A. 檢測裝置的要求
計算機數控系統的位置控制是將插補計算的理論位置與實際反饋位置相比較,用其差值去控制進給電機。而實際反饋位置的採集,則是由一些位置檢測裝置來完成的。這些檢測裝置有旋轉變壓器、感應同步器、脈沖編碼器、光柵、磁柵……
對於採用半閉環控制的數控機床,其閉環路內不包括機械傳動環節,它的位置檢測裝置一般採用旋轉變壓器,或高解析度的脈沖編碼器,裝在進給電機或絲杠的端頭,旋轉變壓器(或脈沖編碼器)每旋轉一定角度,都嚴格地對應著工作台移動的一定距離。測量了電機或絲杠的角位移,也就間接地測量了工作台的直線位移。
對於採用閉環控制系統的數控機床,應該直接測量工作台的直線位移,可採用感應同步器、光柵、磁柵等測量裝置。由工作台直接帶動感應同步器的滑動尺移動的同時,與裝在機床床身上的定尺配合,測量出工作台的實際位移值。數控機床的加工精度主要由檢測系統的精度決定。位移檢測系統能夠測量的最小位移量稱為解析度。解析度不僅取決於檢測元件本身,也取決於測量線路。數控機床對檢測裝置的主要要求有:可靠性高和高抗干擾性、滿足精度和速度要求、使用維護方便、成本低。
對於不同類型的數控機床,因工作條件和檢測要求不同,可以採用以下不同的檢測方式。
B. 數控機床對位置檢測裝置的要求有哪些 詳細
直接測量和間接測量
1.直接測量
直接測量是將檢測裝置直接安裝在執行部件上,如光柵、感應同步器等用來直接測量工作台的直線位移,位置檢測裝置安裝在執行部件(即末端件)上直接測量執行部件末端件的直線位移或角位移,可以構成閉環進給伺服系統。測量方式有直線光柵、直線感應同步器、磁柵、激光干涉儀等測量執行部件的直線位移。由於此種檢測方式是採用直線型檢測裝置對機床的直線位移進行測量,因此,其優點是直接反映工作台的直線位移量;缺點是要求檢測裝置與行程等長,對大型的數控機床來說,這是一個很大的限制。
2.間接測量
間接測量裝置是將檢測裝置安裝在滾珠絲杠或驅動電動機軸上,通過檢測轉動件的角位移來間接測量執行部件的直線位移。
位置檢測裝置安裝在執行部件前面的傳動元件或驅動電動機軸上,測量其角位移,經過傳動比變換以後才能得到執行部件的直線位移量,這樣可以構成閉環伺服進給系統,如將脈沖編碼器裝在電動機軸上。
間接測量使用可靠、方便,無長度限制;其缺點是,在檢測信號中加入了直線轉變為旋轉運動的傳動鏈誤差,從而影響測量精度。一般需對數控機床的傳動誤差進行補償,才能提高定位精度。
除了以上位置檢測裝置,伺服系統中往往還包括檢測速度的元件,用以檢測和調節發動機的轉速。常用的元件是測速發電機。
位置檢測裝置是數控機床伺服系統的重要組成部分。它的作用是檢測位移和速度,發送反饋信號,構成閉環或半閉環控制。數控機床的加工精度主要由檢測系統的精度決定。不同類型的數控機床,對位置檢測元件,檢測系統的精度要求和被測部件的最高移動速度各不相同。現在檢測元件與系統的最高水平是:被測部件的最高移動速度高至240m/min時,其檢測位移的解析度(能檢測的最小位移量)可達1μm,如24m/min時可達0.1μm。最高解析度可達到 0.01μm。
數控機床對位置檢測裝置有如下要求:
(1)受溫度,濕度的影響小,工作可靠,能長期保持精度,抗干擾能力強。
(2)在機床執行部件移動范圍內,能滿足精度和速度的要求。
(3)使用維護方便,適應機床工作環境。
(4)成本低。
C. 分辨力與解析度的區別是什麼
樓上的無知。儀器量程顯示有分辨力和解析度區別的。
分辨力是指:儀器儀表指示裝置可有意義地辨別被指示量兩相鄰值的能力。
解析度是指:儀器儀表的分辨力與該儀器儀表每一檔測量值的比。(現已改為相對分辨力,不再使用解析度這一提法)
下面以試驗力測量為例:
試驗力的准(精)確度是指:當試樣在試驗機上進行試驗之後,試驗力指示裝置上指示測量結果,這一測量結果的數值與真值之間的最大允許誤差。
試驗力的分辨力是指:試驗力指示裝置上所能指示的最小被測量值。
「試驗力的相對分辨力」是指:試驗力指示裝置上所能指示的最小被測量值與試驗機指示裝置每檔測量值的比。
數字式指示裝置上的「試驗力的分辨力」就是每檔顯示最末一位數量值