化程度高,大幅降低了成本。減速器部分兩級展開式圓柱齒輪減速,這是兩級減速器中應用最廣泛的一種。齒輪相對於軸承不對稱,要求軸具有較大的剛度。高速級齒輪常布置在遠離扭矩輸入端的一邊,以減小因彎曲變形所引起的載荷沿齒寬分布不均現象。原動機部分為Y系列三相交流 非同步電動機。
總體來講,該傳動方案滿足工作機的性能要求,適應工作條件、工作可靠,此外還結構簡單、尺寸緊湊、成本低傳動效率高。
計 算 與 說 明 結果
三、原動機選擇(Y系列三相交流非同步電動機)
工作機所需功率: =0.96 (見課設P9)

傳動裝置總效率: (見課設式2-4)

(見課設表12-8)

電動機的輸出功率: (見課設式2-1)

選擇電動機為Y132M1-6 m型 (見課設表19-1)
技術數據:額定功率( ) 4 滿載轉矩( ) 960
額定轉矩( ) 2.0 最大轉矩( ) 2.0
Y132M1-6電動機的外型尺寸(mm): (見課設表19-3)
A:216 B:178 C:89 D:38 E:80 F:10 G:33 H:132 K:12 AB:280 AC:

B. 設計帶式輸送機傳動裝置

僅供參考

一、傳動方案擬定
第二組第三個數據:設計帶式輸送機傳動裝置中的一級圓柱齒輪減速器
(1) 工作條件:使用年限10年,每年按300天計算,兩班制工作,載荷平穩。
(2) 原始數據:滾筒圓周力F=1.7KN;帶速V=1.4m/s;
滾筒直徑D=220mm。
運動簡圖
二、電動機的選擇
1、電動機類型和結構型式的選擇:按已知的工作要求和 條件,選用 Y系列三相非同步電動機。
2、確定電動機的功率:
(1)傳動裝置的總效率:
η總=η帶×η2軸承×η齒輪×η聯軸器×η滾筒
=0.96×0.992×0.97×0.99×0.95
=0.86
(2)電機所需的工作功率:
Pd=FV/1000η總
=1700×1.4/1000×0.86
=2.76KW
3、確定電動機轉速:
滾筒軸的工作轉速:
Nw=60×1000V/πD
=60×1000×1.4/π×220
=121.5r/min

根據【2】表2.2中推薦的合理傳動比范圍,取V帶傳動比Iv=2~4,單級圓柱齒輪傳動比范圍Ic=3~5,則合理總傳動比i的范圍為i=6~20,故電動機轉速的可選范圍為nd=i×nw=(6~20)×121.5=729~2430r/min
符合這一范圍的同步轉速有960 r/min和1420r/min。由【2】表8.1查出有三種適用的電動機型號、如下表
方案 電動機型號 額定功率 電動機轉速(r/min) 傳動裝置的傳動比
KW 同轉 滿轉 總傳動比 帶 齒輪
1 Y132s-6 3 1000 960 7.9 3 2.63
2 Y100l2-4 3 1500 1420 11.68 3 3.89

綜合考慮電動機和傳動裝置尺寸、重量、價格和帶傳動、減速器的傳動比,比較兩種方案可知:方案1因電動機轉速低,傳動裝置尺寸較大,價格較高。方案2適中。故選擇電動機型號Y100l2-4。
4、確定電動機型號
根據以上選用的電動機類型,所需的額定功率及同步轉速,選定電動機型號為
Y100l2-4。
其主要性能:額定功率:3KW,滿載轉速1420r/min,額定轉矩2.2。
三、計算總傳動比及分配各級的傳動比
1、總傳動比:i總=n電動/n筒=1420/121.5=11.68
2、分配各級傳動比
(1) 取i帶=3
(2) ∵i總=i齒×i 帶π
∴i齒=i總/i帶=11.68/3=3.89
四、運動參數及動力參數計算
1、計算各軸轉速(r/min)
nI=nm/i帶=1420/3=473.33(r/min)
nII=nI/i齒=473.33/3.89=121.67(r/min)
滾筒nw=nII=473.33/3.89=121.67(r/min)
2、 計算各軸的功率(KW)
PI=Pd×η帶=2.76×0.96=2.64KW
PII=PI×η軸承×η齒輪=2.64×0.99×0.97=2.53KW

3、 計算各軸轉矩
Td=9.55Pd/nm=9550×2.76/1420=18.56N?m
TI=9.55p2入/n1 =9550x2.64/473.33=53.26N?m

TII =9.55p2入/n2=9550x2.53/121.67=198.58N?m

五、傳動零件的設計計算
1、 皮帶輪傳動的設計計算
(1) 選擇普通V帶截型
由課本[1]P189表10-8得:kA=1.2 P=2.76KW
PC=KAP=1.2×2.76=3.3KW
據PC=3.3KW和n1=473.33r/min
由課本[1]P189圖10-12得:選用A型V帶
(2) 確定帶輪基準直徑,並驗算帶速
由[1]課本P190表10-9,取dd1=95mm>dmin=75
dd2=i帶dd1(1-ε)=3×95×(1-0.02)=279.30 mm
由課本[1]P190表10-9,取dd2=280
帶速V:V=πdd1n1/60×1000
=π×95×1420/60×1000
=7.06m/s
在5~25m/s范圍內,帶速合適。
(3) 確定帶長和中心距
初定中心距a0=500mm
Ld=2a0+π(dd1+dd2)/2+(dd2-dd1)2/4a0
=2×500+3.14(95+280)+(280-95)2/4×450
=1605.8mm
根據課本[1]表(10-6)選取相近的Ld=1600mm
確定中心距a≈a0+(Ld-Ld0)/2=500+(1600-1605.8)/2
=497mm
(4) 驗算小帶輪包角
α1=1800-57.30 ×(dd2-dd1)/a
=1800-57.30×(280-95)/497
=158.670>1200(適用)
(5) 確定帶的根數
單根V帶傳遞的額定功率.據dd1和n1,查課本圖10-9得 P1=1.4KW
i≠1時單根V帶的額定功率增量.據帶型及i查[1]表10-2得 △P1=0.17KW
查[1]表10-3,得Kα=0.94;查[1]表10-4得 KL=0.99
Z= PC/[(P1+△P1)KαKL]
=3.3/[(1.4+0.17) ×0.94×0.99]
=2.26 (取3根)
(6) 計算軸上壓力
由課本[1]表10-5查得q=0.1kg/m,由課本式(10-20)單根V帶的初拉力:
F0=500PC/ZV[(2.5/Kα)-1]+qV2=500x3.3/[3x7.06(2.5/0.94-1)]+0.10x7.062 =134.3kN
則作用在軸承的壓力FQ
FQ=2ZF0sin(α1/2)=2×3×134.3sin(158.67o/2)
=791.9N

2、齒輪傳動的設計計算
(1)選擇齒輪材料與熱處理:所設計齒輪傳動屬於閉式傳動,通常
齒輪採用軟齒面。查閱表[1] 表6-8,選用價格便宜便於製造的材料,小齒輪材料為45鋼,調質,齒面硬度260HBS;大齒輪材料也為45鋼,正火處理,硬度為215HBS;
精度等級:運輸機是一般機器,速度不高,故選8級精度。
(2)按齒面接觸疲勞強度設計
由d1≥ (6712×kT1(u+1)/φ[σH]2)1/3
確定有關參數如下:傳動比i齒=3.89
取小齒輪齒數Z1=20。則大齒輪齒數:Z2=iZ1= ×20=77.8取z2=78
由課本表6-12取φd=1.1
(3)轉矩T1
T1=9.55×106×P1/n1=9.55×106×2.61/473.33=52660N?mm
(4)載荷系數k : 取k=1.2
(5)許用接觸應力[σH]
[σH]= σHlim ZN/SHmin 由課本[1]圖6-37查得:
σHlim1=610Mpa σHlim2=500Mpa
接觸疲勞壽命系數Zn:按一年300個工作日,每天16h計算,由公式N=60njtn 計算
N1=60×473.33×10×300×18=1.36x109
N2=N/i=1.36x109 /3.89=3.4×108
查[1]課本圖6-38中曲線1,得 ZN1=1 ZN2=1.05
按一般可靠度要求選取安全系數SHmin=1.0
[σH]1=σHlim1ZN1/SHmin=610x1/1=610 Mpa
[σH]2=σHlim2ZN2/SHmin=500x1.05/1=525Mpa
故得:
d1≥ (6712×kT1(u+1)/φ[σH]2)1/3
=49.04mm
模數:m=d1/Z1=49.04/20=2.45mm
取課本[1]P79標准模數第一數列上的值,m=2.5
(6)校核齒根彎曲疲勞強度
σ bb=2KT1YFS/bmd1
確定有關參數和系數
分度圓直徑:d1=mZ1=2.5×20mm=50mm
d2=mZ2=2.5×78mm=195mm
齒寬:b=φdd1=1.1×50mm=55mm
取b2=55mm b1=60mm
(7)復合齒形因數YFs 由課本[1]圖6-40得:YFS1=4.35,YFS2=3.95
(8)許用彎曲應力[σbb]
根據課本[1]P116:
[σbb]= σbblim YN/SFmin
由課本[1]圖6-41得彎曲疲勞極限σbblim應為: σbblim1=490Mpa σbblim2 =410Mpa
由課本[1]圖6-42得彎曲疲勞壽命系數YN:YN1=1 YN2=1
彎曲疲勞的最小安全系數SFmin :按一般可靠性要求,取SFmin =1
計算得彎曲疲勞許用應力為
[σbb1]=σbblim1 YN1/SFmin=490×1/1=490Mpa
[σbb2]= σbblim2 YN2/SFmin =410×1/1=410Mpa
校核計算
σbb1=2kT1YFS1/ b1md1=71.86pa< [σbb1]
σbb2=2kT1YFS2/ b2md1=72.61Mpa< [σbb2]
故輪齒齒根彎曲疲勞強度足夠
(9)計算齒輪傳動的中心矩a
a=(d1+d2)/2= (50+195)/2=122.5mm
(10)計算齒輪的圓周速度V
計算圓周速度V=πn1d1/60×1000=3.14×473.33×50/60×1000=1.23m/s
因為V<6m/s,故取8級精度合適.

六、軸的設計計算
從動軸設計
1、選擇軸的材料 確定許用應力
選軸的材料為45號鋼,調質處理。查[2]表13-1可知:
σb=650Mpa,σs=360Mpa,查[2]表13-6可知:[σb+1]bb=215Mpa
[σ0]bb=102Mpa,[σ-1]bb=60Mpa
2、按扭轉強度估算軸的最小直徑
單級齒輪減速器的低速軸為轉軸,輸出端與聯軸器相接,
從結構要求考慮,輸出端軸徑應最小,最小直徑為:
d≥C
查[2]表13-5可得,45鋼取C=118
則d≥118×(2.53/121.67)1/3mm=32.44mm
考慮鍵槽的影響以及聯軸器孔徑系列標准,取d=35mm
3、齒輪上作用力的計算
齒輪所受的轉矩:T=9.55×106P/n=9.55×106×2.53/121.67=198582 N
齒輪作用力:
圓周力:Ft=2T/d=2×198582/195N=2036N
徑向力:Fr=Fttan200=2036×tan200=741N
4、軸的結構設計
軸結構設計時,需要考慮軸系中相配零件的尺寸以及軸上零件的固定方式,按比例繪制軸系結構草圖。
(1)、聯軸器的選擇
可採用彈性柱銷聯軸器,查[2]表9.4可得聯軸器的型號為HL3聯軸器:35×82 GB5014-85
(2)、確定軸上零件的位置與固定方式
單級減速器中,可以將齒輪安排在箱體中央,軸承對稱布置
在齒輪兩邊。軸外伸端安裝聯軸器,齒輪靠油環和套筒實現
軸向定位和固定,靠平鍵和過盈配合實現周向固定,兩端軸
承靠套筒實現軸向定位,靠過盈配合實現周向固定 ,軸通
過兩端軸承蓋實現軸向定位,聯軸器靠軸肩平鍵和過盈配合
分別實現軸向定位和周向定位
(3)、確定各段軸的直徑
將估算軸d=35mm作為外伸端直徑d1與聯軸器相配(如圖),
考慮聯軸器用軸肩實現軸向定位,取第二段直徑為d2=40mm
齒輪和左端軸承從左側裝入,考慮裝拆方便以及零件固定的要求,裝軸處d3應大於d2,取d3=4 5mm,為便於齒輪裝拆與齒輪配合處軸徑d4應大於d3,取d4=50mm。齒輪左端用用套筒固定,右端用軸環定位,軸環直徑d5
滿足齒輪定位的同時,還應滿足右側軸承的安裝要求,根據選定軸承型號確定.右端軸承型號與左端軸承相同,取d6=45mm.
(4)選擇軸承型號.由[1]P270初選深溝球軸承,代號為6209,查手冊可得:軸承寬度B=19,安裝尺寸D=52,故軸環直徑d5=52mm.
(5)確定軸各段直徑和長度
Ⅰ段:d1=35mm 長度取L1=50mm

II段:d2=40mm
初選用6209深溝球軸承,其內徑為45mm,
寬度為19mm.考慮齒輪端面和箱體內壁,軸承端面和箱體內壁應有一定距離。取套筒長為20mm,通過密封蓋軸段長應根據密封蓋的寬度,並考慮聯軸器和箱體外壁應有一定矩離而定,為此,取該段長為55mm,安裝齒輪段長度應比輪轂寬度小2mm,故II段長:
L2=(2+20+19+55)=96mm
III段直徑d3=45mm
L3=L1-L=50-2=48mm
Ⅳ段直徑d4=50mm
長度與右面的套筒相同,即L4=20mm
Ⅴ段直徑d5=52mm. 長度L5=19mm
由上述軸各段長度可算得軸支承跨距L=96mm
(6)按彎矩復合強度計算
①求分度圓直徑:已知d1=195mm
②求轉矩:已知T2=198.58N?m
③求圓周力:Ft
根據課本P127(6-34)式得
Ft=2T2/d2=2×198.58/195=2.03N
④求徑向力Fr
根據課本P127(6-35)式得
Fr=Ft?tanα=2.03×tan200=0.741N
⑤因為該軸兩軸承對稱,所以:LA=LB=48mm

(1)繪制軸受力簡圖(如圖a)
(2)繪制垂直面彎矩圖(如圖b)
軸承支反力:
FAY=FBY=Fr/2=0.74/2=0.37N
FAZ=FBZ=Ft/2=2.03/2=1.01N
由兩邊對稱,知截面C的彎矩也對稱。截面C在垂直面彎矩為
MC1=FAyL/2=0.37×96÷2=17.76N?m
截面C在水平面上彎矩為:
MC2=FAZL/2=1.01×96÷2=48.48N?m
(4)繪制合彎矩圖(如圖d)
MC=(MC12+MC22)1/2=(17.762+48.482)1/2=51.63N?m
(5)繪制扭矩圖(如圖e)
轉矩:T=9.55×(P2/n2)×106=198.58N?m
(6)繪制當量彎矩圖(如圖f)
轉矩產生的扭剪文治武功力按脈動循環變化,取α=0.2,截面C處的當量彎矩:
Mec=[MC2+(αT)2]1/2
=[51.632+(0.2×198.58)2]1/2=65.13N?m
(7)校核危險截面C的強度
由式(6-3)

σe=65.13/0.1d33=65.13x1000/0.1×453
=7.14MPa< [σ-1]b=60MPa
∴該軸強度足夠。

主動軸的設計
1、選擇軸的材料 確定許用應力
選軸的材料為45號鋼,調質處理。查[2]表13-1可知:
σb=650Mpa,σs=360Mpa,查[2]表13-6可知:[σb+1]bb=215Mpa
[σ0]bb=102Mpa,[σ-1]bb=60Mpa
2、按扭轉強度估算軸的最小直徑
單級齒輪減速器的低速軸為轉軸,輸出端與聯軸器相接,
從結構要求考慮,輸出端軸徑應最小,最小直徑為:
d≥C
查[2]表13-5可得,45鋼取C=118
則d≥118×(2.64/473.33)1/3mm=20.92mm
考慮鍵槽的影響以系列標准,取d=22mm
3、齒輪上作用力的計算
齒輪所受的轉矩:T=9.55×106P/n=9.55×106×2.64/473.33=53265 N
齒輪作用力:
圓周力:Ft=2T/d=2×53265/50N=2130N
徑向力:Fr=Fttan200=2130×tan200=775N
確定軸上零件的位置與固定方式
單級減速器中,可以將齒輪安排在箱體中央,軸承對稱布置
在齒輪兩邊。齒輪靠油環和套筒實現 軸向定位和固定
,靠平鍵和過盈配合實現周向固定,兩端軸
承靠套筒實現軸向定位,靠過盈配合實現周向固定 ,軸通
過兩端軸承蓋實現軸向定位,
4 確定軸的各段直徑和長度
初選用6206深溝球軸承,其內徑為30mm,
寬度為16mm.。考慮齒輪端面和箱體內壁,軸承端面與箱體內壁應有一定矩離,則取套筒長為20mm,則該段長36mm,安裝齒輪段長度為輪轂寬度為2mm。
(2)按彎扭復合強度計算
①求分度圓直徑:已知d2=50mm
②求轉矩:已知T=53.26N?m
③求圓周力Ft:根據課本P127(6-34)式得
Ft=2T3/d2=2×53.26/50=2.13N
④求徑向力Fr根據課本P127(6-35)式得
Fr=Ft?tanα=2.13×0.36379=0.76N
⑤∵兩軸承對稱
∴LA=LB=50mm
(1)求支反力FAX、FBY、FAZ、FBZ
FAX=FBY=Fr/2=0.76/2=0.38N
FAZ=FBZ=Ft/2=2.13/2=1.065N
(2) 截面C在垂直面彎矩為
MC1=FAxL/2=0.38×100/2=19N?m
(3)截面C在水平面彎矩為
MC2=FAZL/2=1.065×100/2=52.5N?m
(4)計算合成彎矩
MC=(MC12+MC22)1/2
=(192+52.52)1/2
=55.83N?m
(5)計算當量彎矩:根據課本P235得α=0.4
Mec=[MC2+(αT)2]1/2=[55.832+(0.4×53.26)2]1/2
=59.74N?m
(6)校核危險截面C的強度
由式(10-3)
σe=Mec/(0.1d3)=59.74x1000/(0.1×303)
=22.12Mpa<[σ-1]b=60Mpa
∴此軸強度足夠

(7) 滾動軸承的選擇及校核計算
一從動軸上的軸承
根據根據條件,軸承預計壽命
L'h=10×300×16=48000h
(1)由初選的軸承的型號為: 6209,
查[1]表14-19可知:d=55mm,外徑D=85mm,寬度B=19mm,基本額定動載荷C=31.5KN, 基本靜載荷CO=20.5KN,
查[2]表10.1可知極限轉速9000r/min

(1)已知nII=121.67(r/min)

兩軸承徑向反力:FR1=FR2=1083N
根據課本P265(11-12)得軸承內部軸向力
FS=0.63FR 則FS1=FS2=0.63FR1=0.63x1083=682N
(2) ∵FS1+Fa=FS2 Fa=0
故任意取一端為壓緊端,現取1端為壓緊端
FA1=FS1=682N FA2=FS2=682N
(3)求系數x、y
FA1/FR1=682N/1038N =0.63
FA2/FR2=682N/1038N =0.63
根據課本P265表(14-14)得e=0.68
FA1/FR1<e x1=1 FA2/FR2<e x2=1
y1=0 y2=0
(4)計算當量載荷P1、P2
根據課本P264表(14-12)取f P=1.5
根據課本P264(14-7)式得
P1=fP(x1FR1+y1FA1)=1.5×(1×1083+0)=1624N
P2=fp(x2FR1+y2FA2)= 1.5×(1×1083+0)=1624N
(5)軸承壽命計算
∵P1=P2 故取P=1624N
∵深溝球軸承ε=3
根據手冊得6209型的Cr=31500N
由課本P264(14-5)式得
LH=106(ftCr/P)ε/60n
=106(1×31500/1624)3/60X121.67=998953h>48000h
∴預期壽命足夠

二.主動軸上的軸承:
(1)由初選的軸承的型號為:6206
查[1]表14-19可知:d=30mm,外徑D=62mm,寬度B=16mm,
基本額定動載荷C=19.5KN,基本靜載荷CO=111.5KN,
查[2]表10.1可知極限轉速13000r/min
根據根據條件,軸承預計壽命
L'h=10×300×16=48000h
(1)已知nI=473.33(r/min)
兩軸承徑向反力:FR1=FR2=1129N
根據課本P265(11-12)得軸承內部軸向力
FS=0.63FR 則FS1=FS2=0.63FR1=0.63x1129=711.8N
(2) ∵FS1+Fa=FS2 Fa=0
故任意取一端為壓緊端,現取1端為壓緊端
FA1=FS1=711.8N FA2=FS2=711.8N
(3)求系數x、y
FA1/FR1=711.8N/711.8N =0.63
FA2/FR2=711.8N/711.8N =0.63
根據課本P265表(14-14)得e=0.68
FA1/FR1<e x1=1 FA2/FR2<e x2=1
y1=0 y2=0
(4)計算當量載荷P1、P2
根據課本P264表(14-12)取f P=1.5
根據課本P264(14-7)式得
P1=fP(x1FR1+y1FA1)=1.5×(1×1129+0)=1693.5N
P2=fp(x2FR1+y2FA2)=1.5×(1×1129+0)= 1693.5N
(5)軸承壽命計算
∵P1=P2 故取P=1693.5N
∵深溝球軸承ε=3
根據手冊得6206型的Cr=19500N
由課本P264(14-5)式得
LH=106(ftCr/P)ε/60n
=106(1×19500/1693.5)3/60X473.33=53713h>48000h
∴預期壽命足夠

七、鍵聯接的選擇及校核計算
1.根據軸徑的尺寸,由[1]中表12-6
高速軸(主動軸)與V帶輪聯接的鍵為:鍵8×36 GB1096-79
大齒輪與軸連接的鍵為:鍵 14×45 GB1096-79
軸與聯軸器的鍵為:鍵10×40 GB1096-79
2.鍵的強度校核
大齒輪與軸上的鍵 :鍵14×45 GB1096-79
b×h=14×9,L=45,則Ls=L-b=31mm
圓周力:Fr=2TII/d=2×198580/50=7943.2N
擠壓強度: =56.93<125~150MPa=[σp]
因此擠壓強度足夠
剪切強度: =36.60<120MPa=[ ]
因此剪切強度足夠
鍵8×36 GB1096-79和鍵10×40 GB1096-79根據上面的步驟校核,並且符合要求。

八、減速器箱體、箱蓋及附件的設計計算~
1、減速器附件的選擇
通氣器
由於在室內使用,選通氣器(一次過濾),採用M18×1.5
油麵指示器
選用游標尺M12
起吊裝置
採用箱蓋吊耳、箱座吊耳.

放油螺塞
選用外六角油塞及墊片M18×1.5
根據《機械設計基礎課程設計》表5.3選擇適當型號:
起蓋螺釘型號:GB/T5780 M18×30,材料Q235
高速軸軸承蓋上的螺釘:GB5783~86 M8X12,材料Q235
低速軸軸承蓋上的螺釘:GB5783~86 M8×20,材料Q235
螺栓:GB5782~86 M14×100,材料Q235
箱體的主要尺寸:

(1)箱座壁厚z=0.025a+1=0.025×122.5+1= 4.0625 取z=8
(2)箱蓋壁厚z1=0.02a+1=0.02×122.5+1= 3.45
取z1=8
(3)箱蓋凸緣厚度b1=1.5z1=1.5×8=12
(4)箱座凸緣厚度b=1.5z=1.5×8=12
(5)箱座底凸緣厚度b2=2.5z=2.5×8=20

(6)地腳螺釘直徑df =0.036a+12=
0.036×122.5+12=16.41(取18)
(7)地腳螺釘數目n=4 (因為a<250)
(8)軸承旁連接螺栓直徑d1= 0.75df =0.75×18= 13.5 (取14)
(9)蓋與座連接螺栓直徑 d2=(0.5-0.6)df =0.55× 18=9.9 (取10)
(10)連接螺栓d2的間距L=150-200
(11)軸承端蓋螺釘直d3=(0.4-0.5)df=0.4×18=7.2(取8)
(12)檢查孔蓋螺釘d4=(0.3-0.4)df=0.3×18=5.4 (取6)
(13)定位銷直徑d=(0.7-0.8)d2=0.8×10=8
(14)df.d1.d2至外箱壁距離C1
(15) Df.d2

(16)凸台高度:根據低速級軸承座外徑確定,以便於扳手操作為准。
(17)外箱壁至軸承座端面的距離C1+C2+(5~10)
(18)齒輪頂圓與內箱壁間的距離:>9.6 mm
(19)齒輪端面與內箱壁間的距離:=12 mm
(20)箱蓋,箱座肋厚:m1=8 mm,m2=8 mm
(21)軸承端蓋外徑∶D+(5~5.5)d3

D~軸承外徑
(22)軸承旁連接螺栓距離:盡可能靠近,以Md1和Md3 互不幹涉為准,一般取S=D2.

九、潤滑與密封
1.齒輪的潤滑
採用浸油潤滑,由於為單級圓柱齒輪減速器,速度ν<12m/s,當m<20 時,浸油深度h約為1個齒高,但不小於10mm,所以浸油高度約為36mm。
2.滾動軸承的潤滑
由於軸承周向速度為,所以宜開設油溝、飛濺潤滑。
3.潤滑油的選擇
齒輪與軸承用同種潤滑油較為便利,考慮到該裝置用於小型設備,選用GB443-89全損耗系統用油L-AN15潤滑油。
4.密封方法的選取
選用凸緣式端蓋易於調整,採用悶蓋安裝骨架式旋轉軸唇型密封圈實現密封。密封圈型號按所裝配軸的直徑確定為GB894.1-86-25軸承蓋結構尺寸按用其定位的軸承的外徑決定。

十、設計小結
課程設計體會
課程設計都需要刻苦耐勞,努力鑽研的精神。對於每一個事物都會有第一次的吧,而沒一個第一次似乎都必須經歷由感覺困難重重,挫折不斷到一步一步克服,可能需要連續幾個小時、十幾個小時不停的工作進行攻關;最後出成果的瞬間是喜悅、是輕松、是舒了口氣!
課程設計過程中出現的問題幾乎都是過去所學的知識不牢固,許多計算方法、公式都忘光了,要不斷的翻資料、看書,和同學們相互探討。雖然過程很辛苦,有時還會有放棄的念頭,但始終堅持下來,完成了設計,而且學到了,應該是補回了許多以前沒學好的知識,同時鞏固了這些知識,提高了運用所學知識的能力。

十一、參考資料目錄
[1]《機械設計基礎課程設計》,高等教育出版社,陳立德主編,2004年7月第2版;
[2] 《機械設計基礎》,機械工業出版社 胡家秀主編 2007年7月第1版

C. 帶式運輸機傳動裝置設計

1根據捲筒直徑和帶速計算出捲筒轉速,根據捲筒直徑和帶拉力計算出捲筒轉矩。
2算出功率。
3根據功率及工作條件選擇電機
4根據電機和捲筒的轉速,轉矩,工作條件設計齒輪副
5計算和設計軸,軸連接方式,殼體……
6整理計算過程成文,畫圖

D. 機械設計課程設計帶式運輸機傳動裝置

機械設計課程設計任務書
題目:設計一用於帶式運輸機傳動裝置中的同軸式二級圓柱齒輪減速器
一. 總體布置簡圖

1—電動機;2—聯軸器;3—齒輪減速器;4—帶式運輸機;5—鼓輪;6—聯軸器

二. 工作情況:
載荷平穩、單向旋轉

三. 原始數據
鼓輪的扭矩T(N·m):850
鼓輪的直徑D(mm):350
運輸帶速度V(m/s):0.7
帶速允許偏差(%):5
使用年限(年):5
工作制度(班/日):2

四. 設計內容
1. 電動機的選擇與運動參數計算;
2. 斜齒輪傳動設計計算
3. 軸的設計
4. 滾動軸承的選擇
5. 鍵和連軸器的選擇與校核;
6. 裝配圖、零件圖的繪制
7. 設計計算說明書的編寫

五. 設計任務
1. 減速器總裝配圖一張
2. 齒輪、軸零件圖各一張
3. 設計說明書一份

六. 設計進度
1、 第一階段:總體計算和傳動件參數計算
2、 第二階段:軸與軸系零件的設計
3、 第三階段:軸、軸承、聯軸器、鍵的校核及草圖繪制
4、 第四階段:裝配圖、零件圖的繪制及計算說明書的編寫

傳動方案的擬定及說明
由題目所知傳動機構類型為:同軸式二級圓柱齒輪減速器。故只要對本傳動機構進行分析論證。
本傳動機構的特點是:減速器橫向尺寸較小,兩大齒輪浸油深度可以大致相同。結構較復雜,軸向尺寸大,中間軸較長、剛度差,中間軸承潤滑較困難。

電動機的選擇
1.電動機類型和結構的選擇
因為本傳動的工作狀況是:載荷平穩、單向旋轉。所以選用常用的封閉式Y(IP44)系列的電動機。

2.電動機容量的選擇
1) 工作機所需功率Pw
Pw=3.4kW
2) 電動機的輸出功率
Pd=Pw/η
η= =0.904
Pd=3.76kW

3.電動機轉速的選擇
nd=(i1』·i2』…in』)nw
初選為同步轉速為1000r/min的電動機

4.電動機型號的確定
由表20-1查出電動機型號為Y132M1-6,其額定功率為4kW,滿載轉速960r/min。基本符合題目所需的要求。

計算傳動裝置的運動和動力參數
傳動裝置的總傳動比及其分配
1.計算總傳動比
由電動機的滿載轉速nm和工作機主動軸轉速nw可確定傳動裝置應有的總傳動比為:
i=nm/nw
nw=38.4
i=25.14

E. 機械設計課程設計設計題目:帶式傳輸機的傳動裝置

設計—用於帶式運輸機上的單級直齒圓柱減速器,已知條件:運輸帶的工作拉力F=1350N,運輸帶的速度V=1.6m/s捲筒直徑D=260mm,兩班制工作(12小時),連續單向運轉,載荷平移,工作年限10年,每年300工作日,運輸帶速度允許誤差為±5%,捲筒效率0.96 一.傳動方案分析: 如圖所示減速傳動由帶傳動和單級圓柱齒輪傳動組成,帶傳動置於高速級具有緩沖吸振能力和過載保護作用,帶傳動依靠摩擦力工作,有利於減少傳動的結構尺寸,而圓柱齒輪傳動布置在低速級,有利於發揮其過載能力大的優勢
二.選擇電動機: (1)電動機的類型和結構形式,按工作要求和工作條件,選用一般用途的Y系列三相非同步交流電動機。 (2)電動機容量: ①捲筒軸的輸出功率Pw=FV/1000=1350×1.6/1000=2.16kw ②電動機輸出功率Pd=Pw/η 傳動系統的總效率:η= 式中……為從電動機至捲筒之間的各傳動機構和軸承的效率。 由表查得V帶傳動=0.96,滾動軸承=0.99,圓柱齒輪傳動 =0.97,彈性連軸器=0.99,捲筒軸滑動軸承=0.96 於是η=0.96××0.97×0.99×0.96≈0.88 故: Pd=Pw/η=2.16/0.88≈2.45kw ③電動機額定功率由表取得=3kw (3)電動機的轉速:由已知條件計算捲筒的轉速 即: =60×1000V/πD=60×1000×1.6/3.14×260=118 r/min V帶傳動常用傳動比范圍=2-4,單級圓柱齒輪的傳動比范圍=2-4 於是轉速可選范圍為==118×(2~4)×(2~4) =472~1888r/min 可見同步轉速為500r/min和2000r/min的電動機均合適,為使傳動裝置的傳動比較小,結構尺寸緊湊,這里選用同步轉速為960×r/min的電動機 傳動系統總傳動比i==≈2.04 根據V帶傳動的常用范圍=2-4取=4 於是單級圓柱齒輪減速器傳動比==≈2.04

F. 帶式輸送機傳動裝置畢業設計的每一步驟做簡要說明(怎麼完成)。

參考如下: 機械設計基礎課程設計任務書………………………………. 題目名稱帶式運輸機傳動裝置 學生學院 專業班級 姓 名 學 號 一、課程設計的內容設計一帶式運輸機傳動裝置(見圖1)。設計內容應包括:傳動裝置的總體設計;傳動零件、軸、軸承、聯軸器等的設計計算和選擇;減速器裝配圖和零件工作圖設計;設計計算說明書的編寫。圖2為參考傳動方案。 二、課程設計的要求與數據已知條件: 1.運輸帶工作拉力: F = 2.6 kN; 2.運輸帶工作速度: v = 2.0 m/s; 3.捲筒直徑: D = 320 mm; 4.使用壽命: 8年; 5.工作情況:兩班制,連續單向運轉,載荷較平穩; 6.製造條件及生產批量:一般機械廠製造,小批量。三、課程設計應完成的工作1.減速器裝配圖1張;2.零件工作圖 2張(軸、齒輪各1張);3.設計說明書 1份。四、課程設計進程安排序號設計各階段內容地點起止日期一設計准備: 明確設計任務;准備設計資料和繪圖用具教1-201第18周一二傳動裝置的總體設計: 擬定傳動方案;選擇電動機;計算傳動裝置運動和動力參數傳動零件設計計算:帶傳動、齒輪傳動主要參數的設計計算教1-201第18周一至第18周二 三減速器裝配草圖設計: 初繪減速器裝配草圖;軸系部件的結構設計;軸、軸承、鍵聯接等的強度計算;減速器箱體及附件的設計教1-201第18周二至第19周一四完成減速器裝配圖: 教1-201第19周二至第20周一五零件工作圖設計教1-201第20周周二六整理和編寫設計計算說明書教1-201第20周周三至周四七課程設計答辯工字2-617第20周五五、應收集的資料及主要參考文獻1 孫桓, 陳作模. 機械原理[M]. 北京:高等教育出版社,2001.2 濮良貴, 紀名剛. 機械設計[M]. 北京:高等教育出版社,2001.3 王昆, 何小柏, 汪信遠. 機械設計/機械設計基礎課程設計[M]. 北京:高等教育出版社,1995.4 機械制圖、機械設計手冊等書籍。發出任務書日期: 年 月 日 指導教師簽名: 計劃完成日期: 年 月 日 基層教學單位責任人簽章:主管院長簽章:目錄一、傳動方案的擬定及說明………………………………….3二、電動機的選擇…………………………………………….3三、計算傳動裝置的運動和動力參數……………………….4四、傳動件的設計計算………………………………………..6五、軸的設計計算…………………………………………….15六、滾動軸承的選擇及計算………………………………….23七、鍵聯接的選擇及校核計算……………………………….26八、高速軸的疲勞強度校核……………………………….….27九、鑄件減速器機體結構尺寸計算表及附件的選擇…..........30十、潤滑與密封方式的選擇、潤滑劑的選擇……………….31參考資料目錄

G. 帶式輸送機的主要由哪幾部分組成

帶式輸送機也就復是皮帶制輸送機,基本組成部分有機架、輸送帶、傳動滾筒、改下滾筒、托輥、驅動裝置等。

有些重型帶式輸送機或比較長的輸送機可能還會安裝有清掃器、防跑偏裝置、進料裝置、卸料裝置、制動裝置、逆止器等。


(7)設計一帶式輸送機傳動裝置裝配圖擴展閱讀:

1、水平拐彎帶式輸送機

水平拐彎帶式輸送機可以繞開建築物或不利地形, 減少甚至不設中間轉載站,集中系統供電和控制,減少物料溢出或堵塞的危險,減少粉塵飛揚、雜訊,以及不必要的能耗。

2、氣墊式帶輸送機

其輸送帶在空氣膜(氣墊)上運行,用不動的帶有氣孔的氣室盤形槽和氣室取代了運行的托輥,運動部件的減少,總的等效質量減少,阻力減小,效率提高,並且運行平穩,可提高帶速。但一般其運送物料的塊度不超過300mm。

閱讀全文

與設計一帶式輸送機傳動裝置裝配圖相關的資料

熱點內容
小丸工具箱和格式工廠哪個好用嗎 瀏覽:839
氣象觀測場上的儀器有哪些 瀏覽:730
au怎麼連接音頻設備 瀏覽:295
過濾的實驗裝置如圖所示 瀏覽:354
渦輪發動機主減速傳動裝置的設計 瀏覽:18
預作用裝置和預作用報警閥有什麼區別嗎 瀏覽:721
筆記本電腦軸承怎麼拆掉 瀏覽:345
鏈傳動裝置效率測試實驗 瀏覽:180
畢業設計工業機器人行走裝置 瀏覽:188
用什麼儀器做消融術呢 瀏覽:657
全自動凱氏定氮裝置 瀏覽:903
第五人格中機械師遇到屠夫怎麼辦 瀏覽:258
五金件外觀取 瀏覽:497
如圖所示的靠輪傳動裝置中 瀏覽:680
上海響隆機電五金設備有限公司 瀏覽:783
19款x5排氣閥門 瀏覽:20
廣州南沙自貿區有沒有五金機電市場 瀏覽:179
機械專業外語有什麼用 瀏覽:997
儀表出現key怎麼解除 瀏覽:411
燃氣戶內管道與閥門 瀏覽:790