『壹』 數控機床常用的位置檢測裝置有哪些類型有何特點
1)從檢測信號的類型來分可分為數字式或模擬式。同一檢測原件既可以做專成數字式,也可以做成模擬屬式,主要取決於使用方式和測量線路。2)從測量方式可分為增量式與絕對式。增量式檢測的是相對位移量,增量檢測元件是反映相對機床固定參考點的增量值。增量式裝置比較簡單,應用較廣。絕對式檢測是位移的絕對位置,檢測沒有積累誤差,一旦切斷電源後位置信息也不丟失,但結構復雜。3)就檢測元件本身來說,可分為旋轉型和直線型。旋轉型可以採用檢測電動機的旋轉角度來間接測量得工作台的移動量,使用方便可靠,測量精度略低些。直線型就是對機床工作台的直線移動採用的直線檢測,直觀地反映其位移量,所構成的位置檢測系統是全閉環控制系統,其檢測裝置要與行程等長,常用於精度要求較高的中小型數控機床上。
『貳』 數控加工中心、尋邊器的具體使用方法、步驟。
偏置式尋邊器
1、Φ10的直柄可以安裝在切削夾頭或鑽孔夾頭上;
2、用手指輕壓測定子的側邊,使其偏心0.5mm;
3、使其以400-600RPM的速度轉動;
4、彈簧力力較小,可以避免小銑刀或小鑽頭斷裂;
5、使測定子與加工件的端面相接觸,一點一點的觸碰移動,就會達到全接觸狀態,測定子即不會震動,宛如靜止的狀態接觸著,如果此時加以外力,測定子就會偏移出位,此處滑動的起點就是所要求的基準位置;
6、加工件本身的端面位置,就是加上測定子半徑5mm的坐標位置。
(2)數控常用的位置檢測裝置及原理圖擴展閱讀:
機械式尋邊器是一種高精度測量工具,能快速而容易地設定機械主軸與加工物基準面地精確中心位置。機械式尋邊器的結構:由夾持部與偏心部的中空上、下檢測頭,可貫穿上、下檢測頭的彈簧及可分別鉤固住彈簧且嵌置在上、下檢測頭頂、底端的頂蓋,底蓋等構件所組合而成的。
機械式尋邊器的工作原理:夾持在機床上低速旋轉自動通過偏心作用調整進行找正加工中心位置。
參考資料來源:網路-尋邊器
『叄』 常用位置檢測裝置是如何進行分類的
常用位置檢測裝置分為位移、速度和電流三品種型。按安裝的位置及耦合右式分為間接丈量和間接丈量;按丈量方式分為增量式和絕對式;按檢測信號的類型分為模仿式和數字式;按活動體例分為反轉展轉式和直線式檢測安裝;按信號轉換的原型可分為光電效應、光柵效應、電磁感應道理、電壓效應、電阻效應和磁阻效應等類檢測安裝。數控機床中採用的位置檢測安裝根基分為直線式和扭轉式兩大類。直線式位置檢測安裝用來檢測活動部件的直線位移量;扭轉式位置檢測安裝用來檢測反轉展轉部件的動彈位移量。
(1)數字式和模仿式檢測。從檢測信號的類型來分,檢測元件可分為數字式和模仿式。統一種檢測元件既能夠做成數字式,也能夠做成模仿式,次要取決於利用體例和丈量線路。所謂數字式是指將機械位移量改變為數字脈沖的丈量安裝,而模仿式是指將機械位移量改變為電壓幅值或相位的丈量安裝。
(2)增量式和絕對式檢測。從丈量的體例來分,檢測元件可分為增量式和絕對式。增量式檢測的是相對位移量,即位移的增量值,工作台挪動的距離是靠對丈量信號的計數後給出的。所以,數控機床上往往要給出一個固定的參考點,增量式檢測元件就是反映相對此參考點的增量值。增量式安裝比力簡單,使用較廣。
絕對式檢測的是位移的絕對位置,每一被測點均有一個響應的信號作為丈量值。檢測沒有累積誤差,一旦堵截電源後位相信息也不丟失,但布局復雜。
(3)扭轉型和直線型。就檢測元件的本身來分,可分為扭轉型和直線型。扭轉型也稱間接檢測,因為機床工作台的直線位移與驅動電動機的扭轉角度有固定的比例關系,因而,能夠採用檢測驅動電動機的扭轉角度來間接測得工作台的挪動量,由此所形成的位置檢測系統是半閉環節制系統。扭轉型無檢測長度的限制,利用便利靠得住。但丈量信號插手了直線活動改變為扭轉活動的傳動鏈誤差,丈量精度略低些。
直線型也稱間接檢測,就是對機床工作台的直線挪動採用間接直線檢測,直觀地反映其位移量,其所形成的位置檢測系統是全閉環節制系統,其檢測安裝要與行程等長。對於大型數控機床來說,遭到了必然限制,常用於精度要求較高的中小型數控機床上。
『肆』 數控機床位置檢測裝置的分類方法
數控機床位置檢測裝置的分類方法
對於不同類型的數控機床,因工作條件和檢測要求不同,可以採用以下不同的檢測方式。下面就一起隨我來了解下數控機床位置檢測裝置的分類方法吧。
1、增量式和絕對式測量
增量式檢測方式只測量位移增量,並用數字脈沖的個數來表示單位位移(即最小設定單位)的數量,每移動一個測量單位就發出一個測量信號。其優點是檢測裝置比較簡單,任何一個對中點都可以作為測量起點。但在此系統中,移距是靠對測量信號累積後讀出的',一旦累計有誤,此後的測量結果將全錯。另外在發生故障時(如斷電)不能再找到事故前的正確位置,事故排除後,必須將工作台移至起點重新計數才能找到事故前的正確位置。脈沖編碼器,旋轉變壓器,感應同步器,光柵,磁柵,激光干涉儀等都是增量檢測裝置。
絕對式測量方式測出的是被測部件在某一絕對坐標系中的絕對坐標位置值,並且以二進制或十進制數碼信號表示出來,一般都要經過轉換成脈沖數字信號以後,才能送去進行比較和顯示。採用此方式,解析度要求愈高,結構也愈復雜。這樣的測量裝置有絕對式脈沖編碼盤、三速式絕對編碼盤(或稱多圈式絕對編碼盤)等。
2、數字式和模擬式測量
數字式檢測是將被測量單位量化以後以數字形式表示。測量信號一般為電脈沖,可以直接把它送到數控系統進行比較、處理。這樣的檢測裝置有脈沖編碼器、光柵。數字式檢測有如下的特點:
(1)被測量轉換成脈沖個數,便於顯示和處理;
(2)測量精度取決於測量單位,與量程基本無關;但存在累計誤碼差;
(3)檢測裝置比較簡單,脈沖信號抗干擾能力強。
模擬式檢測是將被測量用連續變數來表示,如電壓的幅值變化,相位變化等。在大量程內做精確的模擬式檢測時,對技術有較高要求,數控機床中模擬式檢測主要用於小量程測量。模擬式檢測裝置有測速發電機、旋轉變壓器、感應同步器和磁尺等。模擬式檢測的主要特點有:
(1)直接對被測量進行檢測,無須量化。
(2)在小量程內可實現高精度測量。
3、直接檢測和間接檢測。
位置檢測裝置安裝在執行部件(即末端件)上直接測量執行部件末端件的直線位移或角位移,都可以稱為直接測量,可以構成閉環進給伺服系統,測量方式有直線光柵、直線感應同步器、磁柵、激光干涉儀等測量執行部件的直線位移;由於此種檢測方式是採用直線型檢測裝置對機床的直線位移進行的測量。其優點是直接反映工作台的直線位移量。缺點是要求檢測裝置與行程等長,對大型的機床來說,這是一個很大的限制。
位置檢測裝置安裝在執行部件前面的傳動元件或驅動電機軸上,測量其角位移,經過傳動比變換以後才能得到執行部件的直線位移量,這樣的稱為間接測量,可以構成半閉環伺服進給系統。如將脈沖編碼器裝在電機軸上。間接測量使用可靠方便,無長度限制;其缺點是在檢測信號中加入了直線轉變為旋轉運動的傳動鏈誤差,從而影響測量精度。一般需對機床的傳動誤差進行補償,才能提高定位精度。
除了以上位置檢測裝置,伺服系統中往往還包括檢測速度的元件,用以檢測和調節發動機的轉速。常用的測速元件是測速發動機。
;『伍』 數控機床上的光柵尺是什麼
數控機床上的光柵尺,也稱為光柵尺位移感測器(光柵尺感測器),是利用光柵的光學原理工作的測量反饋裝置,在數控機床中常用於對刀具和工件的坐標進行檢測,來觀察和跟蹤走刀誤差,以起到一個補償刀具的運動誤差的作用。
光柵尺經常應用於數控機床的閉環伺服系統中,可用作直線位移或者角位移的檢測。其測量輸出的信號為數字脈沖,具有檢測范圍大,檢測精度高,響應速度快的特點。光柵尺按照製造方法和光學原理的不同,分為透射光柵和反射光柵。
(5)數控常用的位置檢測裝置及原理圖擴展閱讀:
光柵尺在數控機床中的安裝 :
1、光柵尺線位移感測器的安裝比較靈活,可安裝在機床的不同部位。以 FANUC 系統數控端面外圓磨床為例,使用的是 LC193F 絕對光柵尺,且安裝在工作台和砂輪架導軌(滑板)上,隨機床走刀而移動,讀數頭固定在床身上,盡可能使讀數頭安裝在主尺的下方。
2、其安裝方式的選擇必須注意切屑、切削液及油液的濺落方向。另外,一般情況下,讀數頭應盡量安裝在相對機床靜止部件上,此時輸出導線不移動易固定,而尺身則應安裝在相對機床運動的滑板上,同時感測器不能安裝在打底塗漆或者粗糙不平的床身。
參考資料來源:網路-光柵尺
『陸』 光柵尺的原理及結構
結構:
光柵尺是由標尺光柵和光柵讀數頭兩部分組成。標尺光柵一般固定在機床固定部件上,光柵讀數頭裝在機床活動部件上,指示光柵裝在光柵讀數頭中。右圖所示的就是光柵尺的結構。
光柵檢測裝置的關鍵部分是光柵讀數頭,它由光源、會聚透鏡、指示光柵、光電元件及調整機構等組成。光柵讀數頭結構形式很多,根據讀數頭結構特點和使用場合分為直接接收式讀數頭(或稱硅光電池讀數頭、鏡像式讀數頭、分光鏡式讀數頭、金屬光柵反射式讀數頭)。
原理:
以透射光柵為例,當指示光柵上的線紋和標尺光柵上的線紋之間形成一個小角度θ,並且兩個光柵尺刻面相對平行放置時,在光源的照射下,位於幾乎垂直的柵紋上,形成明暗相間的條紋。這種條紋稱為「莫爾條紋」。
嚴格地說,莫爾條紋排列的方向是與兩片光柵線紋夾角的平分線相垂直。莫爾條紋中兩條亮紋或兩條暗紋之間的距離稱為莫爾條紋的寬度,以W表示。
(6)數控常用的位置檢測裝置及原理圖擴展閱讀
使用注意事項
(1)光柵尺感測器與數顯表插頭座插拔時應關閉電源後進行。
(2)盡可能外加保護罩,並及時清理濺落在尺上的切屑和油液,嚴格防止任何異物進入光柵尺感測器殼體內部。
(3)定期檢查各安裝聯接螺釘是否松動。
(4)為延長防塵密封條的壽命,可在密封條上均勻塗上一薄層硅油,注意勿濺落在玻璃光柵刻劃面上。
(5) 為保證光柵尺感測器使用的可靠性,可每隔一定時間用乙醇混合液(各50%)清洗擦拭光柵尺面及指示光柵面,保持玻璃光柵尺面清潔。
(6) 光柵尺感測器嚴禁劇烈震動及摔打,以免破壞光柵尺,如光柵尺斷裂,光柵尺感測器即失效了。
『柒』 數控機床對位置檢測裝置的要求有哪些 詳細
直接測量和間接測量
1.直接測量
直接測量是將檢測裝置直接安裝在執行部件上,如光柵、感應同步器等用來直接測量工作台的直線位移,位置檢測裝置安裝在執行部件(即末端件)上直接測量執行部件末端件的直線位移或角位移,可以構成閉環進給伺服系統。測量方式有直線光柵、直線感應同步器、磁柵、激光干涉儀等測量執行部件的直線位移。由於此種檢測方式是採用直線型檢測裝置對機床的直線位移進行測量,因此,其優點是直接反映工作台的直線位移量;缺點是要求檢測裝置與行程等長,對大型的數控機床來說,這是一個很大的限制。
2.間接測量
間接測量裝置是將檢測裝置安裝在滾珠絲杠或驅動電動機軸上,通過檢測轉動件的角位移來間接測量執行部件的直線位移。
位置檢測裝置安裝在執行部件前面的傳動元件或驅動電動機軸上,測量其角位移,經過傳動比變換以後才能得到執行部件的直線位移量,這樣可以構成閉環伺服進給系統,如將脈沖編碼器裝在電動機軸上。
間接測量使用可靠、方便,無長度限制;其缺點是,在檢測信號中加入了直線轉變為旋轉運動的傳動鏈誤差,從而影響測量精度。一般需對數控機床的傳動誤差進行補償,才能提高定位精度。
除了以上位置檢測裝置,伺服系統中往往還包括檢測速度的元件,用以檢測和調節發動機的轉速。常用的元件是測速發電機。
位置檢測裝置是數控機床伺服系統的重要組成部分。它的作用是檢測位移和速度,發送反饋信號,構成閉環或半閉環控制。數控機床的加工精度主要由檢測系統的精度決定。不同類型的數控機床,對位置檢測元件,檢測系統的精度要求和被測部件的最高移動速度各不相同。現在檢測元件與系統的最高水平是:被測部件的最高移動速度高至240m/min時,其檢測位移的解析度(能檢測的最小位移量)可達1μm,如24m/min時可達0.1μm。最高解析度可達到
0.01μm。
數控機床對位置檢測裝置有如下要求:
(1)受溫度,濕度的影響小,工作可靠,能長期保持精度,抗干擾能力強。
(2)在機床執行部件移動范圍內,能滿足精度和速度的要求。
(3)使用維護方便,適應機床工作環境。
(4)成本低。