Ⅰ 建築防雷裝置由哪幾部分組成
建築防雷裝置顧名思義,就是對其建築做好防雷措施的裝置,那麼建築防雷裝置由哪幾部分組成通過小編給大家詳細的講解一下。
建築物的防雷裝置包括接閃裝置、引下線和接地裝置三個部分。其防雷的原理是通過金屬製成的接閃裝置將雷電吸引到自身,並安全導入大地,從而使附近的建築物免受雷擊。
建築物的防雷裝置結構:建築物的防雷裝置包括接閃裝置、引下線和接地裝置三個部分。其防雷的原理是通過金屬製成的接閃裝置將雷電吸引到自身,並安全導入大地,從而使附近的建築物免受雷擊。防雷裝置的三個部分要連接可靠。
接閃裝置
裝在建築物的最高處,必須露在建築物外面,可以是避雷針、避雷線、避雷帶或避雷網,也有將幾種形式結合起來使用的。
1、避雷針。1750年美國富蘭克林發明,是至今仍廣泛應用的接閃裝置。用鍍鋅圓鋼或鍍鋅鋼管製成的尖形金屬桿,豎立在建築物的最高點,它保護的范圍是以針頂點向下作與針成45°夾角的正圓錐體的空間。如需擴大保護的范圍,可以用兩支或更多支的避雷針聯合起來使用。
2、避雷線。用懸掛在空中的接地導線作接閃裝置。它主要用來保護線路,其保護范圍可用模擬實驗或根據經驗確定。
3、避雷帶和避雷網。用覆蓋在建築物高聳部分、屋頂或其邊緣的金屬帶或金屬網格作為接閃裝置。超過20~30米高度的建築物容易受到雷電的側擊和斜擊,採用避雷帶或避雷網效果較好。
引下線
一般採用鍍鋅鋼絞線,將接閃裝置和接地裝置連接成一體,要注意其截面大小,連接可靠和以最短途徑接地。引下線分布要合理對稱,不應緊靠門、窗。鋼筋混凝土建築物的鋼筋和鋼柱等也可當作引下線使用。
接地裝置
是使電流通過接地電極向大地泄放。一般採用鍍鋅的圓鋼、角鋼、扁鋼等連接成水平接地環、接地帶或垂直接地體,埋於一定深度的濕土中。現代建築物的鋼筋混凝土基礎也可以作為接地裝置。
各類建築物的避雷要求,中國在有關防雷的設計規程、規范中都有明文規定。
以上是小編關於建築防雷裝置由哪幾部分組成的相關介紹,大家對其建築防雷裝置有所了解,那麼雷電會帶來哪些危害下期裕祥安全網給大家介紹這些自然災害安全小知識。
Ⅱ 船舶防撞裝置結構設計規范
現代運輸船舶盡管種類繁多,構造不一,但都是由船體和動力裝置兩部分組成,並配置有各種舾裝設備和系統。 船體及其上層建築 運輸船舶的主體,為旅客、船 員以及貨物、動力裝置和油、水等物料提供裝載的空間。 鋼質運輸船船體是用各種規格鋼板和型材焊接而成, 由船底、兩舷、首端、尾端和甲板組成水密空心結構。 船底有單底和雙底結構,由船底外板(包括平板龍骨)、 內底板和內底邊板(雙層底結構的船有)、縱向骨架、橫 向骨架等構件組成。船底骨架有橫骨架式和縱骨架式兩 種。橫骨架式結構由肋板(橫向構件)、中桁材(位於 船底縱向中心線處的縱桁,又稱中內龍骨)、旁桁材(位 於船底縱向中心線兩側的縱桁,又稱旁內龍骨)等構件組 成;縱骨架式結構減少肋板數,但增加船底縱骨。兩舷由 水密的舷側外板和加強它的骨架(肋骨和舷側縱桁、縱 骨等)組成。為了加強船體首尾結構,在首端有首柱,在 尾端設尾柱
Ⅲ 鋁合金門窗工程技術規范之5結構設計
5結構設計
5.1一般規定
5.1.1鋁合金門窗為建築物外圍結構的重要組成部分,一般情況下屬於易於替換的結構構件,承受自重以及直接作用於其上的風荷載、地震作用和溫度作用等,不分擔主體結構承受的各種荷載和作用。
5.1.2鋁合金門窗是建築外圍護結構的組成部分,除必須具備足夠的剛度和承載能力外,鋁合金門窗自身結構、鋁合金門窗與建築洞口連接之間,須有一定的變形能力,以適應主體結構的變位。當主體結構在外荷載作用下產生的變形時,不應使門窗構件產生過大的內力和不能承受的變形。
5.1.4鋁合金門窗的面板玻璃為脆性材料,為了不致由於門窗受力後產生過大撓度導致玻璃破損,同時也避免因桿件變形過大而影響門窗的使用性能——開關困難、水密性能、氣密性能降低或玻璃發生嚴重畸變等,故對鋁合金門窗受力桿件,需同時驗算其撓度和承載力。
鋁合金門窗連接件根據不同受荷情況,需進行抗拉(壓)、抗剪和抗承壓強度驗算。
根據《建築結構可靠度設計統一標准》GB50068規定,對於承載能力極限狀態,應採用下列設計表達式進行設計:
γ0S≤R(2)
式中:R——結構構件抗力的設計值;
S——荷載效應組合的設計值;
γ0——結構重要性系數。
門窗構件的結構重要性系數(γ0),與門窗的設計使用年限和安全等級有關。考慮門窗為重要的持久性非結構構件,因此,門窗的安全等級一般可定為二級或三級,其結構重要性系數(γ0)可取1.0。因此,本規范設計表達式簡化表示為S≤R,本承載力設計表達式具有通用意義,作用效應設計值S可以是內力或應力,抗力設計值R可以是構件的承載力設計值或材料強度設計值。
鋁合金門窗玻璃的設計計算方法按現行行業標准《建築玻璃應用技術規程》JGJ113的規定執行。按此計算方法,門窗玻璃的安全系數K=2.50,此時對應的玻璃失效概率為1‰。
5.1.5鋁合金門窗構件在實際使用中,將承受自重以及直接作用於其上的風荷載、地震作用、溫度作用等。在其所承受的這些荷載和作用中,風荷載時主要的作用,其數值可達(1.0~5.0)kN/㎡。地震荷載方面,根據《建築抗震設計規范》GB50011規定,非結構構件的地震作用只考慮由自身重力產生的水平方向地震作用和支座間相對位移產生的附加作用,採用等效側力方法計算。因為門窗自重較輕,即使按最大地震作用系數考慮,門窗的水平地震荷載在各種常用玻璃配置情況下的水平方向地震作用力一般處於(0.04~0.4)kN/㎡的范圍內,其相應的組合效應值僅為0.26kN/㎡,遠小於風壓值。溫度作用方面,對於溫度變化引起的門窗桿件和玻璃的熱脹冷縮,在構造上可以採用相應措施有效解決,避免因門窗構件間擠壓產生溫度應力造成門窗構件破壞,如門窗框、扇連接裝配間隙,玻璃鑲嵌預留間隙(本規范第5章第5.3.2條已規定)等。同時,多年的工程設計計算經驗也表明,在正常的使用環境下,由玻璃中央部分與邊緣部分存在溫度差而產生的溫度應力亦不致使玻璃發生破損。因此,本規范規定進行鋁合金門窗結構設計時僅計算主要作用效應重力荷載和風荷載,地震作用和溫度作用效應不作計算,僅要求在設計構造上採取相應措施避免因地震作用和溫度作用效應引起門窗構件破壞。
進行鋁合金門窗構件的承載力計算時,當重力荷載對鋁合金門窗構件的承載能力不利時,重力荷載和風荷載作用的分項系數(γG、γW)應分別取1.2和1.4;當重力荷載對鋁合金門窗構件的承載能力有利時(γG、γW)應分別取1.2和1.4。
5.1.7鋁合金門窗年溫度變化△T應按實際情況確定,當不能取得實際數據時應取80℃。
5.2材料力學性能
5.2.1鋁合金型材和抗拉、壓強度設計值是根據材料的強度標准值除以材料性能分項系數取得的,本規范按《鋁合金結構設計規范》GB50429規定材料性能分項系數(γf)取1.2,所以,相應的鋁合金型材抗拉、壓強度設計值為:
鋁合金型材強度標准(fak)一般取鋁合金型材的規定非比例延伸強度Rρ0.2,Rρ0.2可按現行國家標准《鋁合金建築型材》GB5237的規定取用。為便於設計應用,將上式計算得到的數值取5的整數倍,表5.2.1中的鋁合金抗拉、壓強度設計值即為按照這一要求計算得出的。
因風荷載分項系數γW=1.4,材料性能分項系數γf=1.2,本規范鋁合金型材總安全系數為K=γWγf=1.68。
5.2.2鋁合金門窗中鋼材主要用於連接件(如連接鋼板、螺栓等),其計算和設計要求應按現行國家標准《鋼結構設計規范》GB50017的規定進行。其常用鋼材的強度設計值亦按現行國家標准《鋼結構設計規范》GB50017的規定採用。
5.2.4在鋁合金門窗的實際使用中,失效概率最大的即為門窗五金件、連接構件其承載力須滿足其產品標準的要求,對尚無產品標準的受力五金件、連接件須提供由專業檢測機構出去的產品承載力的檢測報告。
鋁合金門窗五金件、連接構件主要用於門窗窗扇與窗框的連接、鎖固和門窗的連接,一旦出現失效,將影響窗扇的正常啟閉,甚至導致窗扇的墜落,宜具有較高的安全度。根據目前國內工程的經驗,一般情況下,門窗五金件、連接構件的總安全系數可取2.0,故抗力分項系數γR(或材料性能分項系數γf)可取為1.4.所以,當門窗五金件產品標准或檢測報告提供了產品承載力標准值(產品正常使用極限狀態對應的承載力)時,其承載力設計值可按承載力標准值除以相應的抗力分項系數γR(或材料性能分項系數γf)1.4確定。特殊情況下課按總安全系數不小於2.0的原則通過分析確定相應的承載力設計值。
5.2.5為方便使用,本規范在附錄A中收錄了門窗常用緊固件和焊縫的強度設計值或承載力設計值。本規范計算門窗常用緊固件材料強度設計值時所取的抗力分項系數γR(或材料性能分項系數γf)分別為:
1不銹鋼螺栓、螺釘:總安全系數K=3,抗拉:γf=2.15;抗剪:γR=2.857;
2抽芯鉚釘:總安全系數K=1.8,γR=1.286;
3焊縫材料強度設計值按現行國家標准《鋼結構設計規范》GB50017的規定採用。
5.4鋁合金門窗主要受力桿件計算
5.4.1對於鋁合金門窗桿件這類細長構件來說,受荷後起控製作用的旺旺是桿件的撓度,因此進行門窗工程計算時,可先按門窗桿件撓度計算選取合適的桿件,然後進行桿件強度的復核。門窗中橫框型材受力形式是雙彎桿件,當門窗垂直安裝時,中橫框型材水平方向承受風荷載作用力,垂直方向承受玻璃的重力。為使中橫框型材下面框架內的玻璃鑲嵌安裝和使用不受影響,本規范要求驗算在承受重力荷載作用下中橫框型材平行於玻璃平面方向的撓度值。
5.4.2門窗型材細長桿件受彎後其最大彎曲正應力遠大於最大彎曲剪應力,所以在對門窗桿件進行強度復核時可僅進行最大彎曲正應力的驗算。同時,因鋁合金門窗自重較輕,其在豎框桿件中產生的軸力通常情況下都很小,可忽略不計。
在進行受理桿件截面抗彎承載力驗算時,鋁型材的抗彎強度設計值(f)可按本規范5.2.1條的規定採用(fa);當鋁型材中加有鋼芯時,其鋼芯的抗彎強度設計值f可按本規范5.2.2條的規定採用(fb)
按《鋁合金結構設計規范》GB50429規定,鋁合金型材截麵塑性發展系數(γ),當採用強硬化(T4、T5狀態)型材時取1.00;當採用弱硬化(T6狀態)型材時根據不同的截面形狀分別可取1.00或1.05,而對於鋁合金門窗常用截面形狀,大部分都取γ=1.00。為方便實際計算應用,本規范規定在進行鋁合金門窗受力桿件截面抗彎承載力驗算時統一取γ=1.00。
5.4.3鋁合金門窗框、扇主要受力桿件的力學模型,應根據門窗的立面分格情況、開啟形式、框扇連接鎖固方式等,按照《建築結構靜力學計算手冊》計算方法,分別簡化為承受各類分布荷載或集中荷載的簡支梁和懸臂梁等來進行計算。為方便使用,本規范在附錄B中,規定了門窗桿件撓度、彎矩的簡化計算方法,可參照執行。
5.5連接設計
5.5.1鋁合金門窗構件的端部連接節點、窗扇連接鉸鏈、合頁和鎖緊裝置等門窗五金件和連接件的連接點,在門窗結構受力體系體系中相當於受力桿件簡支梁和懸臂梁的支座,應有足夠的連接強度和承載力,以保證門窗結構體系的受力和傳力。在我國多年的鋁合金門窗實際工程經驗中,實際使用中損壞和在風壓作用下發生的損毀,很多情況都是由於五金件和連接體本身承載力不足或鏈接螺釘、鉚釘拉脫而導致鏈接失效而引起。因此,在鋁合金門窗工程設計中,應高度注意門窗五金件和連接件承受力校核和連接可靠性設計,應按荷載和作用的分布和傳遞,正確設計、計算門窗連接節點,根據連接形式和承載情況,進行五金件、連接件及緊固件的抗拉(壓)、抗剪切和抗擠壓等強度校核計算。
5.5.2在進行鋁合金門窗五金件和連接件強度計算時,根據不同連接件情況,可分別採用應力表達式:σ≤f或承載力表達式:S≤R進行計算。
通常情況下,進行連接件強度計算時,一般可採用應力表達式進行計算;而門窗五金件產品標准或產品檢測報告所提供的一般為產品承載力,在此情況下,採用承載力表達式進行計算將較為直觀、簡單。
5.5.8不同金屬相互接觸處,容易產生雙金屬腐蝕,所以要求設置絕緣墊片或採取其他防腐措施。在正常條件下,鋁合金與不銹鋼材料接觸不易發生雙金屬腐蝕,一般可不設置絕緣墊片。
5.5.9連接螺栓、螺釘或鉚釘的中心距和中心至構件邊緣的距離,應按《鋁合金結構設計規范》GB50429規定執行,同時應滿足構件受剪面進行驗算。同事,當螺釘直接通過型材孔壁螺紋受力連接時,應驗算螺紋承載力。必要時,應採取相應的補強措施,如採用加襯板等,或改變連接方式。
5.6隱框窗硅酮結構密封膠設計
5.6.1硅酮結構密封膠在施工前,應進行與玻璃、型材的剝離試驗,以及相接觸的有機材料的相容性試驗,合格後方能使用。如果硅酮結構密封與接觸材料不相容,會導致結構膠粘結力下降或喪失。
5.6.2硅酮結構密封膠的粘結寬度、厚度的設計計算,《玻璃幕牆工程技術規范》JGJ102均作了詳細規定。在進行隱框窗結構膠粘接寬度、厚度的設計計算時,應考慮風荷載效應和玻璃自重效應,按照非抗震設計計算公式進行設計計算。
Ⅳ 《爆炸危險環境電力裝置設計規范》,以下哪些設備結構可以在 0 區中
1.GB 3836.15《爆炸性環境第15部分:裝置的設計、選型和安裝》該標准初次制定於1998年開始,是全國防爆電氣設備標准化技術委員會等效採用IEC 60079- l4:1996《爆炸性氣體環境用電設備第14部分:危險場所電氣安裝(煤礦除外)》,2000年發布第一版國家標准GB 3836.15爆炸性氣體環境用電氣設備第I5部分:危險場所電氣安裝(煤礦除外)》。2013年,全國防爆電氣設備標准化技術委員會啟動了對國家標準的修訂工作,這次修訂為修改採用了IEC 60079-14: 2007 《爆炸性環境第14部分:電氣裝置的設計、選型和安裝))。這次修訂後的安裝、選型標准不僅包括對爆炸性氣體環境用電氣設備的要求,而且還包括對可燃性粉塵環境用設備的要求,取代了GB 3836.15-2000和 GB 12476.2-2010。
2. GB50058《爆炸危險環境電力裝置設計規范》該標准在爆炸危險環境電氣裝置設計方面對爆炸危險場所電氣設備的選型、安裝做了規定。
3. GB50257《電氣裝置安裝工程爆炸和火災危險環境電氣裝置施工及驗收規范》該標准在爆炸和火災危險環境電氣裝置安裝和驗收方面做了具體規定。
來自安弘認證網
Ⅳ 防雷裝置由哪三部分組成
要防止雷電危害,就必須裝設完整的防雷裝置。一個完整的防雷裝置由3部分組成(圖8-1):接閃器(避雷針)、引下線和接地體。接閃器是直接接受雷擊的金屬導體,它安裝在被保護物頂端或獨立的避雷器上。在雷電通道的初始發展階段,因雷雲離地面比較高,故通道發展的方向不受地面物體的影響,但當雷電通道發展到一定高度時,地面上的突出物將會影響通道的發展方向。因此,易燃易爆化學物品的儲存地,如倉庫、油罐等,必須裝有接閃器(避雷針),通道就會向避雷針方向發展,這是因為接閃器高出儲存易燃易爆化學物品的突出物體並且有良好的接地。所以,接閃器的本質作用,就是把雷電引到自身上來,並安全地將雷電流引入大地。
圖8-1避雷裝置構造
1.接閃器2.支柱3.引下線4.接地體
引下線是連接接閃器和接地裝置的金屬導體,它的作用是把接閃器上的雷電流傳遞到接地體上。引下線一般採用圓鋼或扁鋼製成,如有腐蝕性場所應當適當增大截面積,引下線一般沿建築物的外牆敷設,敷設路線應盡量短而直,應固定牢固,固定支點不應大於1.5~2m。在地面連接處應用鋼管穿管的辦法,以防止外物對引下線的機械損傷和防腐蝕。為了檢查測量的方便,在離地面1.5~1.8m處須設置斷接卡。
接地體包括接地裝置和裝置周圍的土壤或混凝土,它的作用是把雷擊電流有效地泄入大地。現在常用的接地裝置有水平接地極、垂直接地極、延長接地極和基礎接地極。易燃易爆化學物品的接地裝置一般採用垂直接地極,即用一根2.5m以上的角鋼、圓鋼、鋼管或銅質柱形材製成,垂直打入土壤中,當接地不能滿足要求時,可採用環形接地極組和放射形接地極組的辦法,為了防止被腐蝕,可在埋前先塗上防腐劑。有些地區土壤電阻較高,一般接地方式達不到接地設計要求的,可採用人工辦法來減少接地土壤的電阻率,即用換土法或化學處理法。
常見的防雷裝置有:避雷針(圖8-2)、避雷網、避雷帶、避雷線、避雷引下線、防雷地網、避雷器(圖8-3)等。
圖8-2避雷針外形
圖8-3避雷器外形
根據保護的對象不同,接閃器可選用避雷針、避雷線、避雷網或避雷帶。避雷針主要用於建築物的保護;避雷線主要作為電力線路的保護;避雷網和避雷帶主要用於建築物的保護;避雷器是防止雷電侵入波的一種保護裝置。